首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmodium falciparum, the human pathogen responsible for the most dangerous malaria infection, survives and develops in mature erythrocytes through the export of proteins needed for remodelling of the host cell. Molecular chaperones of the heat shock protein (Hsp) family are prominent members of the exportome, including a number of Hsp40s and a Hsp70. PFA0660w, a type II Hsp40, has been shown to be exported and possibly form a complex with PfHsp70-x in the infected erythrocyte cytosol. However, the chaperone properties of PFA0660w and its interaction with human and parasite Hsp70s are yet to be investigated. Recombinant PFA0660w was found to exist as a monomer in solution, and was able to significantly stimulate the ATPase activity of PfHsp70-x but not that of a second plasmodial Hsp70 (PfHsp70-1) or a human Hsp70 (HSPA1A), indicating a potential specific functional partnership with PfHsp70-x. Protein binding studies in the presence and absence of ATP suggested that the interaction of PFA0660w with PfHsp70-x most likely represented a co-chaperone/chaperone interaction. Also, PFA0660w alone produced a concentration-dependent suppression of rhodanese aggregation, demonstrating its chaperone properties. Overall, we have provided the first biochemical evidence for the possible role of PFA0660w as a chaperone and as co-chaperone of PfHsp70-x. We propose that these chaperones boost the chaperone power of the infected erythrocyte, enabling successful protein trafficking and folding, and thereby making a fundamental contribution to the pathology of malaria.  相似文献   

2.
Heat shock protein 70 (Hsp70) and heat shock protein 40 (Hsp40) function as molecular chaperones during the folding and trafficking of proteins within most cell types. However, the Hsp70-Hsp40 chaperone partnerships within the malaria parasite, Plasmodium falciparum, have not been elucidated. Only one of the 43 P. falciparum Hsp40s is predicted to be a cytosolic, canonical Hsp40 (termed PfHsp40) capable of interacting with the major cytosolic P. falciparum-encoded Hsp70, PfHsp70. Consistent with this hypothesis, we found that PfHsp40 is upregulated under heat shock conditions in a similar pattern to PfHsp70. In addition, PfHsp70 and PfHsp40 reside mainly in the parasite cytosol, as assessed using indirect immunofluorescence microscopy. Recombinant PfHsp40 stimulated the ATP hydrolytic rates of both PfHsp70 and human Hsp70 similar to other canonical Hsp40s of yeast (Ydj1) and human (Hdj2) origin. In contrast, the Hsp40-stimulated plasmodial and human Hsp70 ATPase activities were differentially inhibited in the presence of pyrimidinone-based small molecule modulators. To further probe the chaperone properties of PfHsp40, protein aggregation suppression assays were conducted. PfHsp40 alone suppressed protein aggregation, and cooperated with PfHsp70 to suppress aggregation. Together, these data represent the first cellular and biochemical evidence for a PfHsp70-PfHsp40 partnership in the malaria parasite, and furthermore that the plasmodial and human Hsp70-Hsp40 chaperones possess unique attributes that are differentially modulated by small molecules.  相似文献   

3.
Plasmodium falciparum is a unicellular protozoan parasite and causative agent of a severe form of malaria in humans, accounting for very high worldwide fatality rates. At the molecular level, survival of the parasite within the human host is mediated by P. falciparum heat shock proteins (PfHsps) that provide protection during febrile episodes. The ATP-dependent chaperone activity of Hsp70 relies on the co-chaperone J domain protein (JDP), with which it forms a chaperone-co-chaperone complex. The exported P. falciparum JDP (PfJDP), PFA0660w, has been shown to stimulate the ATPase activity of the exported chaperone, PfHsp70-x. Furthermore, PFA0660w has been shown to associate with another exported PfJDP, PFE0055c, and PfHsp70-x in J-dots, highly mobile structures found in the infected erythrocyte cytosol. Therefore, the present study aims to conduct a structural and functional characterization of the full-length exported PfJDP, PFE0055c. Recombinant PFE0055c was successfully expressed and purified and found to stimulate the basal ATPase activity of PfHsp70-x to a greater extent than PFA0660w but, like PFA0660w, did not significantly stimulate the basal ATPase activity of human Hsp70. Small-molecule inhibition assays were conducted to determine the effect of known inhibitors of JDPs (chalcone, C86) and Hsp70 (benzothiazole rhodacyanines, JG231 and JG98) on the basal and PFE0055c-stimulated ATPase activity of PfHsp70-x. In this study, JG231 and JG98 were found to inhibit both the basal and PFE0055c-stimulated ATPase activity of PfHsp70-x. C86 only inhibited the PFE0055c-stimulated ATPase activity of PfHsp70-x, consistent with PFE0055c binding to PfHsp70-x through its J domain. This research has provided further insight into the molecular basis of the interaction between these exported plasmodial chaperones, which could inform future antimalarial drug discovery studies.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-020-01181-2.  相似文献   

