首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 795 毫秒
1.
Abstract: Chroniosuchians are an enigmatic Permian to Triassic group of crocodile‐like basal tetrapods. Their conspicuous dorsal osteoderm systems include most of the group’s yet documented postcranial morphological variability but have hardly been considered in cladistic approaches. Aiming at the clarification of the internal relationships of the Chroniosuchia, we have carried out a parsimony analysis including, among others, 23 morphological and osteohistological osteoderm characters and 12 chroniosuchian taxa. According to the most parsimonious trees, taxa usually referred to Chroniosuchidae form a paraphyletic succession with Madygenerpeton pustulatus and Chroniosaurus dongusensis as the basalmost chroniosuchians and Uralerpeton tverdochlebovae as the sister group of Bystrowianidae (hypothesis A). However, the concurrent hypothesis of a basal split into monophyletic subtaxa Chroniosuchidae and Bystrowianidae (hypothesis B) is only slightly less parsimonious and supported by an alternative analysis which includes embolomeres as the only reptiliomorph outgroup. Searching for the better hypothesis, we compare the respective order of branching to the order of first occurrences in the fossil record, demonstrating that hypothesis A provides a better stratigraphic fit than hypothesis B. Accordingly, the last common ancestor of the yet known chroniosuchians had a series of broad complexly interlocking ‘chroniosuchid’ osteoderms that served as a protection carapace apart from supporting the trunk during terrestrial locomotion. The later evolution of chroniosuchian carapaces was marked by a stepwise increase in flexibility and size reduction, which resulted in a loss of protective function and in a reduction in trunk support function. The flexibility increase is paralleled by the evolution of the Crocodylomorpha whose extant members do not possess as extensively interlocking osteoderm systems as some of their Mesozoic relatives.  相似文献   

2.
Cerda, I.A. & Desojo, J.B. 2010: Dermal armour histology of aetosaurs (Archosauria: Pseudosuchia), from the Upper Triassic of Argentina and Brazil. Lethaia, Vol. 44, pp. 417–428. One of the most striking features documented in aetosaurs is the presence of an extensive bony armour composed of several osteoderms. Here, we analyse the bone microstructure of these elements in some South American Aetosaurinae aetosaurs, including Aetosauroides scagliai. In general terms, Aetosaurinae osteoderms are compact structures characterized by the presence of three tissue types: a basal cortex of poorly vascularized parallel‐fibred bone tissue, a core of highly vascularized fibro‐lamellar bone, and an external cortex of rather avascular lamellar bone tissue. Sharpey’s fibres are more visible at the internal core, toward the lateral margins and aligned parallel to the major axis of the dermal plate. No evidence of metaplastic origin is reported in the osteoderms, and we hypothesize an intramembranous ossification for these elements. The bone tissue distribution reveals that the development of the osteoderm in Aetosaurinae starts in a position located medial to the plate midpoint, and the main sites of active osteogenesis occur towards the lateral and medial edges of the plate. The osteoderm ornamentation is originated and maintained by a process of resorption and redeposition of the external cortex, which also includes preferential bone deposition in some particular sites. Given that no secondary reconstruction occurs in the osteoderms, growth marks are well preserved and they provide very important information regarding the relative age and growth pattern of Aetosaurinae aetosaurs. □Aetosauria, Aetosauroides, Archosauria, bone microstructure, integumentary skeleton, osteoderm.  相似文献   

3.
A nearly complete skull and associated osteoderms from the Middle/Upper Triassic Madygen Formation of Kyrgyzstan are referred to a new chroniosuchid genus and species. The new taxon is characterized by a parabolic skull outline, pustular ornamentation, tabular‐squamosal contact, marked postparietal embayments, and the lack of an antorbital fontanelle. The palate is only preserved in part, showing broad palatines and ectopterygoids. Presence of a preorbital fenestra and characteristic osteoderm morphology are synapomorphies shared with all other chroniosuchids. According to the phylogenetic analysis performed, the new chroniosuchid nests with Chroniosaurus, with which it shares the wide, transversely extended osteoderms and pustular ornamentation. The chroniosuchians are robustly supported as a natural group, but their position within the reptiliomorph (stem‐amniote) clade is not adequately understood. Whereas the parasphenoid is similar to that of anthracosaurs, most other characters support a higher nesting of chroniosuchians within the stem‐amniotes. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 515–530.  相似文献   

