首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical calculations using the M062X and QCISD methods were performed on the addition reactions of the aluminum germylenoid H2GeAlCl3 with ethylene. The most two stable structures of germylenoid H2GeAlCl3, i.e., the p-complex and three-membered ring structures, respectively, were employed as reactants. The calculated results indicate that, for the p-complex, H2GeAlCl3 there are two pathways, I and II, of which path I involves just one transition state, while path II involves two transition states between reactants and products. Comparing the reaction barrier heights of path I (44.6 kJ mol?1) and II (37.6 kJ mol?1), the two pathways are competitive, with similar barriers under the same conditions, while for the three-membered ring structure, another two pathways, III and IV, also exist. Path III has one transition state; however, in path IV, two transition states exist. By comparing their barrier heights, path III (barrier height 39.2 kJ mol?1) could occur more easily than path IV (barrier height 92.8 kJ mol?1). Considering solvent effects on these addition reactions, the PCM model and CH2Cl2 solvent were used in calculations, and the calculated results demonstrate that CH2Cl2 solvent is unfavorable for the reactions, except for path II. In CH2Cl2 solvent, paths II and III are more favorable than paths I and IV.  相似文献   

2.

Background

The greenhouse gas (GHG) mitigation is one of the most important environmental benefits of using bioenergy replacing fossil fuels. Nitrous oxide (N2O) and methane (CH4) are important GHGs and have drawn extra attention for their roles in global warming. Although there have been many works of soil emissions of N2O and CH4 from bioenergy crops in the field scale, GHG emissions in large area of marginal lands are rather sparse and how soil temperature and moisture affect the emission potential remains unknown. Therefore, we sought to estimate the regional GHG emission based on N2O and CH4 releases from the energy crop fields.

Results

Here we sampled the top soils from two Miscanthus fields and incubated them using a short-term laboratory microcosm approach under different conditions of typical soil temperatures and moistures. Based on the emission measurements of N2O and CH4, we developed a model to estimate annual regional GHG emission of Miscanthus production in the infertile Loess Plateau of China. The results showed that the N2O emission potential was 0.27 kg N ha?1 year?1 and clearly lower than that of croplands and grasslands. The CH4 uptake potential was 1.06 kg C ha?1 year?1 and was slightly higher than that of croplands. Integrated with our previous study on the emission of CO2, the net greenhouse effect of three major GHGs (N2O, CH4 and CO2) from Miscanthus fields was 4.08 t CO2eq ha?1 year?1 in the Loess Plateau, which was lower than that of croplands, grasslands and shrub lands.

Conclusions

Our study revealed that Miscanthus production may hold a great potential for GHG mitigation in the vast infertile land in the Loess Plateau of China and could contribute to the sustainable energy utilization and have positive environmental impact on the region.
  相似文献   

3.
A magnetophoretic harvesting agent, a polypyrrole/Fe3O4 magnetic nanocomposite, is proposed as a cost and energy efficient alternative to recover biomass of the microalgae Botryococcus braunii, Chlorella protothecoides, and Chlorella vulgaris from their culture media. The maximal recovery efficiency reached almost 99 % for B. braunii, 92.4 % for C. protothecoides, and 90.8 % for C. vulgaris. The maximum adsorption capacity (Q 0) of the magnetic nanocomposite for B. braunii (63.49 mg dry biomass mg?1 PPy/Fe3O4) was higher than that for C. protothecoides (43.91 mg dry biomass mg?1 PPy/Fe3O4) and C. vulgaris (39.98 mg dry biomass mg?1 PPy/Fe3O4). The highest harvesting efficiency for all the studied microalgae were at pH 10.0, and measurement of zeta-potential confirmed that the flocculation was induced by charge neutralization. This study showed that polypyrrole/Fe3O4 can be a promising flocculant due to its high efficacy, low dose requirements, short settling time, its integrity with cells, and with great potential for saving energy because of its recyclability.  相似文献   