4.
Human cerebral malaria is caused by the protozoan parasite Plasmodium falciparum, which establishes itself within erythrocytes. The normal body temperature in the human host could constitute a possible source of heat stress to the parasite. Molecular chaperones belonging to the heat shock protein (Hsp) class are thought to be important for parasite subsistence in the host cell, as the expression of some members of this family has been reported to increase upon heat shock. In this paper we investigated the possible functions of the P. falciparum heat shock protein DnaJ homologue Pfj4, a type II Hsp40 protein. We analysed the ability of Pfj4 to functionally replace Escherichia coli Hsp40 proteins in a dnaJ cbpA mutant strain. Western analysis on cellular fractions of P. falciparum-infected erythrocytes revealed that Pfj4 expression increased upon heat shock. Localisation studies using immunofluorescence and immuno-electron microscopy suggested that Pfj4 and P. falciparum Hsp70, PfHsp70-1, were both localised to the parasites nucleus and cytoplasm. In some cases, Pfj4 was also detected in the erythrocyte cytoplasm of infected erythrocytes. Immunoprecipitation studies and size exclusion chromatography indicated that Pfj4 and PfHsp70-1 may directly or indirectly interact. Our results suggest a possible involvement of Pfj4 together with PfHsp70-1 in cytoprotection, and therefore, parasite survival inside the erythrocyte.  相似文献   

5.
Heat shock protein 70 (Hsp70) is a molecular chaperone that plays an important role in cellular proteostasis. Hsp70s are also implicated in the survival and pathogenicity of malaria parasites. The main agent of malaria, Plasmodium falciparum, expresses six Hsp70s. Of these, two (PfHsp70-1 and PfHsp70-z) localize to the parasite cytosol. Previously conducted gene knockout studies suggested that PfHsp70-z is essential, and it has been demonstrated that small-molecule inhibitors targeting PfHsp70-1 cause parasite death. For this reason, both PfHsp70-1 and PfHsp70-z are potential antimalarial targets. Two cyclic lipopeptides, colistin and polymyxin B (PMB), have been shown to bind another heat shock protein, Hsp90, inhibiting its chaperone function. In the current study, we investigated the effect of PMB on the structure–function features of PfHsp70-1 and PfHsp70-z. Using surface plasmon resonance analysis, we observed that PMB directly interacts with both PfHsp70-1 and PfHsp70-z. In addition, using circular dichroism spectrometric analysis combined with tryptophan fluorescence measurements, we observed that PMB modulated the secondary and tertiary structures of Hsp70. Furthermore, PMB inhibited the basal ATPase activity and chaperone function of the two Hsp70s. Our findings suggest that PMB associates with Hsp70 to inhibit its function. In light of the central role of Hsp70 in cellular proteostasis and its essential role in the development of malaria parasites in particular, our findings expand the library of small-molecule inhibitors that target this medically important class of molecular chaperones.  相似文献   

