首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pleistocene climatic oscillations were a major force shaping genetic variability in many taxa. We analyse the relative effects of the ice ages across a latitudinal gradient in the Western Mediterranean region, testing two main predictions: (i) species with historical distributions in northern latitudes should have experienced greater loss of suitable habitat, resulting in higher extinction of historical lineages than species distributed in southern latitudes, where the effects of the ice ages were not as drastic. This would be reflected in the observation of lower diversity and number of differentiated lineages in northern areas. (ii) a signature of demographic expansion following the climate amelioration should be obvious in northern species, whereas in the south evidence of long-term effective population size stability should be observed. We used as models three species of wall lizards (Podarcis bocagei, Podarcis carbonelli and Podarcis vaucheri) that replace each other along the study area. We investigated the patterns of mitochondrial DNA diversity and subdivision and obtained demographic parameter estimates for each species. Our results suggest that P. bocagei, the northernmost species, bears low genetic diversity, a shallow coalescent history and marks of a demographic expansion. In contrast, P. vaucheri, the species with a southernmost distribution, shows deeper coalescence events, complex geographical substructure and no evidence for population growth. The species with an intermediate distribution, P. carbonelli, shows average levels of diversity, substructure and population growth. Taken together, these results conform to our main predictions and are explained by a differential influence of the ice ages on distinct latitudes.  相似文献   

3.
Aims To assess the impact of various fire regimes over the past 30 years on land snail communities and to analyse the role of recent landscape history and the influence of biogeography in shaping the response patterns of gastropod communities following disturbances by fire. Location South-eastern France (Provence) and Mediterranean region. Methods Stratified sampling within 12 sites was undertaken with regard to fire regime (i.e. number of fires, fire intervals and age of the last fire) occurring over the past 30 years. The study was complemented by a historical analysis using aerial photographs, old maps of vegetation cover and an analysis of the biogeographical composition of malacofaunas. Data were investigated using Correspondence Analysis and Sørensen coefficient of similarity. Results When a disturbance regime (land use or fire disturbances) has been maintained over decades or centuries, land snail communities appear highly modified and tend to be composed of only Mediterranean and xerophilous species. However, low fire regimes, since the 1970s, do not seem to greatly affect the composition of gastropod communities. Indeed, shade-loving, mesophilous and European range species persist even after successive fires within some sites. In addition, the malacofaunas have a higher component of European range species with increasing distance from the Mediterranean sea. Main conclusions Analysis of the response patterns of gastropod communities to fire shows a response to numerous different factors. The composition of current land snail communities is not only the result of (more or less) recent patterns of fire regimes but also of anthropogenic disturbances, of landscape changes over the last centuries and of subsequent structure of the pre-fire habitat, as well as of the influence of a biogeographical gradient. However, the response patterns observed and the persistence of pre-fire communities imply the presence of cryptic refuges located within burned areas.  相似文献   

4.
5.
6.
The transition from the Middle Palaeolithic (Mousterian) to the Upper Palaeolithic (Aurignacian) has been one of the prominent themes in the archaeology of the European Palaeolithic for more than 20 years. One of the most controversial questions concerning this period is the extinction of the Neanderthals and their replacement by modern humans. In this context, Cueva del Conde, located in the northern part of the Iberian Peninsula, is an archaeo-palaeontological site that records the Mousterian to Aurignacian transition. It has been excavated since the beginning of the 20th century, first by the Conde de la Vega del Sella and systematically by a team from the University of Oviedo since 2001. Three main zones have been identified: the External Zone, dated to approximately 39 110 ± 520 BP (level N104); the Entrance Platform, dated between 38 250 ± 390 BP and 34 730 ± 500 BP; and Gallery A with a radiocarbon date of approximately 31 540 ± 400 BP (level N2a2). The small-vertebrate assemblages recovered from the water-screening of all sediment from the excavation campaigns represent at least 21 small mammal, amphibian and squamate taxa. The small-vertebrate associations in the three zones suggest a patchy landscape, dominated by humid meadows and woodland areas with the existence of water in the vicinity of the cave. The climate shows a more continental pattern during the Mousterian, though it was milder during the Aurignacian. The small vertebrates of the Cueva del Conde Mousterian and Aurignacian levels suggest a climate that differed from modern day temperatures, between −1.1 and −4.4 °C (mean annual temperature), placing these assemblages during Interstadials 9 to 7 (Is9 to 7).  相似文献   