4.
L-asparaginase gene from Bacillus subtilis strain R5 (Asn-R5), comprising 990 nucleotides corresponding to a polypeptide of 329 amino acids, was cloned and expressed in Escherichia coli. Recombinant Asn-R5 was produced in soluble and active form exhibiting a specific activity of 223 μmol min?1 mg?1. The optimal temperature and pH for L-asparaginase activity of Asn-R5 were 35 °C and 9.0, respectively. Asn-R5 displayed a 50% activity with D-asparagine and 2% with L-glutamine compared to 100% with L-asparagine. No activity could be detected when D-glutamine was used as substrate. Half-life of the enzyme was 180 min at 35 °C and 40 min at 50 °C. There was no effect of metal ions and EDTA on the activity indicating that Asn-R5 enzyme activity is not metal ion dependent. The Km and Vmax values were 2.4 mM and 265 μmol min?1 mg?1, respectively. Activation energy for reaction catalyzed by Asn-R5 was 28 kJ mol?1. High L-asparaginase activity and thermostability of recombinant Asn-R5 may be beneficial for industrial production and application.  相似文献   

5.
Since the thermal stabilities of ionic liquids (ILs) are of significance for their application, an amine-functionalized IL 1,2-dimethyl-(3-aminoethyl) imidazolium tetrafluoroborate [aEMMIM][BF4] was chosen to study thermal decomposition mechanisms via the methods of FT-IR, 1H NMR, TGA, TGA-MS and density functional theory (DFT) calculations. Theoretical and experimental results indicated that amine-functionalization reduces the thermal stability of [aEMMIM][BF4] compared to its non-functionalized counterpart. Moreover, we found that [aEMMIM][BF4] follows a unimolecular nucleophilic substitution (SN1) decomposition (98.8 %), whereas the bimolecular nucleophilic substitution (SN2) decomposition (1.2 %) is unfavorable. The SN1 and SN2 reactions were fully optimized at B3LYP/6-311++G(d,p) level, and the energies of reactant (R), intermediates (IM), transition state (TS) and product (P) were obtained and analyzed by reaction mechanism. The energy of the intermediate is higher than that of the reactants by 18.92 kJ mol?1, and the energy of the TS is higher than that of the IM by 155.23 kJ mol?1. This result indicates that the IM are also more stable than the P2 product, thus the reaction is endothermic. The chemical nature of the covalent and hydrogen bonds was analyzed by vibrational modes analysis (VMA), nature bond orbital (NBO) and the theory of atoms in molecules (AIM).
Graphical Abstract Proposed thermal decomposition of [aEMMIM][BF4] via unimolecular ( SN1) and bimolecular( SN2) nucleophilic substitution mechanisms. The electrostatic potential surface (ESP) of the transition state illustrates that hydrogen bonds are generated when [BF4]? is close to [aEMMIM]+, and SN1 decomposition is much favorable than SN2 decomposition.
  相似文献   

6.
Invasive plants can influence ecosystem processes such as greenhouse gas (GHG) emissions from wetland systems directly through plant-mediated transfer of GHGs to the atmosphere or through indirect modification of the environment. However, patterns of plant invasion often co-vary with other environmental gradients, so attributing ecosystem effects to invasion can be difficult in observational studies. Here, we assessed the impact of Phragmites australis invasion into native shortgrass communities on methane (CH4) emissions by conducting field measurements of CH4 emissions along transects of invasion by Phragmites in two neighboring brackish marsh sites and compared these findings to those from a field-based mesocosm experiment. We found remarkable differences in CH4 emissions and the influence of Phragmites on CH4 emissions between the two neighboring marsh sites. While Phragmites consistently increased CH4 emissions dramatically by 10.4 ± 3.7 µmol m?2 min?1 (mean ± SE) in our high-porewater CH4 site, increases in CH4 emissions were much smaller (1.4 ± 0.5 µmol m?2 min?1) and rarely significant in our low-porewater CH4 site. While CH4 emissions in Phragmites-invaded zones of both marsh sites increased significantly, the presence of Phragmites did not alter emissions in a complementary mesocosm experiment. Seasonality and changes in temperature and light availability caused contrasting responses of CH4 emissions from Phragmites- versus native zones. Our data suggest that Phragmites-mediated CH4 emissions are particularly profound in soils with innately high rates of CH4 production. We demonstrate that the effects of invasive species on ecosystem processes such as GHG emissions may be predictable qualitatively but highly variable quantitatively. Therefore, generalizations cannot be made with respect to invader-ecosystem processes, as interactions between the invader and local abiotic conditions that vary both spatially and temporally on the order of meters and hours, respectively, can have a stronger impact on GHG emissions than the invader itself.  相似文献   