6.
The role of molecular chaperones, among them heat shock proteins (Hsps), in the development of malaria parasites has been well documented. Hsp70s are molecular chaperones that facilitate protein folding. Hsp70 proteins are composed of an N-terminal nucleotide binding domain (NBD), which confers them with ATPase activity and a C-terminal substrate binding domain (SBD). In the ADP-bound state, Hsp70 possesses high affinity for substrate and releases the folded substrate when it is bound to ATP. The two domains are connected by a conserved linker segment. Hsp110 proteins possess an extended lid segment, a feature that distinguishes them from canonical Hsp70s. Plasmodium falciparum Hsp70-z (PfHsp70-z) is a member of the Hsp110 family of Hsp70-like proteins. PfHsp70-z is essential for survival of malaria parasites and is thought to play an important role as a molecular chaperone and nucleotide exchange factor of its cytosolic canonical Hsp70 counterpart, PfHsp70-1. Unlike PfHsp70-1 whose functions are fairly well established, the structure-function features of PfHsp70-z remain to be fully elucidated. In the current study, we established that PfHsp70-z possesses independent chaperone activity. In fact, PfHsp70-z appears to be marginally more effective in suppressing protein aggregation than its cytosol-localized partner, PfHsp70-1. Furthermore, based on coimmunoaffinity chromatography and surface plasmon resonance analyses, PfHsp70-z associated with PfHsp70-1 in a nucleotide-dependent fashion. Our findings suggest that besides serving as a molecular chaperone, PfHsp70-z could facilitate the nucleotide exchange function of PfHsp70-1. These dual functions explain why it is essential for parasite survival.  相似文献   

7.
Plasmodium falciparum heat shock protein 70 (PfHsp70-1) is thought to play an essential role in parasite survival and virulence in the human host, making it a potential antimalarial drug target. A malate dehydrogenase based aggregation suppression assay was adapted for the screening of small molecule modulators of Hsp70. A number of small molecules of natural (marine prenylated alkaloids and terrestrial plant naphthoquinones) and related synthetic origin were screened for their effects on the protein aggregation suppression activity of purified recombinant PfHsp70-1. Five compounds (malonganenone A-C, lapachol and bromo-β-lapachona) were found to inhibit the chaperone activity of PfHsp70-1 in a concentration dependent manner, with lapachol preferentially inhibiting PfHsp70-1 compared to another control Hsp70. Using growth inhibition assays on P. falciparum infected erythrocytes, all of the compounds, except for malonganenone B, were found to inhibit parasite growth with IC(50) values in the low micromolar range. Overall, this study has identified two novel classes of small molecule inhibitors of PfHsp70-1, one representing a new class of antiplasmodial compounds (malonganenones). In addition to demonstrating the validity of PfHsp70-1 as a possible drug target, the compounds reported in this study will be potentially useful as molecular probes for fundamental studies on Hsp70 chaperone function.  相似文献   

8.
Plasmodium falciparum is predicted to transport over 300 proteins to the cytosol of its chosen host cell, the mature human erythrocyte, including 19 members of the Hsp40 family. Here, we have generated transfectant lines expressing GFP‐ or HA‐Strep‐tagged versions of these proteins, and used these to investigate both localization and other properties of these Hsp40 co‐chaperones. These fusion proteins labelled punctate structures within the infected erythrocyte, initially suggestive of a Maurer's clefts localization. Further experiments demonstrated that these structures were distinct from the Maurer's clefts in protein composition. Transmission electron microscopy verifies a non‐cleft localization for HA‐Strep‐tagged versions of these proteins. We were not able to label these structures with BODIPY–ceramide, suggesting a lower size and/or different lipid composition compared with the Maurer's clefts. Solubility studies revealed that the Hsp40–GFP fusion proteins appear to be tightly associated with membranes, but could be released from the bilayer under conditions affecting membrane cholesterol content or organization, suggesting interaction with a binding partner localized to cholesterol‐rich domains. These novel structures are highly mobile in the infected erythrocyte, but based on velocity calculations, can be distinguished from the ‘highly mobile vesicles’ previously described. Our study identifies a further extra‐parasitic structure in the P. falciparum‐infected erythrocyte, which we name ‘J‐dots’ (as their defining characteristic so far is the content of J‐proteins). We suggest that these J‐dots are involved in trafficking of parasite‐encoded proteins through the cytosol of the infected erythrocyte.  相似文献   

