首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Second generation biofuel production depends on lignocellulosic (LC) biomass transformation into simple sugars and their subsequent fermentation into alcohols. However, the main obstacle in this process is the efficient breakdown of the recalcitrant cellulose to sugar monomers. Hence, efficient feedstock pretreatment and hydrolysis are necessary to produce a cost effective biofuel. Recently, ionic liquids (ILs) have been recognized as a promising solvent able to dissolve different biomass feedstocks, providing higher sugar yields. However, most of the hydrolytic enzymes and microorganisms are inactivated, completely or partially, in the presence of even low concentrations of IL, making necessary the discovery of novel hydrolytic enzymes and fermentative microorganisms that are tolerant to ILs. In this review, the current state and the challenges of using ILs as a pretreatment of LC biomass was evaluated, underlining the advances in the discovery and identification of new IL-tolerant enzymes and microorganisms that could improve the bioprocessing of biomass to fuels and chemicals.  相似文献   

2.
The use of ionic liquids (ILs) to disrupt the recalcitrant structure of lignocellulose and make polysaccharides accessible to hydrolytic enzymes is an emerging technology for biomass pretreatment in lignocellulosic biofuel production. Despite efforts to reclaim and recycle IL from pretreated biomass, residual IL can be inhibitory to microorganisms used for downstream fermentation. As a result, pathways for IL tolerance are needed to improve the activity of fermentative organisms in the presence of IL. In this study, microbial communities from compost were cultured under high‐solids and thermophilic conditions in the presence of 1‐ethyl‐3‐methylimidazolium‐based ILs to enrich for IL‐tolerant microorganisms. A strain of Bacillus coagulans isolated from an IL‐tolerant community was grown in liquid and solid‐state culture in the presence of the ILs 1‐ethyl‐3‐methylimidazolium acetate ([C2mim][OAc]) or 1‐ethyl‐3‐methylimidazolium chloride ([C2mim][Cl]) to gauge IL tolerance. Viability and respiration varied with the concentration of IL applied and the type of IL used. B. coagulans maintained growth and respiration in the presence of 4 wt% IL, a concentration similar to that present on IL‐pretreated biomass. In the presence of both [C2mim][OAc] and [C2mim][Cl] in liquid culture, B. coagulans grew at a rate approximately half that observed in the absence of IL. However, in solid‐state culture, the bacteria were significantly more tolerant to [C2mim][Cl] compared with [C2mim][OAc]. B. coagulans tolerance to IL under industrially relevant conditions makes it a promising bacterium for understanding mechanisms of IL tolerance and discovering IL tolerance pathways for use in other microorganisms, particularly those used in bioconversion of IL‐pretreated plant biomass. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:311–316, 2014  相似文献   

3.
Generation of biofuels from sugars in lignocellulosic biomass is a promising alternative to liquid fossil fuels, but efficient and inexpensive bioprocessing configurations must be developed to make this technology commercially viable. One of the major barriers to commercialization is the recalcitrance of plant cell wall polysaccharides to enzymatic hydrolysis. Biomass pretreatment with ionic liquids (ILs) enables efficient saccharification of biomass, but residual ILs inhibit both saccharification and microbial fuel production, requiring extensive washing after IL pretreatment. Pretreatment itself can also produce biomass-derived inhibitory compounds that reduce microbial fuel production. Therefore, there are multiple points in the process from biomass to biofuel production that must be interrogated and optimized to maximize fuel production. Here, we report the development of an IL-tolerant cellulase cocktail by combining thermophilic bacterial glycoside hydrolases produced by a mixed consortia with recombinant glycoside hydrolases. This enzymatic cocktail saccharifies IL-pretreated biomass at higher temperatures and in the presence of much higher IL concentrations than commercial fungal cocktails. Sugars obtained from saccharification of IL-pretreated switchgrass using this cocktail can be converted into biodiesel (fatty acid ethyl-esters or FAEEs) by a metabolically engineered strain of E. coli. During these studies, we found that this biodiesel-producing E. coli strain was sensitive to ILs and inhibitors released by saccharification. This cocktail will enable the development of novel biomass to biofuel bioprocessing configurations that may overcome some of the barriers to production of inexpensive cellulosic biofuels.  相似文献   