7.
8.
Estimating species ability to adapt to environmental changes is crucial to understand their past and future response to climate change. The Mediterranean Basin has experienced remarkable climatic changes since the Miocene, which have greatly influenced the evolution of the Mediterranean flora. Here, we examine the evolutionary history and biogeographic patterns of two sedge sister species (Carex, Cyperaceae) restricted to the western Mediterranean Basin, but with Pliocene fossil record in central Europe. In particular, we estimated the evolution of climatic niches through time and its influence in lineage differentiation. We carried out a dated phylogenetic–phylogeographic study based on seven DNA regions (nDNA and ptDNA) and fingerprinting data (AFLPs), and modelled ecological niches and species distributions for the Pliocene, Pleistocene and present. Phylogenetic and divergence time analyses revealed that both species form a monophyletic lineage originated in the late Pliocene–early Pleistocene. We detected clear genetic differentiation between both species with distinct genetic clusters in disjunct areas, indicating the predominant role of geographic barriers limiting gene flow. We found a remarkable shift in the climatic requirements between Pliocene and extant populations, although the niche seems to have been relatively conserved since the Pleistocene split of both species. This study highlights how an integrative approach combining different data sources and analyses, including fossils, allows solid and robust inferences about the evolutionary history of a plant group since the Pliocene.  相似文献   

9.
10.
Aim This study analysed the diversity and identity of the rhizobial symbionts of co‐existing exotic and native legumes in a coastal dune ecosystem invaded by Acacia longifolia. Location An invaded coastal dune ecosystem in Portugal and reference bradyrhizobial strains from the Iberian Peninsula and other locations. Methods Symbiotic nitrogen‐fixing bacteria were isolated from root nodules of plants of the Australian invasive Acacia longifolia and the European natives Cytisus grandiflorus, Cytisus scoparius and Ulex europaeus. Total DNA of each isolate was amplified by polymerase chain reaction (PCR) with the primer BOX A1R. Subsequent PCR‐sequencing and phylogenetic analyses of the internal transcribed spacer region and the nifD and nodA genes were performed for all different strains. Results The four plant species analysed were nodulated by bacteria from three different Bradyrhizobium lineages, although most of the isolates belonged to the Bradyrhizobium japonicum lineage sensu lato. Ninety‐five per cent of the bradyrhizobia isolated from A. longifolia, C. grandiflorus and U. europaeus in the invaded ecosystem had nifD and nodA genes of Australian origin. Seven isolates obtained in this study define a new distinctive nifD group of Bradyrhizobium from western and Mediterranean Europe. Main conclusions These results reveal the introduction of exotic bacteria with the invasive plant species, their persistence in the new geographical area and the nodulation of native legumes by rhizobia containing exotic symbiotic genes. The disruption of native mutualisms and the mutual facilitation of the invasive spread of the introduced plant and bradyrhizobia could constitute the first report of an invasional meltdown documented for a plant–bacteria mutualism.  相似文献   

11.
12.
At a broad (regional to global) spatial scale, tropical vegetation is controlled by climate; at the local scale, it is believed to be determined by interactions between disturbance, vegetation and local conditions (soil and topography) through feedback processes. It has recently been suggested that strong fire–vegetation feedback processes may not be needed to explain tree‐cover patterns in tropical ecosystems and that climate–fire determinism is an alternative possibility. This conclusion was based on the fact that it is possible to reproduce observed patterns in tropical regions (e.g. a trimodal frequency distribution of tree cover) using a simple model that does not explicitly incorporate fire–vegetation feedback processes. We argue that these two mechanisms (feedbacks versus fire–climate control) operate at different spatial and temporal scales; it is not possible to evaluate the role of a process acting at fine scales (e.g. fire–vegetation feedbacks) using a model designed to reproduce regional‐scale pattern (scale mismatch). While the distributions of forest and savannas are partially determined by climate, many studies are providing evidence that the most parsimonious explanation for their environmental overlaps is the existence of feedback processes. Climate is unlikely to be an alternative to feedback processes; rather, climate and fire–vegetation feedbacks are complementary processes at different spatial and temporal scales.  相似文献   