4.
Postcranial osteoderms are commonly developed in the major lineages of Archosauriformes, including forms such as proterochampsids and doswelliids. Here, we survey the histology of osteoderms of the doswelliids Archeopelta arborensis and Tarjadia ruthae, and the proterochampsids Chanaresuchus bonapartei and Pseudochampsa ischigualastensis to understand better the morphogenesis of these skeletal elements. Whereas, the Doswelliid osteoderms possess a trilaminar organization, in which two cortices (external and basal) can be differentiated from an internal core of cancellous bone, these elements are compact structures in proterochampsids. The osteoderms of P. ischigualastensis are avascular and they consist entirely of parallel‐fibered bone. Conversely, the osteoderms of C. bonapartei are well vascularized structures composed of zones of woven‐fibered bone and annuli of parallel‐fibered bone. The rather simple microstructure observed in P. ischigualastensis osteoderms suggests that these elements grew at a constant, low rate. Compared with proterochampsids, doswelliid osteoderms possess a more complex histology, which appears to be linked to variations in the growth rate during the osteoderm formation and also to the development of the external ornamentation. A comparison of our findings with the results of earlier studies on other archosauriforms (phytosaurs and pseudosuchians) reveals that the general osteoderm histology of doswelliids bears a closer resemblance to that of phytosaurs and pseudosuchians than the proterochampsid osteoderm microstructure. If all archosauriform osteoderms are homologous structures, the closer resemblance of doswellid osteoderm microstructures to that of phytosaurs and pseudosuchians is in agreement with the hypothesis that doswellids are more closely related to archosaurs than proterochampsids. J. Morphol. 276:385–402, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
Abstract: The presence of postcranial dermal armour is plesiomorphic for Archosauria. Here, we survey the external microanatomy and histology of postcranial osteoderms (i.e. dorsal paramedian and caudal osteoderms) of rauisuchians, a widely distributed assemblage of extinct predatory pseudosuchians from the Triassic. The osteoderms of eight rauisuchian taxa were found to be rather compact bones, which usually lack significant bone remodelling or large areas of cancellous bone. The presence of highly vascularized woven or fibrolamellar bone tissue deposited in the core areas indicates higher growth rates during earlier life stages, whereas a more compact parallel‐fibred bone matrix indicates reduced growth rates in later development. This pattern of change corroborates earlier studies on long bone histology. With the exception of a bone tissue found in the sample of Batrachotomus kupferzellensis, which might be the result of metaplastic ossification, the general mode of skeletogenesis is comparable with intramembraneous ossification. The lack of cancellous bone tissue and remodelling processes associated with bone ornamentation, as well as the predominantly intramembraneous mode of ossification, indicates that rauisuchian osteoderm formation differs profoundly from that of the osteoderms of the only extant pseudosuchian lineage, the crocodylians.  相似文献   

6.
Witzmann, F. and Soler-Gijón, R. 2010. The bone histology of osteoderms in temnospondyl amphibians and in the chroniosuchian Bystrowiella . — Acta Zoologica (Stockholm) 91 : 96–114
Bone histology of osteoderms in the armoured temnospondyl Peltobatrachus , plagiosaurids ( Gerrothorax , Plagiosuchus ) and dissorophids ( Aspidosaurus , Cacops , Platyhystrix ), as well as in the chroniosuchian Bystrowiella , is studied. The massive osteoderms of Peltobatrachus and Gerrothorax consist of homogeneous parallel-fibred bone, whereas in dissorophids, a lightly built, trabecular middle region is mantled by a thin cortex that is composed of a plywood-type structure. In Bystrowiella and Plagiosuchus , the osteoderms consist to a large degree of interwoven primary fibres and have cell lacunae that bear stumpy canaliculi. The differences in the histological structure of dissorophids and plagiosaurids suggest an iterative evolution of osteoderms. Furthermore, histology in Plagiosuchus indicates a metaplastic development of the osteoderms, whereas the osteoderms of Gerrothorax represent periosteal ossifications as in dissorophids. This suggests a convergent origin of osteoderms also within plagiosaurids. The extensive armour in Gerrothorax probably constituted a calcium reservoir, indicated by cyclical resorption events preserved in the external cortex and interpreted as a physiological response to periodic changes in salinity of the aquatic environment. In contrast, the unique osteoderm structure of dissorophids provides maximum stability and minimum bone mass, and is coherent with the interpretation that the osteoderms served to strengthen the vertebral column during terrestrial locomotion.  相似文献   