4.
Cholinium amino acid ionic liquids ([Ch][AA] ILs), which are wholly composed of renewable biomaterials, have recently been demonstrated to have very promising properties for applications in organic synthesis and biomass pretreatment. In this work, the toxicity of these ILs toward enzymes and bacteria was assessed, and the effect of the anion on these properties is discussed. The inhibitory potentials of this type of ILs to acetylcholinesterase were weaker approximately an order of magnitude than the traditional IL 1-butyl-3-methylimidazolium tetrafluoroborate. Additionally, the [Ch][AA] ILs displayed low toxicity toward the bacteria tested. Furthermore, the biodegradability of the [Ch][AA] ILs was evaluated via the closed bottle and CO2 headspace tests using wastewater microorganisms. All the ILs were classified as ‘readily biodegradable’ based on their high levels of mineralization (62-87%). The presence of extra carboxyl or amide groups on the amino acid side chain rendered the ILs significantly more susceptible to microbial breakdown. In addition, for most of the [Ch][AA] ILs, low toxicity correlated with good biodegradability. The low toxicity and high biodegradability of these novel [Ch][AA] make them promising candidates for use as environmentally friendly solvents in large-scale applications.  相似文献   

5.
The dissolution of biomass into ionic liquids (ILs) has been shown to be a promising alternative biomass pretreatment technology, facilitating faster breakdown of cellulose through the disruption of lignin and the decrystallization of cellulose. Both biological and chemical catalysis have been employed to enhance the conversion of IL-treated biomass polysaccharides into monomeric sugars. However, biomass-dissolving ILs, sugar monomers, and smaller carbohydrate oligomers are all soluble in water. This reduces the overall sugar content in the recovered solid biomass and complicates the recovery and recycle of the IL. Near-complete recovery of the IL and the holocellulose is essential for an IL-based pretreatment technology to be economically feasible. To address this, a solvent extraction technique, based on the chemical affinity of boronates such as phenylboronic acid and naphthalene-2-boronic acid for sugars, was applied to the extraction of glucose, xylose, and cellobiose from aqueous mixtures of 1-ethyl-3-methylimidazolium acetate. It was shown that boronate complexes could extract up to 90% of mono- and disaccharides from aqueous IL solutions, 100% IL systems, and hydrolysates of corn stover containing IL. The use of boronate complexes shows significant potential as a way to recover sugars at several stages in ionic liquid biomass pretreatment processes, delivering a concentrated solution of fermentable sugars, minimizing toxic byproducts, and facilitating ionic liquid cleanup and recycle.  相似文献   

6.

Background

Ionic liquid (IL) pretreatment has emerged as a promising technique that enables complete utilization of lignocellulosic biomass for biofuel production. However, imidazolium IL has recently been shown to exhibit inhibitory effect on cell growth and product formation of industrial microbes, such as oleaginous microorganisms. To date, the mechanism of this inhibition remains largely unknown.

Results

In this study, the feasibility of [Bmim][OAc]-pretreated rice straw hydrolysate as a substrate for microbial lipid production by Geotrichum fermentans, also known as Trichosporon fermentans, was evaluated. The residual [Bmim][OAc] present in the hydrolysate caused a reduction in biomass and lipid content (43.6 and 28.1%, respectively) of G. fermentans, compared with those of the control (7.8 g/L and 52.6%, respectively). Seven imidazolium ILs, [Emim][DEP], [Emim]Cl, [Amim]Cl, [Bmim]Cl, [Bzmim]Cl, [Emim][OAc], and [Bmim][OAc], capable of efficient pretreatment of lignocellulosic biomass were tested for their effects on the cell growth and lipid accumulation of G. fermentans to better understand the impact of imidazolium IL on the lipid production. All the ILs tested inhibited the cell growth and lipid accumulation. In addition, both the cation and the anion of IL contributed to IL toxicity. The side chain of IL cations showed a clear impact on toxicity. On examining IL anions, [OAc]? was found to be more toxic than those of [DEP]? and Cl?. IL exhibited its toxicity by inhibiting sugar consumption and key enzyme (malic enzyme and ATP-citrate lyase) activities of G. fermentans. Cell membrane permeability was also altered to different extents in the presence of various ILs. Scanning electron microscopy revealed that IL induces fibrous structure on the surface of G. fermentans cell, which might represent an adaptive mechanism of the yeast to IL.