7.
In this work, the structural, compositional, optical, and dielectric properties of Ga2S3 thin films are investigated by means of X-ray diffraction, scanning electron microscopy, energy dispersion X-ray analysis, and ultraviolet—visible light spectrophotometry. The Ga2S3 thin films which exhibited amorphous nature in its as grown form are observed to be generally composed of 40.7 % Ga and 59.3 % S atomic content. The direct allowed transitions optical energy bandgap is found to be 2.96 eV. On the other hand, the modeling of the dielectric spectra in the frequency range of 270–1,000 THz, using the modified Drude-Lorentz model for electron-plasmon interactions revealed the electrons scattering time as 1.8 (fs), the electron bounded plasma frequency as ~0.76–0.94 (GHz) and the reduced resonant frequency as 2.20–4.60 ×1015 (Hz) in the range of 270–753 THz. The corresponding drift mobility of electrons to the terahertz oscillating incident electric field is found to be 7.91 (cm 2/Vs). The values are promising as they nominate the Ga2S3 thin films as effective candidates in thin-film transistor and gas sensing technologies.  相似文献   

8.
A relative complete study on the mechanisms of the proton transfer reactions of 2-thioxanthine was carried out with density functional theory. The models were designed with monohydrated and dihydrated microsolvent catalyses either with or without the presence of water solvent considered with the polarized continuum model (PCM). A total number of 114 complexes and 67 transition states were found with the B3LYP/6-311+G** calculations. The energies were refined with both B3LYP/aug-cc-pVTZ and PCM-B3LYP/aug-cc-pVTZ methods. The activation energies were reported with respect to the Gibbs free energies obtained in conjunction with the standard statistical thermodynamics. Possible reaction pathways were confirmed with the intrinsic reaction coordinates. Pathways via C8 atom on the imidazole ring, via the bridged C4 and C5 atoms between pyrimidine and imidazole rings and via N, O and S atom on the pyrimidine ring were examined. The results show that the most feasible pathway is the proton transfers within the long range solvent surrounding via the N, O and S atoms in the pyrimidine ring with di-hydrated catalysis: N(7)H?+?2H2O?→?IM89?→?IM90?→?P13?+?2H2O?→?IM91?→?IM92?→?P6?+?2H2O?→?IM71?→?IM72?→?P7?+?2H2O?→?IM107?→?IM108?→?P18?+?2H2O?→?IM111?→?IM112?→?P19?+?2H2O?→?IM113?→?IM114?→?P17?+?2H2O?→?IM105?→?IM106?→?N(9)H?+?2H2O that has the highest energy barrier of 44.0 kJ mol?1 in the transition of IM89 to IM90 via TS54. The small energy barrier is in good agreement with the experimental observation that 2-TX tautomerizes at room temperature in water. In the aqueous phase, the most stable intermediate is found to be IM21 [N(7)H?+?2H2O] and the possible co-existing species are the monohydrated IM1, IM9, IM39 and IM46, and the di-hydrated IM5, IM8, IM13, IM16, IM81, IM89, IM90, IM91 and IM106 complexes that have a relative concentration larger than 10?6 (1 ppm) with respect to IM21.
Figure
Mechanisms of the proton transfer reactions of 2-thioxanthine were investigated with both B3LYP/aug-cc-pVTZ//B3LYP/6-311+G** and PCM-B3LYP/aug-cc-pVTZ//B3LYP/6-311+G**. The models were designed with monohydrated and dihydrated microsolvent either with or without the presence of water solvent. The results show that the most feasible pathway is the reactions within the long range solvent surrounding via the N, O and S atoms in the pyrimidine ring with di-hydrated catalysis: N(7)H?+?2H2O?→?IM90?→?IM91?→?P13?+?2H2O?→?IM92?→?IM93?→?P6?+?2H2O?→?IM72?→?IM73?→?P7?+?2H2O?→?IM109?→?IM110?→?P18?+?2H2O?→?IM113?→?IM114?→?P19?+?2H2O?→?IM115?→?IM116?→?P17?+?2H2O?→?IM107?→?IM108?→?N(9)H?+?2H2O that has the highest barrier of 44.0 kJ mol?1 in the transition of IM90 to IM91 via TS54. The barrier is adequate for a reaction at room temperature that consists well with the experimental observations.  相似文献   

9.