7.
The extinct parareptilian clade of pareiasaurs was in the past often presented to constitute a morphocline from larger, less armoured forms to smaller, well armoured forms, indicating that the osteoderm cover became an increasingly prominent aspect in the post‐cranial skeleton of these animals. Here, we describe microanatomical and microstructural aspects of osteoderms of the three pareiasaur taxa Bradysaurus, Pareiasaurus and Anthodon from the Permian of South Africa. A generalized mode of osteoderm formation, consistent with intramembraneous skeletogenesis, is hypothesized to be present in all pareiasaurs. Few characters are shared between pareiasaur dermal armour and turtle shell bones and osteoderms. Otherwise, there is strong evidence from microanatomy and histology (i.e. absence of structures that formed via metaplasia of dermal tissue) that indicates nonhomology between pareiasaur dermal armour and the armour of living eureptiles. Analysis with bone profiler revealed no clear connection between bone compactness and lifestyle in the amniote osteoderm sample.  相似文献   

8.
One of the most striking features of aetosaurs is the possession of an extensive bony armour composed of dorsal, ventral and appendicular osteoderms. With the purpose of establishing the main histological changes during ontogeny and the degree of histological variation within the armour, we analysed the bone histology of dorsal (paramedian and lateral), ventral and appendicular osteoderms from different taxa from the Late Triassic of South America, including Aetosauroides scagliai, Aetobarbakinoides brasiliensis and Neoaetosauroides engaeus. Histological data support an intramembranous origin for osteoderms. Nevertheless, evidence for metaplastic ossification (i.e. structural fibres) at advanced ontogenetic stages, in at least some elements, is also present. A variant type of parallel fibred bone, which we have named ‘crossed parallel fibred bone’, is characterized for aetosaurs. In this pseudosuchian group, osteoderms exhibit very important microstructural changes during ontogeny, which can be useful for determining ontogenetic stages from isolated elements. Histological data suggest a relatively early onset of sexual maturity among aetosaurs. Microanatomical analysis from different taxa reveal that having high values of compactness is the plesiomorphic condition for Aetosauria. The notably increased compactness of the osteoderms does not appear to be related to size, ontogeny, sex or reproductive status of the individuals. Although a high degree of compactness of osteoderms and other bones has been considered as evidence for an aquatic lifestyle in vertebrates, such an inference contradicts the current concept of a fully terrestrial lifestyle in aetosaurs.  相似文献   

9.
A study of recently collected and other undescribed material of Pachyarmatherium brasiliense from the State of Pernambuco, Brazil, was performed, and its type material was revised, improving our understanding of this species and providing additional information on its affinities. Two fused osteoderms representing the posteriormost osteoderm row of the pectoral buckler are described for the first time in the Pachyarmatherium. Several additional specimens included buckler, border, and at least one caudal osteoderm. The relationships of Pachyarmatherium have been subject to different interpretations. We propose that the presence of some osteoderm features suggests a closer affinity with Dasypodinae/cf. Dasypodini armadillos. A key feature supporting this conclusion is the presence of complementary small figures in adjoining buckler osteoderms of Pachyarmatherium, indicating that a single scale covered portions of three contiguous osteoderms. Other features observed are related to the histological microstructure, which includes a central cortex characterized by a poorly developed cancellous bone and a deep cortex with mineralized collagen fiber bundles that are oriented roughly parallel to the deep osteoderm surface. Likewise, these histological features support its exclusion from glyptodonts and pampatheres, which show a different histological arrangement in their osteoderms.  相似文献   