13.
BACKGROUND AND AIMS: The discovery of a new species, Haplophyllum bastetanum F.B. Navarro, V.N. Suárez-Santiago & Blanca sp. nov., in the south-east of Spain has prompted the comparative study of species of the Iberian Peninsula, and others related, through morphological, cytogenetic, molecular, distributional and ecological characterization. METHODS: The morphological study involved a quantitative analysis of the species present in the Iberian Peninsula and a comparative analysis of the morphological characteristics between H. bastetanum and other related species. Mitotic analyses were made with root meristems taken from germinating seeds. Phylogenetic analyses of the internal transcribed spacer sequences of nuclear ribosomal DNA were performed using neighbour-joining (NJ) and maximum-parsimony methods. KEY RESULTS: Haplophyllum bastetanum is a diploid species (2n = 18) distinguished primarily for its non-trifoliate glabrous leaves, lanceolate sepals, dark-green petals with a dorsal band of hairs, and a highly hairy ovary with round-apex locules. The other two Iberian species (H. linifolium and H. rosmarinifolium) are tetraploid (2n = 36) and have yellow petals. Both phylogenetic methods generated a well-supported clade grouping H. linifolium with H. rosmarinifolium. In the NJ tree, the H. linifolium-H. rosmarinifolium clade is a sister group to H. bastetanum, while in the parsimony analysis this occurred only when the gaps were coded as a fifth base and the characters were reweighted according to the rescaled consistency index. This latter group is supported by the sequence divergence among taxa. CONCLUSIONS: The phylogenies established from DNA sequences together with morphological and cytogenetic analyses support the separation of H. bastetanum as a new species. The results suggest that the change in the number of chromosomes may be the key mechanism of speciation of the genus Haplophyllum in the Iberian Peninsula. An evolutionary scheme for them is propounded.  相似文献   

14.
We investigated modes of regeneration of dominant species of the mexical vegetation after fire. The mexical shrubland shows a remarkable structural, morphological, and floristic similarity to Mediterranean-type vegetation and is considered a relict of the Madro-Tertiary Geoflora under a non-Mediterranean climate. This vegetation provides an ideal scenario to test the role of fire in Mediterranean ecosystems because historical fire occurrence is absent and the species assembly is constituted mostly by Madro-Tertiary elements and Neotropical species (some of them, endemic species from Mexico). The existence of congeneric species of the California chaparral allows us to determine the regeneration ability of these communities after fire in relation to resprouting and seeding strategies, which are widespread modes reported in the Mediterranean-type vegetation. By the experimental application of fire in the two biogeographical groups of species, we tested the hypothesis that low resprouting ability of California congeneric species (Madro-Tertiary species) after fire would indicate that fire has played an important selective force in the resprouting habit. A low resprouting ability in the Neotropical group of species would suggest that fire has molded the set of species dominating fire-prone environments.Our results indicated that resprouting is a widespread trait in the mexical species characterized by the presence of lignotubers and burls. Resprouting can be considered an ancient trait, probably linked to losses of aboveground biomass, that became a pre-adaptation in Mediterranean fire-prone communities. The Neotropical group of species showed less ability to regenerate after fire, and small plants were more likely to die after disturbance in this group than in the Madro-Tertiary group. The resprouting feature and the seeder strategy of other species after a fire in the mexical shrubland are similar to Mediterranean-type ecosystems, emphasizing their common origin and the relevance of phylogenetic and biogeographical studies to explain current patterns of vegetation.  相似文献   

