首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
赵恒  刘玉珊  陈彤  刘丽 《微生物学报》2023,63(2):760-774
【目的】噬藻体(cyanophage)广泛存在于自然水体生态系统中,通过侵染蓝藻进而调控蓝藻种群及群落结构,具有重要生态功能和生态地位,在控制蓝藻水华方面有巨大开发潜力。本研究旨在探究云南高原湖泊噬藻体psbA基因多样性,分析其系统进化地位,为深入了解高原湖泊生态功能、开发利用噬藻体资源奠定理论基础。【方法】以云南高原主要湖泊滇池、抚仙湖和星云湖等为研究对象,以psbA基因作为分子靶标,对湖泊水体中噬藻体遗传多样性进行研究。【结果】从不同湖泊中共获得100条环境噬藻体psbA基因序列,系统发育分析表明,湖泊的噬藻体psbA基因序列与中国东湖、中国东北稻田、日本稻田等淡水中的环境噬藻体psbA基因亲缘关系较近,与海洋环境噬藻体psbA基因亲缘关系较远;抚仙湖中的噬藻体psbA基因多样性高于滇池、星云湖和异龙湖中的噬藻体psbA基因多样性;云南高原湖泊中存在新的噬藻体类群;各湖泊秋冬季节噬藻体psbA基因遗传多样性差异不明显。【结论】云南主要高原湖泊噬藻体psbA基因遗传多样性高,与淡水环境噬藻体psbA基因亲缘关系较近,且存在独特的噬藻体类群。  相似文献   

2.
1. In view of the paucity of data on the response of warm shallow lakes to reductions in nutrient loading, this paper presents a long‐term limnological data set to document changes in the food‐web of a shallow Mediterranean lake (Lake Albufera, Valencia, Spain) that has experienced reductions in phosphorus (P) (77%) and nitrogen (N) (24%) loading following sewage diversion. 2. Nine years after sewage diversion, P concentration in the lake was reduced by 30% but remained high (TP = 0.34 mg L?1), although the mean water retention time in the lake was only 0.1 years. Nitrate concentrations did not significantly change, probably because the lake continued to receive untreated effluents from ricefields. 3. Chlorophyll a concentration was reduced by half (annual mean of 180 μg L?1). Cyanobacteria abundance remained high but its composition changed towards smaller species, both filamentous and chroococcal forms. 4. Cladocera abundance increased and reached peaks twice a year (December to March and July to September). After nutrient reduction, short‐term clear‐water phases (up to 5 weeks) occurred during February to March in several years, concomitant with annual flushing of the lake and lower fish densities. The abundance of Cladocera in winter contrasted with the spring peaks observed in northern restored shallow lakes. The zooplankton to phytoplankton biomass ratio remained lower than in northern temperate shallow lakes, probably because of fish predation on zooplankton. 5. Improvement of the water quality of Lake Albufera remained insufficient to counteract littoral reed regression or improve underwater light allowing submerged plants re‐colonise the lake. 6. Sewage diversion from Lake Albufera impacted the food web through the plankton, but higher trophic levels, such as fish and waterfowl, were affected to a lesser degree. Although the fish species present in the lake are mainly omnivorous, long‐term data on commercial fish captures indicated that fish communities changed in response to nutrient level and trophic structure as has been observed in restored shallow lakes at northern latitudes. 7. Phosphorus concentrations produced similar phytoplankton biomass in Lake Albufera as in more northern shallow lakes with abundant planktivorous fish and small zooplankton. However, in Lake Albufera, high average concentrations were maintained throughout the year. Overall, results suggest that nutrient control may be a greater priority in eutrophicated warm shallow lakes than in similar lakes at higher latitudes.  相似文献   