9.
The ability of malarial parasite to deploy proteins at the surface of infected erythrocytes is well known. After their synthesis within the parasite, the cargo proteins are exported from the parasite and carried across the erythrocyte cytoplasm to be delivered at the erythrocyte surface. Our knowledge about the mechanisms involved in this complex trafficking path is limited. We have addressed the involvement of chaperones in traffic across erythrocyte cytoplasm. Our analyses of the chaperones available to the parasite indicated that none of the reported chaperones of the parasite origin are present in the erythrocyte cytoplasm. The chaperones of the host (Hsp70, Hsp90, Hop60), on the other hand, were readily detected in the erythrocyte cytosol. Hypotonic lysis and detergent solubilization experiments indicated that unlike their soluble nature in normal erythrocytes, host chaperones are recruited in membrane-bound, detergent-resistant complexes in infected cells. The association of host-Hsp70 with detergent-resistant complexes was ATP-dependent. Importantly, host chaperones could be detected in knob-enriched fractions and could be cross-linked to the knob subunit, PfHRP1, in a large complex at the surface of the infected erythrocytes. Our results implicate host chaperones in the assembly of parasite proteins such as knob subunits at the erythrocyte surface.  相似文献   

10.
It is becoming increasingly apparent that heat shock proteins play an important role in the survival of Plasmodium falciparum against temperature changes associated with its passage from the cold-blooded mosquito vector to the warm-blooded human host. Interest in understanding the possible role of P. falciparum Hsp70s in the life cycle of the parasite has led to the identification of six HSP70 genes. Although most research attention has focused primarily on one of the cytosolic Hsp70s (PfHsp70-1) and its endoplasmic reticulum homolog (PfHsp70-2), further functional insights could be inferred from the structural motifs exhibited by the rest of the Hsp70 family members of P. falciparum. There is increasing evidence that suggests that PfHsp70-1 could play an important role in the life cycle of P. falciparum both as a chaperone and immunogen. In addition, P. falciparum Hsp70s and Hsp40 partners are implicated in the intracellular and extracellular trafficking of proteins. This review summarizes data emerging from studies on the chaperone role of P. falciparum Hsp70s, taking advantage of inferences gleaned from their structures and information on their cellular localization. The possible associations between P. falciparum Hsp70s with their cochaperone partners as well as other chaperones and proteins are discussed.  相似文献   

11.
Plasmodium falciparum 70?kDa heat shock proteins (PfHsp70s) are expressed at all stages of the pathogenic erythrocytic phase of the malaria parasite life cycle. There are six PfHsp70s, all of which have orthologues in other plasmodial species, except for PfHsp70-x which is unique to P. falciparum. This research highlights a number of original results obtained by a detailed bioinformatics analysis of the protein. Large-scale sequence analysis indicated the presence of an extended transit peptide sequence of PfHsp70-x which potentially directs it to the endoplasmic reticulum (ER). Further analysis showed that PfHsp70-x does not have an ER-retention sequence, suggesting that the protein transits through the ER and is secreted into the parasitophorous vacuole or beyond into the erythrocyte cytosol. These results are consistent with experimental findings. Next, possible interactions between PfHsp70-x and exported P. falciparum Hsp40s or host erythrocyte Hsp40 were interrogated by modelling and docking. Docking results indicated that interaction between PfHsp70-x and each of the Hsp40s, regardless of biological feasibility, seems equally likely. This suggests that J domain might not provide the specificity in the formation of unique Hsp70-Hsp40 complexes, but that the specificity might be provided by other domains of Hsp40s. By studying different structural conformations of PfHsp70-x, it was shown that Hsp40s can only bind when PfHsp70-x is in a certain conformation. Additionally, this work highlighted the possible dependence of the substrate-binding domain residues on the orientation of the α-helical lid for formation of the substrate-binding pocket.  相似文献   