Key message

The CO 2 effect on the root production of a broad-leaved community was insignificant when grown in brown forest soil, however, it was positively large when grown in volcanic ash soil.

Abstract

We evaluated the root response to elevated CO2 fumigation of 3 birches (Betula sp.) and 1 deciduous oak (Quercus sp.) grown in immature volcanic ash soil (VA) or brown forest soil (BF). VA is a nutrient-poor, phosphorus-impoverished soil, broadly distributed in northern Japan. Each species had been exposed to either ambient (375–395 μmol mol?1) (aCO2) or elevated (500 μmol mol?1) (eCO2) CO2 during the daytime (more than 70 μmol m?2 s?1) over 4 growing seasons. The results suggest that eCO2 did not cause an increase in total root production when the community had grown in fertile BF soil, however, it did cause a large increase when the community was grown in infertile VA soil. Yet, carbon allocation to plant roots was not affected by eCO2 in either the BF or VA soils. Rhizo-morphogenesis appeared to occur to a greater extent under eCO2. It seems that the saplings developed a massive amount of fine roots under the VA and eCO2 conditions. Unexpectedly, eCO2 resulted in a larger total root mass when the community was grown in VA soil than when grown in BF soil (eCO2 × VA vs. eCO2 × BF). These results may hint to a site-specific potential of communities to sequester future atmospheric carbon. The growing substance of plants is an important factor which root response to eCO2 depends on, however, further studies are needed for a better understanding.
  相似文献   

10.
Glial cells in the diseased nervous system undergo a process known as reactive gliosis. Gliosis of retinal Müller glial cells is characterized by an upregulation of glial fibrillary acidic protein and frequently by a reduction of inward K+ current amplitudes. Purinergic signaling is assumed to be involved in gliotic processes. As previously shown, lack of the nucleotide receptor P2Y1 leads to an altered regulation of K+ currents in Müller cells of the ischemic retina. Here, we asked first whether this effect is mediated by the IP3 receptor subtype 2 (IP3R2) known as the major downstream signaling target of P2Y1 in Müller cells. The second question was whether lack of IP3R2 affects neuronal survival in the control and ischemic retina. Ischemia was induced in wild type and IP3R2-deficient (IP 3 R2 ?/?) mice by transient elevation of the intraocular pressure. Immunostaining and TUNEL labelling were used to quantify neuronal cell loss. The downregulation of inward K+ currents in Müller cells from ischemic IP 3 R2 ?/? retinae was less strong than in wild type animals. The reduction of the number of cells in the ganglion cell layer and of calretinin- and calbindin-positive cells 7 days after ischemia was similar in wild type and IP 3 R2 ?/? mice. However, IP3R2 deficiency led to an increased number of TUNEL-positive cells in the outer nuclear layer at 1 day and to an enhanced postischemic loss of photoreceptors 7 days after ischemia. This implies that IP3R2 is involved in some but not all aspects of signaling in Müller cells after an ischemic insult.  相似文献   

11.
Adsorption behavior of nitrous oxide (N2O) on pristine graphene (PG) and tetracyanoethylene (TCNE) modified PG surfaces is investigated using density functional theory. A number of initial adsorbate geometries are considered on both surfaces and the most stable ones are chosen upon calculation of the adsorption energies (Eads). N2O is found to adsorb in a weakly exoergic process (Eads?~??3.18 kJ mol?1) at the equilibrium distance of 3.52 Å on the PG surface. N2O adsorption can be greatly enhanced with the presence of a TCNE molecule (Eads?=??87.00 kJ mol?1). Mulliken charge analysis confirms that adsorption of N2O is not accompanied by distinct charge transfer from the surfaces to the molecule (? 0.001 │e│ for each case). Moreover, on the basis of calculated changes in the HOMO/LUMO energy gap, it is found that electronic properties of PG and TCNE modified PG are not sensitive toward adsorption of N2O, indicating that both surfaces are not good enough to introduce as an N2O detector. However, the considerable amount of Eads in TCNE modified PG can be a guide to the design of graphene-based adsorbents for N2O capture.  相似文献   