10.
Pampatheres are extinct, large‐bodied cingulates, which share morphological characters with both armadillos and glyptodonts but are considered to be more closely related to the latter. The osteoderm histology of six pampathere taxa was examined and compared to the histology of other cingulate osteoderms. This study investigates the development and functional adaptation of pampathere osteoderms as well as the phylogenetic relationships of the Pampatheriidae within the Cingulata. We found that pampathere osteoderms share a uniform histological organization based on a basic diploe‐like structure. After initial stages of intramembranous growth, metaplastic ossification, that is, the direct incorporation and mineralization of pre‐existing protein fibers, plays an important role in osteoderm development and provides information on various kinds of soft tissue otherwise not preserved. The latest stages of osteoderm growth are dominated by periosteal bone formation especially in the superficial cortex. Movable band osteoderms show regular arrangements of incorporated fibers that may increase the resistance of particularly weak areas against strain. The histological composition of pampathere osteoderms is plesiomorphic in its basic structure but shows a number of derived features. A unique array of Sharpey's fibers that are incorporated into the bone matrix at sutured osteoderm margins is interpreted as a synapomorphy of pampatheres. The arrangement of dermal fibers in the deep and superficial cortexes supports the close relationship between pampatheres and glyptodonts. J. Morphol., 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
Two series of osteoderms associated with the anterior three-quarters of the presacral vertebral column of the Early Permian temnospondylous amphibian Cacops aspidephorus have important implications for biomechanics of the axial skeleton. An internal series consists of an osteoderm fused to the distal tip of each neural spine. Lying dorsal to the internal series and overlapping each internal osteoderm is a second external series. The orientation of the zygapophyseal facets implies modest lateral flexion with limited coupled axial rotation of the column. However, the osteoderms restricted any possible lateral flexion through their inverted V-shape, strongly angled overlap between each external osteoderm and its neighbouring internal osteoderms, and the presence of a midsagittal flange on the ventral surface of each external osteoderm that fits into grooves on the anterior and posterior edges of the neighbouring internal osteoderms. This configuration allowed vertical flexion of the vertebral column with little lateral flexion. The rod-like nature of osteoderms with the anterior three-quarters of the presacral vertebrae suggests a restricted form of forward movement for Cacops unlike that of other early tetrapods.  相似文献   

12.
Osteoderms are bone‐rich organs found in the dermis of many scleroglossan lizards sensu lato, but are only known for two genera of gekkotans (geckos): Tarentola and Gekko. Here, we investigate their sequence of appearance, mode of development, structural diversity and ability to regenerate following tail loss. Osteoderms were present in all species of Tarentola sampled (Tarentola annularis, T. mauritanica, T. americana, T. crombei, T. chazaliae) as well as Gekko gecko, but not G. smithii. Gekkotan osteoderms first appear within the integument dorsal to the frontal bone or within the supraocular scales. They then manifest as mineralized structures in other positions across the head. In Tarentola and G. gecko, discontinuous clusters subsequently form dorsal to the pelvis/base of the tail, and then dorsal to the pectoral apparatus. Gekkotan osteoderm formation begins once the dermis is fully formed. Early bone deposition appears to involve populations of fibroblast‐like cells, which are gradually replaced by more rounded osteoblasts. In T. annularis and T. mauritanica, an additional skeletal tissue is deposited across the superficial surface of the osteoderm. This tissue is vitreous, avascular, cell‐poor, lacks intrinsic collagen, and is herein identified as osteodermine. We also report that following tail loss, both T. annularis and T. mauritanica are capable of regenerating osteoderms, including osteodermine, in the regenerated part of the tail. We propose that osteoderms serve roles in defense against combative prey and intraspecific aggression, along with anti‐predation functions. J. Morphol. 276:1345–1357, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Armored skin resulting from the presence of bony dermal structures, osteoderms, is an exceptional phenotype in gekkotans (geckos and flap-footed lizards) only known to occur in three genera: Geckolepis, Gekko, and Tarentola. The Tokay gecko (Gekko gecko LINNAEUS 1758) is among the best-studied geckos due to its large size and wide range of occurrence, and although cranial dermal bone development has previously been investigated, details of osteoderm development along a size gradient remain less well-known. Likewise, a comparative survey of additional species within the broader Gekko clade to determine the uniqueness of this trait has not yet been completed. Here, we studied a large sample of gekkotans (38 spp.), including 18 specimens of G. gecko, using X-rays and high-resolution computed tomography for visualizing and quantifying the dermal armor in situ. Results from this survey confirm the presence of osteoderms in a second species within this genus, Gekko reevesii GRAY 1831, which exhibits discordance in timing and pattern of osteoderm development when compared with its sister taxon, G. gecko. We discuss the developmental sequence of osteoderms in these two species and explore in detail the formation and functionality of these enigmatic dermal ossifications. Finally, we conducted a comparative analysis of endolymphatic sacs in a wide array of gekkotans to explore previous ideas regarding the role of osteoderms as calcium reservoirs. We found that G. gecko and other gecko species with osteoderms have highly enlarged endolymphatic sacs relative to their body size, when compared to species without osteoderms, which implies that these membranous structures might fulfill a major role of calcium storage even in species with osteoderms.  相似文献   