3.
1. Seasonal relationships between macrophyte and phytoplankton populations may alter considerably as lakes undergo eutrophication. Understanding of these changes may be key to the interpretation of ecological processes operating over longer (decadal‐centennial) timescales. 2. We explore the seasonal dynamics of macrophytes (measured twice in June and August) and phytoplankton (measured monthly May–September) populations in 39 shallow lakes (29 in the U.K. and 10 in Denmark) covering broad gradients for nutrients and plant abundance. 3. Three site groups were identified based on macrophyte seasonality; 16 lakes where macrophyte abundance was perennially low and the water generally turbid (‘turbid lakes’); 7 where macrophyte abundance was high in June but low in August (‘crashing’ lakes); and 12 where macrophyte abundance was high in both June and August (‘stable’ lakes). The seasonal behaviour of the crashing and turbid lakes was extremely similar with a consistent increase in nutrient concentrations and chlorophyll‐a over May–September. By contrast in the stable lakes, seasonal changes were dampened with chlorophyll‐a consistently low (<10–15 μg L?1) over the entire summer. The crashing lakes were dominated by one or a combination of Potamogeton pusillus, Potamogeton pectinatus and Zannichellia palustris, whereas Ceratophyllum demersum and Chara spp. were more abundant in the stable lakes. 4. A long‐term loss of macrophyte species diversity has occurred in many shallow lakes affected by eutrophication. One common pathway is from a species‐rich plant community with charophytes to a species‐poor community dominated by P. pusillus, P. pectinatus and Z. palustris. Such compositional changes may often be accompanied by a substantial reduction in the seasonal duration of plant dominance and a greater tendency for incursions by phytoplankton. We hypothesise a slow‐enacting (10–100 s years) feedback loop in nutrient‐enriched shallow lakes whereby increases in algal abundance are associated with losses of macrophyte species and hence different plant seasonal strategies. In turn such changes may favour increased phytoplankton production thus placing further pressure on remaining macrophytes. This study blurs the distinction between so‐called turbid phytoplankton‐dominated and clear plant‐dominated shallow lakes and suggests that plant loss from them may be a gradual process.  相似文献   

4.
During the 1950s, the submerged vegetation of shallow lakes in north‐eastern Germany was dominated by nutrient tolerant species, with Ceratophyllum demersum and Myriophyllum sp. being most common. Almost one third of 300 investigated lakes had already lost their submerged macrophytes at that time. Very shallow lakes showed either high or low macrophyte abundance. Increasing depth resulted in medium macrophyte abundances, which may contribute to the stabilisation of local or temporary clearwater states. Forty years later, the percentage of lakes without macrophytes had dramatically increased. Between 55 and 85% of the investigated lakes showed a low abundance. The decline was most pronounced in very shallow lakes. The majority of the investigated lakes showed summer TP concentrations below 100 μg L–1, but no colonisation by submerged macrophytes, which indicates a resilience against re‐colonisation.  相似文献   

5.
The purpose of the study was to compare the primary plankton productivities of lakes of different salinities and to determine the causative factors involved in their production rates. Four lakes (specific conductivity —mS cm−1 at 18°C) were initially chosen: Coragulac (9), Red Rock (25), Corangamite (38), Pink (250). Sampling and production measurements were made every two to three weeks. Three lakes were dominated by specific phytoplankton blooms: Red Rock (Anabaena spiroides), Corangamite (Nodularia spumigena). Pink (Dunaliella salina). Coragulac Lake had more diverse populations. Red Rock Tarn had some of the highest production values ever recorded. Extremely high soluble phosphate and inorganic carbon concentrations were the most important causative factors. Pink Lake had very low production rates. High salinity and low nutrient concentrations were limiting factors. The other lakes were intermediate in production and nutrient levels. Zooplankton populations were also determined.  相似文献   