12.
The BAG family of Hsp70/Hsc70 co‐chaperones is characterised by the presence of a conserved BAG domain at the carboxyl‐terminus. BAG3 protein is the only member of this family containing also the N‐terminally located WW domain. We describe here the identification of adenovirus (Ad) penton base protein as the first BAG3 partner recognising BAG3 WW domain. Ad penton base is the viral capsid constituent responsible for virus internalisation. It contains in the N‐terminal part two conserved PPxY motifs, known ligands of WW domains. In cells producing Ad penton base protein, cytoplasmic endogenous BAG3 interacts with it and co‐migrates to the nucleus. Preincubation of BAG3 with Ad base protein results in only slight modulation of BAG3 co‐chaperone activity, suggesting that this interaction is not related to the classical BAG3 co‐chaperone function. However, depletion of BAG3 impairs the cell entry of the virus and viral progeny production in Ad‐infected cells, suggesting that the interaction between virus penton base protein and cellular co‐chaperone BAG3 positively influences virus life cycle. These results thus demonstrate a novel host–pathogen interaction, which contributes to the successful infectious life cycle of adenoviruses. In addition, these data enrich our knowledge about the multifunctionality of the BAG3 co‐chaperone. J. Cell. Biochem. 111: 699–708, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Heat shock protein 70 (Hsp70) and heat shock protein 40 (Hsp40) are molecular chaperones that ensure that the proteins of the cell are properly folded and functional under both normal and stressful conditions. The malaria parasite Plasmodium falciparum is known to overproduce a heat shock protein 70 (PfHsp70) in response to thermal stress; however, the in vivo function of this protein still needs to be explored. Using in vivo complementation assays, we found that PfHsp70 was able to suppress the thermosensitivity of an Escherichia coli dnaK756 strain, but not that of the corresponding deletion strain (dnaK52) or dnaK103 strain, which produces a truncated DnaK. Constructs were generated that encoded the ATPase domain of PfHsp70 fused to the substrate-binding domain (SBD) of E. coli DnaK (referred to as PfK), and the ATPase domain of E. coli DnaK coupled to the SBD of PfHsp70 (KPf). PfK was unable to suppress the thermosensitivity of any of the E. coli strains. In contrast, KPf was able to suppress the thermosensitivity in the E. coli dnaK756 strain. We also identified two key amino acid residues (V401 and Q402) in the linker region between the ATPase domain and SBD that are essential for the in vivo function of PfHsp70. This is the first example of an Hsp70 from a eukaryotic parasite that can suppress thermosensitivity in a prokaryotic system. In addition, our results also suggest that interdomain communication is critical for the function of the PfHsp70 and PfHsp70-DnaK chimeras. We discuss the implications of these data for the mechanism of action of the Hsp70-Hsp40 chaperone machinery.  相似文献   

14.
Intracellular pathogens like Toxoplasma gondii often target proteins and pathways critical for host cell survival and stress response. Molecular chaperones encoded by the evolutionary conserved Heat shock proteins (Hsps) maintain proteostasis and are vital to cell survival following exposure to any form of stress. A key protein of this family is Hsp70, an ATP-driven molecular chaperone, which is stress inducible and often indiscernible in normal cells. Role of this protein with respect to intracellular survival and multiplication of protozoan parasite like T. gondii remains to be examined. We find that T. gondii infection upregulates expression of host Hsp70. Hsp70 selective inhibitor 2-phenylethynesulfonamide (PES) attenuates intracellular T. gondii multiplication. Biotinylated PES confirms selective interaction of this small molecule inhibitor with Hsp70. We show that PES acts by disrupting Hsp70 chaperone function which leads to dysregulation of host autophagy. Silencing of host Hsp70 underscores its importance for intracellular multiplication of T. gondii, however, attenuation achieved using PES is not completely attributable to host Hsp70 indicating the presence of other intracellular targets of PES in infected host cells. We find that PES is also able to target T. gondii Hsp70 homologue which was shown using PES binding assay. Detailed molecular docking analysis substantiates PES targeting of TgHsp70 in addition to host Hsp70. While establishing the importance of protein quality control in infection, this study brings to the fore a unique opportunity of dual targeting of host and parasite Hsp70 demonstrating how structural conservation of these proteins may be exploited for therapeutic design.  相似文献   