Conclusions

This work gives some mechanistic insights into the impact of imidazolium IL on the cell growth and lipid accumulation of oleaginous yeast, which is important for IL integration in lignocellulosic biofuel production, especially for microbial lipid production.
  相似文献   

7.
Lignin holds tremendous potential as a renewable feedstock for upgrading to a number of high-value chemicals and products that are derived from the petroleum industry at present. Since lignin makes up a significant fraction of lignocellulosic biomass, co-utilization of lignin in addition to cellulose and hemicelluloses is vital to the economic viability of cellulosic biorefineries. The recalcitrant nature of lignin, originated from the molecule's compositional and structural heterogeneity, however, poses great challenges toward effective and selective lignin depolymerization and valorization. Ionic liquid (IL) is a powerful solvent that has demonstrated high efficiency in fractionating lignocellulosic biomass into sugar streams and a lignin stream of reduced molecular weight. Compared to thermochemical methods, biological lignin deconstruction takes place at mild temperature and pressure while product selectivity can be potentially improved via the specificity of biocatalysts (lignin degrading enzymes, LDEs). This review focuses on a lignin valorization strategy by harnessing the biomass fractionating capabilities of ILs and the substrate and product selectivity of LDEs. Recent advances in elucidating enzyme-IL interactions as well as strategies for improving enzyme activity in IL are discussed, with specific emphases on biocompatible ILs, thermostable and IL-tolerant enzymes, enzyme immobilization, and surface charge engineering. Also reviewed is the protein engineering toolsets (directed evolution and rational design) to improve the biocatalysts' activity, stability and product selectivity in IL systems. The alliance between IL and LDEs offers a great opportunity for developing a biocatalytic route for lignin valorization.  相似文献   

8.
Ionic liquids (ILs) have emerged as attractive solvents for lignocellulosic biomass pretreatment in the production of biofuels and chemical feedstocks. However, the high cost of ILs is a key deterrent to their practical application. Here, we show that acetate based ILs are effective in dramatically reducing the recalcitrance of corn stover toward enzymatic polysaccharide hydrolysis even at loadings of biomass as high as 50% by weight. Under these conditions, the IL serves more as a pretreatment additive rather than a true solvent. Pretreatment of corn stover with 1‐ethyl‐3‐methylimidizolium acetate ([Emim] [OAc]) at 125 ± 5°C for 1 h resulted in a dramatic reduction of cellulose crystallinity (up to 52%) and extraction of lignin (up to 44%). Enzymatic hydrolysis of the IL‐treated biomass was performed with a common commercial cellulase/xylanase from Trichoderma reesei and a commercial β‐glucosidase, and resulted in fermentable sugar yields of ~80% for glucose and ~50% for xylose at corn stover loadings up to 33% (w/w) and 55% and 34% for glucose and xylose, respectively, at 50% (w/w) biomass loading. Similar results were observed for the IL‐facilitated pretreatment of switchgrass, poplar, and the highly recalcitrant hardwood, maple. At 4.8% (w/w) corn stover, [Emim][OAc] can be readily reused up to 10 times without removal of extracted components, such as lignin, with no effect on subsequent fermentable sugar yields. A significant reduction in the amount of IL combined with facile recycling has the potential to enable ILs to be used in large‐scale biomass pretreatment. Biotechnol. Bioeng. 2011;108: 2865–2875. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
木质纤维素是地球上储量最为丰富的可再生有机碳资源,但由于其结构的复杂性,必须经过一系列预处理过程才能被微生物高效利用,这就不可避免地带来了呋喃醛等典型抑制物,严重阻碍了微生物的生长和后续发酵过程。认知微生物的呋喃醛代谢途径,并基于此开发耐受性和转化能力强的微生物菌株是生物炼制领域的重要研究内容。文中综述了呋喃醛抑制物的来源、呋喃醛对微生物的抑制机理以及微生物降解呋喃醛的代谢途径,并重点讨论了基于生物法降解呋喃醛抑制物的研究进展,涉及的主要技术手段包括传统的适应性进化工程和代谢工程,以及近年来新兴的微生物共培养系统和功能化材料辅助微生物脱除呋喃醛等。  相似文献   