6.
1. Lake managers suspect that taste and odour‐causing algal blooms are increasing in frequency and intensity, although long‐term monitoring records are scarce, and a number of critical scientific and management questions remain unanswered. 2. In nutrient‐poor lakes and reservoirs, these events are caused primarily by sporadic outbreaks of some chrysophyte algae, which leave identifiable markers in lake sediments. We examine the siliceous remains of these organisms in more than fifty boreal lakes at broad temporal and spatial scales. 3. Colonial scaled chrysophytes, including the taste and odour‐causing Synura petersenii, have increased markedly in more that 90% of the lakes examined since pre‐industrial times. 4. Detailed stratigraphic analyses of two lakes show a rise in the abundance of colonial taxa in the 1930s to 1950s, with a sharp increase over the past two decades. 5. An examination of biogenic silica and biological ratios in Crosson Lake, Ontario, Canada, indicate that these changes represent true increases in the absolute abundance of colonial chrysophytes. 6. Rapid increases over the past two decades indicate that these trends are the result of one or more anthropogenic stressors that are operating at a broad, regional scale.  相似文献   

7.
1. We used flow cytometry to characterize freshwater photosynthetic picoplankton (PPP) and heterotrophic bacteria (HB) in Lake Kivu, one of the East‐African great lakes. Throughout three cruises run in different seasons, covering the four major basins, phycoerythrin‐rich cells dominated the PPP. Heterotrophic bacteria and PPP cell numbers were always high and spatial variations were modest. This represents an important difference from temperate and high latitude lakes that show high fluctuations in cell abundance over an annual cycle. 2. Three populations of picocyanobacteria were identified: one corresponded to single‐cells (identified as Synechococcus by epifluorescence microscopy, molecular methods and pigment content), and the two other that most probably correspond to two and four celled colonies of the same taxon. The proportion of these two subpopulations was greater under stratified conditions, with stronger nutrient limitation. 3. High PPP concentrations (c. 105 cell mL?1) relative to HB (c. 106 cell mL?1) were always found. Lake Kivu supports relatively less bacteria than phytoplankton biomass than temperate systems, probably as a consequence of factors such as temperature, oligotrophy, nutrient limitation and trophic structure. 4. A review of PPP concentration across aquatic systems suggests that the abundance of Synechococcus‐like cyanobacteria in large, oligotrophic, tropical lakes is very high. 5. Photosynthetic picoplankton cell abundances in the oligotrophic tropical lakes Kivu and Tanganyika are comparable to those of eutrophic temperate lakes. This apparently contradicts the view that PPP abundance increases with increasing eutrophy. More data on PPP in tropical lakes are needed to explore further this particular pattern.  相似文献   

8.
9.
Planted forests are increasing in many upland regions worldwide, but knowledge about their potential effects on algal communities of catchment lakes is relatively unknown. Here, the effects of afforestation were investigated using palaeolimnology at six upland lake sites in the north‐west of Ireland subject to different extents of forest plantation cover (4–64% of catchment area). 210Pb‐dated sediment cores were analysed for carotenoid pigments from algae, stable isotopes of bulk carbon (δ13C) and nitrogen (δ15N), and C/N ratios. In lakes with >50% of their catchment area covered by plantations, there were two‐ to sixfold increases in pigments from cryptophytes (alloxanthin) and significant but lower increases (39–116%) in those from colonial cyanobacteria (canthaxanthin), but no response from biomarkers of total algal abundance (β‐carotene). In contrast, lakes in catchments with <20% afforestation exhibited no consistent response to forestry practices, although all lakes exhibited fluctuations in pigments and geochemical variables due to peat cutting and upland grazing prior to forest plantation. Taken together, patterns suggest that increases in cyanobacteria and cryptophyte abundance reflect a combination of mineral and nutrient enrichment associated with forest fertilization and organic matter influx which may have facilitated growth of mixotrophic taxa. This study demonstrates that planted forests can alter the abundance and community structure of algae in upland humic lakes of Ireland and Northern Ireland, despite long histories of prior catchment disturbance.  相似文献   