12.
Hydrothermal pretreatment of sugarcane bagasse is a water-based and environment-friendly process that results in almost complete hemicellulose solubilization in oligomeric form as xylooligossacharides (XOs). However, the soluble XOs cannot be utilized by microorganisms such as yeasts, and therefore, a further break down is necessary to generate pentose (C5) monomers that can be then biotransformed into ethanol or other metabolites. The kinetics of XOs post-hydrolysis with sulfuric, maleic, and oxalic acids (the latter two being dicarboxylic acids) in a sugarcane bagasse hemicellulosic hydrolysate was assessed in a bench-scale reactor (2 L). By means of a 22 full factorial design with center point triplicate, acid mass loading and temperature were varied from 0.5 and 2.0% and from 120 to 150 °C, respectively. An irreversible first-order consecutive reaction model of the hydrolysis of XOs in liquid medium was employed. Based on an Arrhenius-type equation, a kinetic parameter estimation was performed with genetic algorithms and the Runge-Kutta methods. For the three acids, the calculated exponential factors, A 0n (n = 1, 2, and 3), ranged from 1012 to 1015 min?1; the dimensionless parameters, m n (n = 1, 2, and 3), ranged from 0.86 to 1.97; and the activation energies ranged from 89 to 129.8 kJ·mol?1. The model—developed at microscale—correctly described the observed XOs, C5, and furfural post-hydrolysis profiles in bench scale and proved the dicarboxylic acids were more selective towards post-hydrolysis by having slower kinetics than sulfuric acid.  相似文献   

13.
A central composite design circumscribed method was used to define the experimental conditions that improve the methane production rate (kCH4, liters of methane per kilogram of VS of waste added and per day) and the cumulative methane production (cMP, liters of methane per kilogram of VS of waste added) of the co-digestion of sewage sludge (SS) with crude glycerol (cGly) and waste frying oil (WFO). Three factors were selected, i.e., SS concentration, global co-substrate concentration, and mass fraction of cGly (xcGly) in a mixture of cGly and WFO (in chemical oxygen demand, COD). SS digestion without co-substrate reached a cMP of (294?±?6) L·kg?1 and a kCH4 of (64?±?1) L·kg?1·d?1, at standard temperature and pressure conditions and expressed relatively to the initial volatile solids. After statistical analysis, SS and co-substrate concentrations of 4.6 g·L?1 and 8.8 g·L?1 (in COD), respectively, with xcGly of 0.8, were defined to simultaneously boost cMP (91 % more) and kCH4 (3-fold increase). Application of these conditions would yield 214 MWh more in electricity per 1000 m3 of SS digested.  相似文献   

14.
A recombinant alcohol dehydrogenase (ADH) from Kangiella koreensis was purified as a 40 kDa dimer with a specific activity of 21.3 nmol min?1 mg?1, a K m of 1.8 μM, and a k cat of 1.7 min?1 for all-trans-retinal using NADH as cofactor. The enzyme showed activity for all-trans-retinol using NAD + as a cofactor. The reaction conditions for all-trans-retinol production were optimal at pH 6.5 and 60 °C, 2 g enzyme l?1, and 2,200 mg all-trans-retinal l?1 in the presence of 5 % (v/v) methanol, 1 % (w/v) hydroquinone, and 10 mM NADH. Under optimized conditions, the ADH produced 600 mg all-trans-retinol l?1 after 3 h, with a conversion yield of 27.3 % (w/w) and a productivity of 200 mg l?1 h?1. This is the first report of the characterization of a bacterial ADH for all-trans-retinal and the biotechnological production of all-trans-retinol using ADH.  相似文献   