10.
Ionic liquids (ILs) are novel organic salts that have enormous potential for industrial use as green replacements for harmful volatile organic solvents. Varying the cationic components can alter the chemical and physical properties of ILs, including solubility, to suit a variety of industrial processes. However, to complement designer engineering, it is crucial to proactively characterize the biological impacts of new chemicals, in order to fully define them as environmentally friendly. Before introduction of ILs into the environment, we performed an analysis of the biodegradability of six ILs by activated sludge microorganisms collected from the South Bend, Indiana wastewater treatment plant. We examined biodegradability of 1-butyl, 1-hexyl and 1-octyl derivatives of 3-methyl-imidazolium and 3-methyl-pyridinium bromide compounds using the standard Organisation for Economic Cooperation and Development dissolved organic carbon Die-Away Test, changes in total dissolved nitrogen concentrations, and 1H-nuclear magnetic resonance analysis of initial and final chemical structures. Further, we examined microbial community profiles throughout the incubation period using denaturing gradient gel electrophoresis (DNA-PCR-DGGE). Our results suggest that hexyl and octyl substituted pyridinium-based ILs can be fully mineralized, but that imidazolium-based ILs are only partially mineralized. Butyl substituted ILs with either cation, were not biodegradable. Biodegradation rates also increase with longer alkyl chain length, which may be related to enhanced selection of a microbial community. Finally, DGGE analysis suggests that certain microorganisms are enriched by ILs used as a carbon source. Based on these results, we suggest that further IL design and synthesis include pyridinium cations and longer alkyl substitutions for rapid biodegradability.  相似文献   

11.
Until recently, parameters from microorganisms were generally not included in risk assessment at a comparable level to animals and plants. However, the major part of global biomass, biodiversity, and ecosystem processes is present in the microbial world and microbiological techniques applicable to risk assessment are becoming available. Two microbial indicators are described based on the usage of multiwell plates with different substrates and a redox indicator for monitoring mineralisation. With both techniques autochthonous microbial communities are analysed. Producing functional fingerprints of the microbial community gives insights into the composition of different functions. This is equivalent to observations of ecological abundance and species composition. When lack of reference sites or reference data renders risk assessment difficult, measurement of the pollution-induced community tolerance (PICT) can provide useful information.  相似文献   

12.
Groundwaters are increasingly viewed as resource-limited ecosystems in which fluxes of dissolved organic carbon (DOC) from surface water are efficiently mineralized by a consortium of microorganisms which are grazed by invertebrates. We tested for the effect of groundwater recharge on resource supply and trophic interactions by measuring physico-chemistry, microbial activity and biomass, structure of bacterial communities and invertebrate density at three sites intensively recharged with surface water. Comparison of measurements made in recharge and control well clusters at each site showed that groundwater recharge significantly increased fluxes of DOC and phosphate, elevated groundwater temperature, and diminished dissolved oxygen (DO). Microbial biomass and activity were significantly higher in recharge well clusters but stimulation of autochthonous microorganisms was not associated with a major shift in bacterial community structure. Invertebrate assemblages were not significantly more abundant in recharge well clusters and did not show any relationship with microbial biomass and activity. Microbial communities were bottom-up regulated by DOC and nutrient fluxes but trophic interactions between microorganisms and invertebrates were apparently limited by environmental stresses, particularly DO depletion and groundwater warming. Hydrological connectivity is a key factor regulating the function of DOC-based groundwater food webs as it influences both resource availability for microorganisms and environmental stresses which affect energy transfer to invertebrates and top-down control on microorganisms.  相似文献   