10.
1. We compared the baseline phosphorus (P) concentrations inferred by diatom‐P transfer functions and export coefficient models at 62 lakes in Great Britain to assess whether the techniques produce similar estimates of historical nutrient status. 2. There was a strong linear relationship between the two sets of values over the whole total P (TP) gradient (2–200 μg TP L?1). However, a systematic bias was observed with the diatom model producing the higher values in 46 lakes (of which values differed by more than 10 μg TP L?1 in 21). The export coefficient model gave the higher values in 10 lakes (of which the values differed by more than 10 μg TP L?1 in only 4). 3. The difference between baseline and present‐day TP concentrations was calculated to compare the extent of eutrophication inferred by the two sets of model output. There was generally poor agreement between the amounts of change estimated by the two approaches. The discrepancy in both the baseline values and the degree of change inferred by the models was greatest in the shallow and more productive sites. 4. Both approaches were applied to two lakes in the English Lake District where long‐term P data exist, to assess how well the models track measured P concentrations since approximately 1850. There was good agreement between the pre‐enrichment TP concentrations generated by the models. The diatom model paralleled the steeper rise in maximum soluble reactive P (SRP) more closely than the gradual increase in annual mean TP in both lakes. The export coefficient model produced a closer fit to observed annual mean TP concentrations for both sites, tracking the changes in total external nutrient loading. 5. A combined approach is recommended, with the diatom model employed to reflect the nature and timing of the in‐lake response to changes in nutrient loading, and the export coefficient model used to establish the origins and extent of changes in the external load and to assess potential reduction in loading under different management scenarios. 6. However, caution must be exercised when applying these models to shallow lakes where the export coefficient model TP estimate will not include internal P loading from lake sediments and where the diatom TP inferences may over‐estimate TP concentrations because of the high abundance of benthic taxa, many of which are poor indicators of trophic state.  相似文献   

11.
1. Shallow lakes may switch from a state dominated by submerged macrophytes to a phytoplankton‐dominated state when a critical nutrient concentration is exceeded. We explore how climate change may affect this critical nutrient concentration by linking a graphical model to data from 83 lakes along a large climate gradient in South America. 2. The data indicate that in warmer climates, submerged macrophytes may tolerate more underwater shade than in cooler lakes. By contrast, the relationship between phytoplankton biomass [approximated by chlorophyll‐a (chl‐a) or biovolume] and nutrient concentrations did not change consistently along the climate gradient. In warmer climates, the correlation between phytoplankton biomass and nutrient concentrations was overall weak, especially at low total phosphorus (TP) concentrations where the chl‐a/ TP ratio could be either low or high. 3. Although the enhanced shade tolerance of submerged plants in warmer lakes might promote the stability of their dominance, the potentially high phytoplankton biomass at low nutrient concentrations suggests an overall low predictability of climate effects. 4. We found that near‐bottom oxygen concentrations are lower in warm lakes than in cooler lakes, implying that anoxic P release from eutrophic sediment in warm lakes likely causes higher TP concentrations in the water column. Subsequently, this may lead to a higher phytoplankton biomass in warmer lakes than in cooler lakes with similar external nutrient loadings. 5. Our results indicate that climate effects on the competitive balance between submerged macrophytes and phytoplankton are not straightforward.  相似文献   