15.
16.
17.
Aims Twentieth‐century climate, the spatial pattern of tree establishment and positive feedback influence upper tree line ecotones. Here, I investigate how these factors interact to gain a more holistic understanding of how broad‐scale abiotic and local‐scale site conditions regulate tree establishment within upper tree line ecotones. Location A latitudinal gradient (c. 35–45° N) in the US Rocky Mountains. Study sites (n= 22) were located in the Bighorn (BH), Medicine Bow (MB), Front Range (FR) and Sangre de Cristo (SDC) mountain ranges. Methods Dendroecological techniques were used to reconstruct tree establishment dates that were compared with 20th‐century climate data using correlation and regime shift analyses. Spatial patterns of tree establishment were analysed by Ripley's K and used to determine local‐scale interactions capable of ameliorating broad‐scale climate inputs through positive feedback. Results Significant correlations (P < 0.01) between tree establishment and climate were confined to the FR, where a positive correlation was found with summer (June–August) and cool season (November–April) temperature range (Tmax?Tmin). These trees were almost exclusively situated in a random spatial pattern. Similar patterns exist in the BH, yet their establishment was contingent on the availability of local shelter in the lee of boulders. Trees in the MB and SDC were primarily clustered in space and had no significant correlations with climate. Considerable lag times exist between regime shift changes in climate towards more favourable growing conditions and corresponding shifts in tree establishment in all mountain ranges except the FR, where synchronous shifts occurred in the early 1950s. Main conclusions These results suggest that the influence of broad‐scale climate on upper tree line dynamics is contingent on the local‐scale spatial patterns of tree establishment and related influences of positive feedback. This research has important implications for understanding how vegetation communities will respond to global climate change.  相似文献   

18.
Species richness increases with energy availability, yet there is little consensus as to the exact processes driving this species–energy relationship. The most straightforward explanation is the more‐individuals hypothesis (MIH). It states that higher energy availability promotes a higher total number of individuals in a community, which consequently increases species richness by allowing for a greater number of species with viable populations. Empirical support for the MIH is mixed, partially due to the lack of proper formalisation of the MIH and consequent confusion as to its exact predictions. Here, we review the evidence of the MIH and evaluate the reliability of various predictions that have been tested. There is only limited evidence that spatial variation in species richness is driven by variation in the total number of individuals. There are also problems with measures of energy availability, with scale‐dependence, and with the direction of causality, as the total number of individuals may sometimes itself be driven by the number of species. However, even in such a case the total number of individuals may be involved in diversity regulation. We propose a formal theory that encompasses these processes, clarifying how the different factors affecting diversity dynamics can be disentangled.  相似文献   

19.
An overview is presented of the phenological models relevant for boreal coniferous, temperate-zone deciduous and Mediterranean coniferous forest ecosystems. The phenology of the boreal forests is mainly driven by temperature, affecting the timing of the start of the growing season and thereby its duration, and the level of frost hardiness and thereby the reduction of foliage area and photosynthetic capacity by severe frost events. The phenology of temperate-zone forests is also mainly driven by temperature. Since temperate-zone forests are mostly mixed-species deciduous forests, differences in phenological response may affect competition between tree species. The phenology of Mediterranean coniferous forests is mainly driven by water availability, affecting the development of leaf area, rather than the timing of phenological events. These phenological models were subsequently coupled to the process-based forest model FORGRO to evaluate the effect of different climate change scenarios on growth. The results indicate that the phenology of each of the forest types significantly affects the growth response to a given climate change scenario. The absolute responses presented in this study should, however, be used with caution as there are still uncertainties in the phenological models, the growth models, the parameter values obtained and the climate change scenarios used. Future research should attempt to reduce these uncertainties. It is recommended that phenological models that describe the mechanisms by which seasonality in climatic drivers affects the phenological aspects of trees should be developed and carefully tested. Only by using such models may we make an assessment of the impact of climate change on the functioning and productivity of different forest ecosystems. Received: 21 October 1999 / Revised: 10 May 2000 / Accepted: 10 May 2000  相似文献   

20.
Lichens are symbiotic organisms sensitive to climate change and susceptible to a severe decline in diversity, especially in high elevation environments that are already threatened. In this study, we focused on water-energy relationships derived from climatic variables and phylogenetic diversity indices of terricolous lichen communities occurring on a representative Mediterranean mountain. We hypothesized that the variation of precipitation and temperature and their interaction along the altitudinal gradient will shape the phylogenetic diversity and structure of lichen communities. Our results reveal that dry and arid conditions lead to a strong loss in phylogenetic diversity with consequent impoverishment of high elevation lichen communities under a climate change scenario. The interaction between variables, reflecting water-energy relationships with phylogenetic and community diversity patterns, suggests that in a future climate change scenario, the novel climatic conditions may reduce the capability of the species to survive harsher conditions, and Mediterranean mountains may face a severe loss of genetic diversity in a climate change scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号