13.
Glaciers accumulate airborne microorganisms year by year and thus are good archives of microbial communities and their relationship to climatic and environmental changes. Hypotheses have focused on two possible drivers of microbial community composition in glacier systems. One is aeolian deposition, in which the microbial load by aerosol, dust, and precipitation events directly determines the amount and composition of microbial species in glacier ice. The other is postdepositional selection, in which the metabolic activity in surface snow causes microbial community shifts in glacier ice. An additional possibility is that both processes occur simultaneously. Aeolian deposition initially establishes a microbial community in the ice, whereas postdeposition selection strengthens the deposition patterns of microorganisms with the development of tolerant species in surface snow, resulting in varying structures of microbial communities with depth. In this minireview, we examine these postulations through an analysis of physical–chemical and biological parameters from the Malan and Vostok ice cores, and the Kuytun 51 Glacial surface and deep snow. We discuss these and other recent results in the context of the hypothesized mechanisms driving microbial community succession in glaciers. We explore our current gaps in knowledge and point out future directions for research on microorganisms in glacial ecosystems.  相似文献   

14.
稳定性同位素探测技术在微生物生态学研究中的应用   总被引:10,自引:0,他引:10  
稳定性同位素标记技术同分子生物学技术相结合而发展起来的稳定性同位素探测技术(stableisotope probing,SIP),在对各种环境中微生物群落组成进行遗传分类学鉴定的同时,可确定其在环境过程中的功能,提供复杂群落中微生物相互作用及其代谢功能的大量信息,具有广阔的应用前景.其基本原理是:将原位或微宇宙(microcosm)的环境样品暴露于稳定性同位素富集的基质中,这些样品中存在的某些微生物能够以基质中的稳定(性同位素为碳源或氮源进行物质代谢并满足其自身生长需要,基质中的稳定性同位素被吸收同化进入微生物体内,参与各类物质如核酸(DNA和RNA)及磷脂脂肪酸(PLFA)等的生物合成,通过提取、分离、纯化、分析这些微生物体内稳定性同位素标记的生物标志物,从而将微生物的组成与其功能联系起来.在介绍稳定性同位素培养基质的选择及标记方法、合适的生物标志物的选择及提取分离方法的基础上,举例阐述了此项技术在甲基营养菌、有机污染物降解菌、根际微生物生态、互营微生物、宏基因组学等方面的应用.  相似文献   

15.
Environmental contamination with a variety of pollutants has prompted the development of effective bioremediation strategies. But how can these processes be best monitored and controlled? One avenue under investigation is the development of stress response systems as tools for effective and general process control. Although the microbial stress response has been the subject of intensive laboratory investigation, the environmental reflection of the laboratory response to specific stresses has been little explored. However, it is only within an environmental context, in which microorganisms are constantly exposed to multiple changing environmental stresses, that there will be full understanding of microbial adaptive resiliency. Knowledge of the stress response in the environment will facilitate the control of bioremediation and other processes mediated by complex microbial communities.  相似文献   

16.
Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion.  相似文献   

17.
Subsurface microorganisms make up the majority of Earth's microbial biomass, but ecological processes governing surface communities may not explain community patterns at depth because of burial. Depth constrains dispersal and energy availability, and when combined with geographic isolation across landscapes, may influence community assembly. We sequenced the 16S rRNA gene of bacteria and archaea from 48 sediment cores across 36 lakes in four disconnected mountain ranges in Wyoming, USA and used null models to infer assembly processes across depth, spatial isolation, and varying environments. Although we expected strong dispersal limitations across these isolated settings, community composition was primarily shaped by environmental selection. Communities consistently shifted from domination by organisms that degrade organic matter at the surface to methanogenic, low-energy adapted taxa in deeper zones. Stochastic processes—like dispersal limitation—contributed to differences among lakes, but because these effects weakened with depth, selection processes ultimately governed subsurface microbial biogeography.  相似文献   