12.
1. The Yangtze floodplain (SE China) is characterized by a number of large shallow lakes, many of which have undergone eutrophication due to the intensification of agriculture and urban growth over recent decades. As monitoring data are limited and in order to determine lake baseline nutrient concentrations, 49 lakes were sampled, covering a total phosphorus (TP) gradient (c. 30–550 μg L−1) to develop a diatom-based inference model. 2. There are three dominant diatom assemblages in these shallow lakes with a marked change in assemblage structure near the boundary between eutrophic and hypereutrophic nutrient levels (as indicated by their TP value). Canonical correspondence analysis indicated that TP was the most important and significant variable in explaining the diatom distributions, independently accounting for 9.5% variance of diatoms. 3. Forty-three lakes were used to generate a transfer function using weighted averaging (WA) with inverse deshrinking. This model had low predictive error (root mean squared error of prediction; RMSEPjack = 0.12) and a high coefficient of prediction (R2jack = 0.82), comparable with regional TP models elsewhere. The good performance of this TP model may reflect the low abundance of benthic diatom species which are commonly regarded as the main error source in European shallow lake WA models. 4. The WA model was used to reconstruct the past-TP concentrations for Taibai Lake, a shallow hypereutrophic lake in Hubei province. The results showed that TP concentration varied slightly (43–62 μg L−1) prior to the 1920s, indicating an eutrophic state since the 1800s. A period of sustained eutrophication occurred after 1950, because of the development of agriculture, reflecting by maximum values of Aulacoseira alpigena and increased abundance of Cyclotella meneghiniana, C. atomus and Cyclostephanos dubius. The steep increase in nutrient concentration after 1970 was related to the overuse of chemical fertilizer and fish farming in the catchment. 5. The shift in fossil diatoms from epiphytic to planktonic forms in the lake sediment core during 1950–70 provides useful information on the transformation from macrophyte-dominated to alga-dominated states. It is plausible that the TP concentration of 80–110 μg L−1 observed in this study is the critical range for switching between the two stable states in the lake. 6. The regional diatom-TP model developed in this study allows, therefore, the possibility of reconstructing historical background nutrient concentrations in lakes. It will provide an indication of the onset and development of eutrophication at any site. This is particularly important for the many lakes in the Yangtze floodplain where information about historical changes in water quality is lacking.  相似文献   

13.
The seasonal abundance and composition of photosynthetic picoplankton (0.2-2 μm) was compared among five oligotrophic to mesotrophic lakes in Ontario. Epilimnetic picocyanobacteria abundance followed a similar pattern in all lakes; maximum abundance (2-4 × 105 cells · ml−1) occurred in late summer following a period of rapid, often exponential increase after epilimnetic temperatures reached 20 °C. In half of the lakes picocyanobacteria abundance was significantly correlated with temperature, while in other lakes the presence of a small spring peak resulted in a poor correlation with temperature. In all lakes there was a significant correlation between epilimnetic abundance and day of the year. Correlations with water chemistry parameters (soluble reactive phosphorus, total phosphorus, particulate C: P and C: N) were generally weaker or insignificant. However, in the three lakes with the highest spring nitrate concentrations, a significant negative correlation with nitrate was observed. During summer stratification, picocyanobacteria abundance reached a maximum within the metalimnion and at or above the euphotic zone (1% of incident light) in all lakes. These peaks were not related to nutrient gradients. The average total phytoplankton biomass ranged from 0.5 g m−3 (wet weight) in the most oligotrophic lake to 1.4 g m−3 for the most mesotrophic with picoplankton biomass ranging from 0.01 g m−3 to 0.3 g m−3. Picocyanobacteria biomass comprised 1 to 9 % of total phytoplankton biomass in late summer, but in one year for one lake represented a maximum of 56%. Other photosynthetic picoplankton (unidentified eukaryotes, Chlorella spp. Nannochloris spp.), although less abundant (103 cells · ml−1) than picocyanobacteria, represented biomass equal or greater than that of the picocyanobacteria in spring and early summer. On average, half of the photosynthetic picoplankton biomass was eukaryotic in the more coloured lakes, while in the clear lakes less than 20% was eukaryotic. Among the lakes there was a significant positive correlation between the average light extinction coefficient and the proportion of eukaryotic biomass of the picoplankton. In mesotrophic Jack's Lake, the contribution of picoplankton to the maximum photosynthetic rate ranged from 10 to 47% with the highest values in the spring (47%) and late summer (33%), as a result of eukaryotic picoplankton and picocyanobacteria respectively. Picocyanobacteria cell specific growth rates were high during July (0.6-0.8 day−1) and losses were close to 80% of the growth rate. Thus, despite low biomass, photosynthetic picoplankton populations appeared to turn over rapidly and potentially contributed significantly to planktonic food webs in early spring and late summer.  相似文献   