14.
In order to assess the implication of the crocodylomorph ornamented osteoderms on the skin conduction during basking, we have performed three dimensional modeling and finite element analyses on a sample which includes both extant dry bones and well-preserved fossils tracing back to the Early Jurassic. In purpose to reveal the possible implication of the superficial ornamentation on the osteoderm heat conduction, we repeated the simulation on an equivalent set of smoothed 3D-modeled osteoderms. The comparison of the results evidenced that the presence of the apical sculpture has no significant impact on the osteoderm global conduction. Furthermore, as we also aimed to assess the influence of the inner bone porosity on the osteoderm conduction, we modified the heat equation parameters so that the 3D-modeled osteoderms successively score the compact and the cancellous bone properties (i.e. mass density, heat capacity, thermal conductivity and thermal diffusivity). Finally, we repeated the analyses using the soft-dermis properties which lead to outline that neither the degree of porosity nor the presence of the osteoderms (in itself) significantly modifies the heat conduction through the crocodylomorph skin. Consequently, as hypothesized by previous authors, if the dermal shield happens to be involved into heat capture during basking for crocodylians, this process must mainly rely on a convective effect based on the osteoderm relative degree of vascularization. This last assumption could thus explain why the crocodylians which produce little metabolic heat would carry an entire vascularized osteoderm shield.  相似文献   

15.
Osteoderms are mineralized structures embedded in the dermis, known for nonavian archosaurs, squamates, xenarthrans, and amphibians. Herein, we compared the osteoderm histology of Brazilian Notosuchia of Cretaceous age using three neosuchians for comparative purposes. Microanatomical analyses showed that most of them present a diploe structure similar to those of other pseudosuchians, lizards, and turtles. This structure contains two cortices (the external cortex composed of an outer and an inner layers, and the basal cortex) and a core in-between them. Notosuchian osteoderms show high bone compactness (>0.85) with varying degrees of cancellous bone in the core. The neosuchian Guarinisuchus shows the lowest bone compactness with a well-developed cancellous layer. From an ontogenetic perspective, most tissues are formed through periosteal ossification, although the mineralized tissues observed in baurusuchid LPRP/USP 0634 suggest a late metaplastic development. Histology suggests that the ossification center of notosuchian osteoderm is located at the keel. Interestingly, we identified Sharpey's fibers running perpendicularly to the outer layer of the external cortex in Armadillosuchus arrudai, Itasuchus jesuinoi, and Baurusuchidae (LPRP/USP 0642). This feature indicates a tight attachment within the dermis, and it is evidence for the presence of an overlying thick leathery layer of skin over these osteoderms. These data allow a better understanding of the osteohistological structure of crocodylomorph dermal bones, and highlight their structural diversity. We suggest that the vascular canals present in some sampled osteoderms connecting the inner layer of the external cortex and the core with the external surface may increase osteoderm surface and the capacity of heat transfer in terrestrial notosuchians.  相似文献   