18.
Microbial communities that deconstruct plant biomass have broad relevance in biofuel production and global carbon cycling. Biomass pretreatments reduce plant biomass recalcitrance for increased efficiency of enzymatic hydrolysis. We exploited these chemical pretreatments to study how thermophilic bacterial consortia adapt to deconstruct switchgrass (SG) biomass of various compositions. Microbial communities were adapted to untreated, ammonium fiber expansion (AFEX)-pretreated, and ionic-liquid (IL)-pretreated SG under aerobic, thermophilic conditions using green waste compost as the inoculum to study biomass deconstruction by microbial consortia. After microbial cultivation, gravimetric analysis of the residual biomass demonstrated that both AFEX and IL pretreatment enhanced the deconstruction of the SG biomass approximately 2-fold. Two-dimensional nuclear magnetic resonance (2D-NMR) experiments and acetyl bromide-reactive-lignin analysis indicated that polysaccharide hydrolysis was the dominant process occurring during microbial biomass deconstruction, and lignin remaining in the residual biomass was largely unmodified. Small-subunit (SSU) rRNA gene amplicon libraries revealed that although the dominant taxa across these chemical pretreatments were consistently represented by members of the Firmicutes, the Bacteroidetes, and Deinococcus-Thermus, the abundance of selected operational taxonomic units (OTUs) varied, suggesting adaptations to the different substrates. Combining the observations of differences in the community structure and the chemical and physical structure of the biomass, we hypothesize specific roles for individual community members in biomass deconstruction.  相似文献   

19.
Microbial ecology to manage processes in environmental biotechnology   总被引:1,自引:0,他引:1  
Microbial ecology and environmental biotechnology are inherently tied to each other. The concepts and tools of microbial ecology are the basis for managing processes in environmental biotechnology; and these processes provide interesting ecosystems to advance the concepts and tools of microbial ecology. Revolutionary advancements in molecular tools to understand the structure and function of microbial communities are bolstering the power of microbial ecology. A push from advances in modern materials along with a pull from a societal need to become more sustainable is enabling environmental biotechnology to create novel processes. How do these two fields work together? Five principles illuminate the way: (i) aim for big benefits; (ii) develop and apply more powerful tools to understand microbial communities; (iii) follow the electrons; (iv) retain slow-growing biomass; and (v) integrate, integrate, integrate.  相似文献   

20.
ABSTRACT: BACKGROUND: Effective pretreatment is key to achieving high enzymatic saccharification efficiency in processing lignocellulosic biomass to fermentable sugars, biofuels and value-added products. Ionic liquids (ILs), still relatively new class of solvents, are attractive for biomass pretreatment because some demonstrate the rare ability to dissolve all components of lignocellulosic biomass including highly ordered (crystalline) cellulose. In the present study, three ILs, 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl), 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) are used to dissolve/pretreat and fractionate sugarcane bagasse. In these IL-based pretreatments the biomass is completely or partially dissolved in ILs at temperatures greater than 130[DEGREE SIGN]C and then precipitated by the addition of an antisolvent to the IL biomass mixture. For the first time mass balances of IL-based pretreatments are reported. Such mass balances, along with kinetics data, can be used in process modelling and design. RESULTS: Lignin removals of 10% mass of lignin in bagasse with [C4mim]Cl, 50% mass with [C2mim]Cl and 60% mass with [C2mim]OAc, are achieved by limiting the amount of water added as antisolvent to 0.5 water:IL mass ratio thus minimising lignin precipitation. Enzyme saccharification (24 h, 15FPU) yields (% cellulose mass in starting bagasse) from the recovered solids rank as: [C2mim]OAc(83%)>[C2mim]Cl(53%) = [C4mim]Cl(53%). Composition of [C2mim]OAc-treated solids such as low lignin, low acetyl group content and preservation of arabinosyl groups are characteristic of aqueous alkali pretreatments while those of chloride IL-treated solids resemble aqueous acid pretreatments. All ILs are fully recovered after use (100% mass as determined by ion chromatography). CONCLUSIONS: In all three ILs regulated addition of water as an antisolvent effected a polysaccharide enriched precipitate since some of the lignin remained dissolved in the aqueous IL solution. Of the three IL studied [C2mim]OAc gave the best saccharification yield, material recovery and delignification. The effects of [C2mim]OAc pretreatment resemble those of aqueous alkali pretreatments while those of [C2mim]Cl and [C4mim]Cl resemble aqueous acid pretreatments. The use of imidazolium IL solvents with shorter alkyl chains results in accelerated dissolution, pretreatment and degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号