14.
云南高原湖泊抚仙湖和星云湖的酵母菌胞外酶活性   总被引:1,自引:1,他引:0  
【背景】高原湖泊因其海拔高、气压低、辐射强、氧气含量低,是一类特殊环境,而其中的微生物是高原湖泊生态系统物质循环与能量流动的重要参与者,其胞外酶活性的表现决定其适应这一特殊环境的方式与能力。【目的】对分离自云南高原湖泊抚仙湖和星云湖湖水的酵母菌进行产胞外酶活性的筛选,以期获得具有潜在应用价值的活性菌株。【方法】在5°C和25°C培养温度下,采用平板筛选法对两个湖泊酵母菌进行产胞外蛋白酶、纤维素酶、淀粉酶、脂肪酶、几丁质酶、木聚糖酶、植酸酶、菊粉酶、漆酶、锰依赖过氧化物酶和木质素过氧化物酶活性的筛选。【结果】抚仙湖和星云湖的所有测试酵母菌菌株至少都能产1种胞外酶,且主要产植酸酶、菊粉酶和淀粉酶;其次为脂肪酶、纤维素酶、木聚糖酶、锰依赖过氧化物酶和木质素过氧化物酶;产几丁质酶、蛋白酶和漆酶的酵母菌很少,星云湖酵母菌都不产漆酶。培养温度为5°C时,抚仙湖和星云湖的酵母菌产5种及5种以上胞外酶的活性菌株数均多于25°C。【结论】抚仙湖和星云湖的酵母菌产胞外酶菌株多样性丰富,胞外酶种类多样,产酶酵母菌可能参与高原湖泊生态系统的物质循环;筛选得到的产胞外酶菌株为开发与利用高原湖泊酶资源提供了良好的种质资源,具有进一步研究的价值。  相似文献   

15.
Carbon monoxide-oxidizing (COX) bacteria play an important role in controlling the flux of carbon monoxide among natural reservoirs, and thus studying their diversity in natural environments is of great significance to understanding the carbon cycle. In this study, the COX bacterial diversity was investigated in five lakes (Erhai Lake, Gahai Lake1, Gahai Lake2, Xiaochaidan Lake, Lake Chaka) on the Qinghai-Tibet Plateau and its correlation with environmental variables of the lakes was explored. Phylogenetic analyses showed that the CO-oxidizers were dominated by Proteobacteria and Actinobacteria in the Qinghai-Tibet Plateau lakes, and their relative abundance varied with salinity: in the freshwater Erhai Lake, the COX bacteria in the water were dominated by the Betaproteobacteria, in contrast to the Actinobacteridae dominance in the sediment; in the saline and hypersaline lakes of Gahai Lake1, Gahai Lake2 and Xiaochaidan Lake, alphaproteobacterial COX bacteria were dominant in the water, whereas Actinobacteridae and alphaproteobacterial COX bacteria were dominant in the sediment. In the hypersaline Lake Chaka, an unknown COX bacterial clade and alphaproteobacterial COX bacteria were dominant in the water and sediment, respectively. Statistical analyses showed that salinity, pH, and major ions (e.g., K+, Na+, Ca2+, Mg2+, SO4 2-, and Cl-) were important factors affecting the COX bacterial community compositions in the investigated lakes. Overall, our results provided insights into the COX bacterial diversity in Qinghai-Tibetan lakes.  相似文献   