16.
Osteoderms of eight extant and extinct species of crocodylomorphs are studied histologically and morphologically. Most osteoderms display the typical “crocodilian” structure with a woven-fibered matrix surrounded by an upper and a lower parallel fibered matrix. The dorsal ornamentation of those specimens consists of a pit-and-ridge structure, with corresponding remodeling mechanisms. However, an osteoderm of Iberosuchus, studied here for the first time, differs in being nearly devoid of ornamentation; moreover, it shows strong bundles of straight Sharpey's fibers perpendicular to the surface in its lateral and dorsal walls, along with a rough plywood-like structure in its basal plate. This suggests that this osteoderm was more deeply anchored within the dermis than the other osteoderms studied hitherto. This peculiar structure might have been linked to a terrestrial ecology and a specific thermoregulation strategy. Some other notosuchians in our sample do not exhibit ornamentation on their osteoderms, as opposed to neosuchians. Considering current interpretations of osteoderm function(s) in crocodilians, our observations are discussed in reference to possible ecophysiological peculiarities of Notosuchia in general, and Iberosuchus in particular.  相似文献   

17.
Dermal ossifications, including osteoderms, are present in many vertebrates and are frequently interpreted as a defense against predators. Nevertheless, osteoderms remain ubiquitous in adult crocodilians while being absent in hatchlings, even though adults rarely experience predation. In other biological systems, increased variation, particularly fluctuating asymmetry, have proven useful for identifying biological structures likely to have evolved under relaxed selection, which in turn may inform their function. Therefore, using the keratinous scutes as proxies for the underlying osteoderm morphology, I investigated the average intraspecific variability of geometry and fluctuating asymmetry in dorsal scutes in five species of crocodilians. I first tested for differences in variability of scute length and width, then for differences in bilateral fluctuating asymmetry of scute number, before finally investigating scute distribution patterns for each species compared to hypothetical rectangular and hexagonal scute arrangements. The American crocodile, Crocodylus acutus, shows significantly more asymmetry than other species, which is consistent with relaxed selection on osteoderms in this species. A suspected decrease in intraspecific aggression within Crocodylus acutus, in conjunction with the inferred relaxed selection, suggests that, in general, crocodilian osteoderms function primarily as defensive armor in aggressive encounters with conspecifics. The smooth‐fronted caiman, Paleosuchus trigonatus, exhibits increased variation in scute dimensions linked to the mediolateral offset of osteoderms in adjacent rows, possibly resulting in a more rigid carapace. Unfortunately, comparative data on crocodilian behavior, physiology, and development is extremely limited and restricts the ability to explore other potential explanations for the patterns observed, highlighting the need for more research on rare and cryptic crocodylians.  相似文献   

18.
Recently discovered evidence of tracks in the continental beds of the Late Cretaceous Tremp Formation in the southern Pyrenees (NE Iberian Peninsula) has been identified as scratch marks made by buoyant crocodiles. The tracks are preserved in two distinct environments and substrates (marly limestones originating in a littoral mud flat and fine‐grained sandstones deposited in fluvial settings). Most of the crocodylian traces are ascribed to ichnogenus Characichnos, whereas a single plantigrade pes track is assigned to ichnogenus cf. Crocodylopodus. The crocodylian swim traces (Characichnos ichnofacies) found in the early and late Maastrichtian co‐occur with Brontopodus ichnofacies attributable to terrestrial tetrapods (titanosaur sauropods, cf. Brontopodus ichnogenus; and hadrosaurid ornithopods, Hadrosauropodus ichnogenus). Analysis of the tracks allows the interpretation of palaeoenvironmental settings and track production. Thus, in lagoonal environments, swim tracks of crocodylians were produced during the rise of the water level in successive tide cycles; in fluvial settings, the swim traces of crocodylians were produced within the channel at the low‐water stage. To date, there are no reports of Late Cretaceous crocodylian tracks in Europe, and the studied evidence represents the first and youngest track record of the group in the latest part of the Cretaceous (C29r) in this continent and probably in the world.  相似文献   

19.
20.
Here we describe a pathological osteoderm from the crocodylomorph Diplocynodon hantoniensis (Bouldnor Formation, earliest Oligocene, Isle of Wight, United Kingdom). The specimen bears a porous, erosive branching channel that distorts the surface ornamentation and periosteum over 60% of the preserved dorsal surface area. We diagnose this condition as necrotizing dermatitis: a surficial bacterial or fungal infection that can penetrate the dermal layers to affect the underlaying penosteum of osteoderms. This condition has been previously reported for an extant tortoise and caiman; however, this is the first reported occurrence in the fossil record.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号