15.
Mitochondrial heat shock protein 60 (Hsp60) is a nuclear encoded gene product that gets post-translationally translocated into the mitochondria. Using multiple approaches such as immunofluorescence experiments, isoelectric point analysis with two-dimensional gel electrophoresis, and mass spectrometric identification of the signal peptide, we show that Hsp60 from Plasmodium falciparum (PfHsp60) accumulates in the parasite cytoplasm during the ring, trophozoite, and schizont stages of parasite development before being imported into the parasite mitochondria. Using co-immunoprecipitation experiments with antibodies specific to cytoplasmic PfHsp90, PfHsp70-1, and PfHsp60, we show association of precursor PfHsp60 with cytoplasmic chaperone machinery. Metabolic labeling involving pulse and chase indicates translocation of the precursor pool into the parasite mitochondrion during chase. Analysis of results obtained with Geldanamycin treatment confirmed precursor PfHsp60 to be one of the clients for PfHsp90. Cytosolic chaperones bind precursor PfHsp60 prior to its import into the mitochondrion of the parasite. Our data suggests an inefficient co-ordination in the synthesis and translocation of mitochondrial PfHsp60 during asexual growth of malaria parasite in human erythrocytes.  相似文献   

16.
Heat shock proteins, many of which function as molecular chaperones, play important roles in the lifecycle and pathogenesis of the malaria parasite, Plasmodium falciparum. The P. falciparum heat shock protein 70 (PfHsp70) family of chaperones is potentially regulated by a large complement of J proteins that localize to various intracellular compartments including the infected erythrocyte cytosol. While PfHsp70-1 has been shown to be an abundant cytosolic chaperone, its regulation by J proteins is poorly understood. In this study, we characterized the J protein PFB0595w, a homologue of the well-studied yeast cytosolic J protein, Sis1. PFB0595w, similarly to PfHsp70-1, was localized to the parasite cytosol and its expression was upregulated by heat shock. Additionally, recombinant PFB0595w was shown to be dimeric and to stimulate the in vitro ATPase activity of PfHsp70-1. Overall, the expression, localization and biochemical data for PFB0595w suggest that it may function as a cochaperone of PfHsp70-1, and advances current knowledge on the chaperone machinery of the parasite.  相似文献   

17.
Bell SL  Chiang AN  Brodsky JL 《PloS one》2011,6(5):e20047
Plasmodium falciparum causes the most virulent form of malaria and encodes a large number of molecular chaperones. Because the parasite encounters radically different environments during its lifecycle, many members of this chaperone ensemble may be essential for P. falciparum survival. Therefore, Plasmodium chaperones represent novel therapeutic targets, but to establish the mechanism of action of any developed therapeutics, it is critical to ascertain the functions of these chaperones. To this end, we report the development of a yeast expression system for PfHsp70-1, a P. falciparum cytoplasmic chaperone. We found that PfHsp70-1 repairs mutant growth phenotypes in yeast strains lacking the two primary cytosolic Hsp70s, SSA1 and SSA2, and in strains harboring a temperature sensitive SSA1 allele. PfHsp70-1 also supported chaperone-dependent processes such as protein translocation and ER associated degradation, and ameliorated the toxic effects of oxidative stress. By introducing engineered forms of PfHsp70-1 into the mutant strains, we discovered that rescue requires PfHsp70-1 ATPase activity. Together, we conclude that yeast can be co-opted to rapidly uncover specific cellular activities mediated by malarial chaperones.  相似文献   