15.
Five isocaloric (430 kcal 100 g?1), isonitrogenous (40% CP) experimental diets were formulated with different concentrations of Bacillus licheniformis fb11 probionts (isolated from the gut of Chitala chitala) viz. Control (without probionts), 5 × 104 CFU g?1 (D1), 5 × 105 CFU g?1 (D2), 5 × 106 CFU g?1 (D3), 5 × 107 CFU g?1 (D4), 5 × 108 CFU g?1 (D5) to evaluate its efficiency in C. chitala juvenile. The best growth performance, feed utilisation, specific α-amylase, total protease and lipase activity were observed with the diet D3 (P < 0.05). The lowest Presumptive Pseudomonas Count, Motile Aeromonad Count, Total Coliform Count was observed for D3 (P < 0.05) on 90th day of trial. Two uppermost values were achieved in case of crude protein for D3 and D2 (P > 0.05). The highest lipid content (12.12 ± 0.4 g 100 g?1) was found for D5 (P < 0.05). The highest gross energy (18.75 ± 0.21 MJ 100 g?1) of carcass was recorded for D3. Thus B. licheniformis fb11 at the concentration 5 × 106 CFU g?1 as probiotic supplement promoted growth, digestion in C. chitala juvenile significantly by modulating intestinal microflora.  相似文献   

16.
Holtum JA  Winter K 《Planta》2003,218(1):152-158
Do short-term fluctuations in CO2 concentrations at elevated CO2 levels affect net CO2 uptake rates of plants? When exposed to 600 μl CO2 l?1, net CO2 uptake rates in shoots or leaves of seedlings of two tropical C3 tree species, teak (Tectona grandis L. f.) and barrigon [Pseudobombax septenatum (Jacq.) Dug.], increased by 28 and 52% respectively. In the presence of oscillations with half-cycles of 20 s, amplitude of ca. 170 μl CO2 l?1 and mean of 600 μl CO2 l?1, the stimulation in net CO2 uptake by the two species was reduced to 19 and 36%, respectively, i.e. the CO2 stimulation in photosynthesis associated with a change in exposure from 370 to 600 μl CO2 l?1 was reduced by a third in both species. Similar reductions in CO2-stimulated net CO2 uptake were observed in T. grandis exposed to 40-s oscillations. Rates of CO2 efflux in the dark by whole shoots of T. grandis decreased by 4.8% upon exposure of plants grown at 370 μl CO2 l?1 to 600 μl CO2 l?1. The potential implications of the observations on CO2 oscillations and dark respiration are discussed in the context of free-air CO2 enrichment (FACE) systems in which short-term fluctuations of CO2 concentration are a common feature.  相似文献   

17.

Introduction

The aphid Rhopalosiphum padi L. is a vector of Barley yellow dwarf virus (BYDV) in wheat and other economically important cereal crops. Increased atmospheric CO2 has been shown to alter plant growth and metabolism, enhancing BYDV disease in wheat. However, the biochemical influences on aphid metabolism are not known.

Objectives

This work aims to determine whether altered host-plant quality, influenced by virus infection and elevated CO2, impacts aphid weight and metabolism.

Methods

Untargeted 1H NMR metabolomics coupled with multivariate statistics were employed to profile the metabolism of R. padi reared on virus-infected and non-infected (sham-inoculated) wheat grown under ambient CO2 (aCO2, 400 µmol mol?1) and future, predicted elevated CO2 (eCO2, 650 µmol mol?1) concentrations. Un-colonised wheat was also profiled to observe changes to host-plant quality (i.e., amino acids and sugars).

Results

The direct impacts of virus or eCO2 were compared. Virus presence increased aphid weight under aCO2 but decreased weight under eCO2; whilst eCO2 increased non-viruliferous (sham) aphid weight but decreased viruliferous aphid weight. Discriminatory metabolites due to eCO2 were succinate and sucrose (in sham wheat), glucose, choline and betaine (in infected wheat), and threonine, lactate, alanine, GABA, glutamine, glutamate and asparagine (in aphids), irrespective of virus presence. Discriminatory metabolites due to virus presence were alanine, GABA, succinate and betaine (in wheat) and threonine and lactate (in aphids), irrespective of CO2 treatment.