18.
Heat shock proteins (Hsps) play an important role in the development and pathogenicity of malaria parasites. One of the most prominent functions of Hsps is to facilitate the folding of other proteins. Hsps are thought to play a crucial role when malaria parasites invade their host cells and during their subsequent development in hepatocytes and red blood cells. It is thought that Hsps maintain proteostasis under the unfavourable conditions that malaria parasites encounter in the host environment. Although heat shock protein 70 (Hsp70) is capable of independent folding of some proteins, its functional cooperation with heat shock protein 90 (Hsp90) facilitates folding of some proteins such as kinases and steroid hormone receptors into their fully functional forms. The cooperation of Hsp70 and Hsp90 occurs through an adaptor protein called Hsp70-Hsp90 organising protein (Hop). We previously characterised the Hop protein from Plasmodium falciparum (PfHop). We observed that the protein co-localised with the cytosol-localised chaperones, PfHsp70-1 and PfHsp90 at the blood stages of the malaria parasite. In the current study, we demonstrated that PfHop is a stress-inducible protein. We further explored the direct interaction between PfHop and PfHsp70-1 using far Western and surface plasmon resonance (SPR) analyses. The interaction of the two proteins was further validated by co-immunoprecipitation studies. We observed that PfHop and PfHsp70-1 associate in the absence and presence of either ATP or ADP. However, ADP appears to promote the association of the two proteins better than ATP. In addition, we investigated the specific interaction between PfHop TPR subdomains and PfHsp70-1/ PfHsp90, using a split-GFP approach. This method allowed us to observe that TPR1 and TPR2B subdomains of PfHop bind preferentially to the C-terminus of PfHsp70-1 compared to PfHsp90. Conversely, the TPR2A motif preferentially interacted with the C-terminus of PfHsp90. Finally, we observed that recombinant PfHop occasionally eluted as a protein species of twice its predicted size, suggesting that it may occur as a dimer. We conducted SPR analysis which suggested that PfHop is capable of self-association in presence or absence of ATP/ADP. Overall, our findings suggest that PfHop is a stress-inducible protein that directly associates with PfHsp70-1 and PfHsp90. In addition, the protein is capable of self-association. The findings suggest that PfHop serves as a module that brings these two prominent chaperones (PfHsp70-1 and PfHsp90) into a functional complex. Since PfHsp70-1 and PfHsp90 are essential for parasite growth, findings from this study are important towards the development of possible antimalarial inhibitors targeting the cooperation of these two chaperones.  相似文献   

19.
Molecular chaperones participate in the maintenance of cellular protein homeostasis, cell growth and differentiation, signal transduction, and development. Although a vast body of information is available regarding individual chaperones, few studies have attempted a systems level analysis of chaperone function. In this paper, we have constructed a chaperone interaction network for the malarial parasite, Plasmodium falciparum. P. falciparum is responsible for several million deaths every year, and understanding the biology of the parasite is a top priority. The parasite regularly experiences heat shock as part of its life cycle, and chaperones have often been implicated in parasite survival and growth. To better understand the participation of chaperones in cellular processes, we created a parasite chaperone network by combining experimental interactome data with in silico analysis. We used interolog mapping to predict protein-protein interactions for parasite chaperones based on the interactions of corresponding human chaperones. This data was then combined with information derived from existing high-throughput yeast two-hybrid assays. Analysis of the network reveals the broad range of functions regulated by chaperones. The network predicts involvement of chaperones in chromatin remodeling, protein trafficking, and cytoadherence. Importantly, it allows us to make predictions regarding the functions of hypothetical proteins based on their interactions. It allows us to make specific predictions about Hsp70-Hsp40 interactions in the parasite and assign functions to members of the Hsp90 and Hsp100 families. Analysis of the network provides a rational basis for the anti-malarial activity of geldanamycin, a well-known Hsp90 inhibitor. Finally, analysis of the network provides a theoretical basis for further experiments designed toward understanding the involvement of this important class of molecules in parasite biology.  相似文献   

20.
As one of the most abundant and highly conserved molecular chaperones, the 70‐kDa heat shock proteins (Hsp70s) play a key role in maintaining cellular protein homeostasis (proteostasis), one of the most fundamental tasks for every living organism. In this role, Hsp70s are inextricably linked to many human diseases, most notably cancers and neurodegenerative diseases, and are increasingly recognized as important drug targets for developing novel therapeutics for these diseases. Hsp40s are a class of essential and universal partners for Hsp70s in almost all aspects of proteostasis. Thus, Hsp70s and Hsp40s together constitute one of the most important chaperone systems across all kingdoms of life. In recent years, we have witnessed significant progress in understanding the molecular mechanism of this chaperone system through structural and functional analysis. This review will focus on this recent progress, mainly from a structural perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号