Conclusion

This study confirms that virus and eCO2 alter host-plant quality, and these differences are reflected by aphid weight and metabolism.
  相似文献   

18.
Embryogenic avocado cultures derived from ‘Hass’ protoplasts were genetically transformed with the plant defensin gene (pdf1.2) driven by the CaMV 35S promoter in pGPTV with uidA as a reporter gene and bar, the gene for resistance to phosphinothricin, the active ingredient of the herbicide Finale® (Basta) (Bayer Environmental Science, Research Triangle Park, Durham, NC ). Transformation was mediated by Agrobacterium tumefaciens strain EHA105. Transformed cultures were selected in the presence of 3.0 mg l?1 phosphinothricin in liquid maintenance medium for 3–4 mo. Liquid maintenance medium consisted of modified MS medium containing (per liter) 12 mg NH4NO3 and 30.3 mg KNO3 and supplemented with 0.1 mg l?1 thiamine HCl, 100 mg l?1 myo-inositol, 30 g l?1 sucrose, 3.0 mg l?1 phosphinothricin, and 0.41 μM picloram. Somatic embryo development from transformed cultures was initiated on MS medium supplemented with 45 g l?1 sucrose, 4 mg l?1 thiamine HCl, 100 mg l?1 myo-inositol, 10% (v/v) filter-sterilized coconut water, 3.0 mg l?1 phosphinothricin, and 6.0 g l?1 gellan gum. Limited plant recovery occurred from somatic embryos on semi-solid MS medium supplemented with 3.0 mg l?1 phosphinothricin, 4.44 μM 6-benzylaminopurine (BA), and 2.89 μM GA3; transformed shoots were micrografted on in vitro-grown seedling rootstocks. Approximately 1 yr after acclimatization in the greenhouse, transformed shoots were air-layered to recover transformed roots. Genetic transformation of embryogenic cultures, somatic embryos, and regenerated plants was confirmed by polymerase chain reaction (PCR), Southern blot hybridization, the XGLUC reaction for uidA, and application of the herbicide Finale® to regenerated plants.  相似文献   

19.
The effect of composted municipal solid waste (MSW) and sewage sludge (SS) on photosynthetic activity of wheat (Triticum durum L.) was investigated. Chlorophyll fluorescence and gas exchange parameters were assessed following application of up to 300 t ha?1 of MSW compost or SS. 100 t ha?1 MSW compost was optimal for the plant growth, which showed 78% stimulation as compared to the control. This was associated with higher maximum quantum efficiency (F v /F m) of photosystem II (PSII) and the actual quantum efficiency of PSII open centers at light adapted state (ΔF/\(F_{\rm m}^{\prime}\)). Maximal values of net photosynthetic rate and stomatal conductance were recorded at 100 t ha?1 MSW compost (+40 and +116%, respectively). Ribulose bisphosphate carboxylase/oxygenase (RubisCO) activity was also significantly stimulated at 100 t ha?1, while less significant impact was found in SS treatment. A marked accumulation of Ni, Pb, Cu, and Zn in concomitance with membrane lipid peroxidation were observed at 200–300 t ha?1 MSW compost and SS, resulting in lower photosynthetic activity and altered PSII functional integrity. Altogether, these results suggest that the MSW compost at 100 t ha?1 would be suitable for wheat cultivation, within the critical limits of heavy metal accumulation. However, long-term field experiments seem necessary to more accurately evaluate the safety of MSW application.  相似文献   

20.
The interaction between bovine serum albumin (BSA) and benzidine (BD) in aqueous solution was investigated by fluorescence spectroscopy, circular dichroism (CD) spectra and UV–Vis spectroscopy, as well as resonance light scattering spectroscopy (RLS). It was proved from fluorescence spectra that the fluorescence quenching of BSA by BD was a result of the formation of BD–BSA complex, and the binding constants (K a) were determined according to the modified Stern–Volmer equation. The enthalpy change (ΔH) and entropy change (ΔS) were calculated to be ?34.11 kJ mol?1 and ?25.89 J mol?1 K?1, respectively, which implied that van der Waals force and hydrogen bond played predominant roles in the binding process. The addition of increasing BD to BSA solution caused the gradual enhancement in RLS intensity, exhibiting the forming of the aggregate. Moreover, the competitive experiments of site markers suggested that the binding site of BD to BSA was located in the region of subdomain IIA (sudlow site I). The distance (r) between the donor (BSA) and the acceptor (BD) was 4.44 nm based on the Förster theory of non–radioactive energy transfer. The results of synchronous fluorescence and CD spectra demonstrated the microenvironment and the secondary conformation of BSA were changed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号