16.
Biodiversity in the plateau lakes of Yunnan, China has decreased significantly over the past decades. To better understand this degradation, we analyzed the processes and characteristics of changes in vascular hydrophytes and fish species in three of Yunnan’s largest lakes (Dianchi, Erhai, and Fuxian). We reviewed primary literature reporting the occurrence of such species between the 1950s and 2000s. During this period, 46.3 % of native hydrophytes and 84.0 % of native fish species in Dianchi Lake had gone locally extinct, compared to 21.4 and 58.8 % in Erhai, and 11.8 and 41.7 % in Fuxian, respectively. In Dianchi alien species comprised 15.4 % of total hydrophytes and 87.5 % of total fish species, compared to 5.7 and 70.8 % in Erhai, and 11.8 and 65.0 % in Fuxian, respectively. The extinction of endemic fish species was particularly serious. The proportion of endemic fish species extinct was 90.0 % in Dianchi, 75.0 % in Erhai and 63.6 % in Fuxian. Homogenization of fish assemblages (calculated Jaccard indices) across the lakes increased during the study period in parallel with the extinction of endemics and introduction of alien species. Results showed that lacustrine conditions determined the observed changes of hydrophytes and fish species, likely reflecting anthropogenic disturbances associated with rapid economic development around the lakes. In a developing region like the plateau of Yunnan, which is rich in endemic freshwater species, the challenge is how to balance economic growth with habitat protection.  相似文献   

17.
星云湖硅藻群落响应近现代人类活动与气候变化的过程   总被引:4,自引:0,他引:4  
随着人类活动的增强与全球气候变暖的持续,近年来云南湖泊的生态系统功能持续退化,而目前对云南湖泊生态系统的研究还主要集中于单一环境压力的生态效应。以星云湖为研究对象,通过沉积物记录与现代监测资料,识别在湖泊富营养化、气候变化以及人类强烈干扰下硅藻群落结构响应的过程,并甄别驱动群落变化的主要环境压力及其强度。结果显示随着湖泊生产力水平(如沉积物叶绿素a浓度)的增加,硅藻物种组成发生了明显的变化,主成分分析表明了水体富营养化是驱动群落变化的主要环境因子(r=-0.63,P0.001)。简约模型与方差分解的结果表明近200年来(钻孔长度38cm),湖泊营养水平和水动力是驱动星云湖硅藻群落变化的主要环境因子,分别解释了群落变化的18.8%和2.9%;而1951年以后,湖泊营养水平和温度分别解释了硅藻群落结构变化的31.4%和26.8%。研究结果表明了硅藻群落长期变化的主控因子是湖泊营养水平,而人类活动及气候变化等可以通过改变湖泊水动力及湖水温度来驱动硅藻群落的演替,同时抚仙湖-星云湖的连通性也对硅藻群落的演替产生了一定影响。  相似文献   

18.
1. Changes in cladoceran subfossils in the surface sediments of 54 shallow lakes were studied along a European latitude gradient (36–68°N). Multivariate methods, such as regression trees and ordination, were applied to explore the relationships between cladoceran taxa distribution and contemporary environmental variables, with special focus on the impact of climate. 2. Multivariate regression tree analysis showed distinct differences in cladoceran community structure and lake characteristics along the latitude gradient, identifying three groups: (i) northern lakes characterised by low annual mean temperature, conductivity, nutrient concentrations and fish abundance, (ii) southern, macrophyte rich, warm water lakes with high conductivity and high fish abundance and (iii) Mid‐European lakes at intermediate latitudes with intermediate conductivities, trophic state and temperatures. 3. Large‐sized, pelagic species dominated a group of seven northern lakes with low conductivity, where acid‐tolerant species were also occasionally abundant. Small‐sized, benthic‐associated species dominated a group of five warm water lakes with high conductivity. Cladoceran communities generally showed low species‐specific preferences for habitat and environmental conditions in the Mid‐European group of lakes. Taxon richness was low in the southern‐most, high‐conductivity lakes as well as in the two northern‐most sub‐arctic lakes. 4. The proportion of cladoceran resting eggs relative to body shields was high in the northern lakes, and linearly (negatively) related to both temperature and Chl a, indicating that both cold climate (short growing season) and low food availability induce high ephippia production. 5. Latitude and, implicitly, temperature were strongly correlated with conductivity and nutrient concentrations, highlighting the difficulties of disentangling a direct climate signal from indirect effects of climate, such as changes in fish community structure and human‐related impacts, when a latitude gradient is used as a climate proxy. Future studies should focus on the interrelationships between latitude and gradients in nutrient concentration and conductivity.  相似文献   

19.
This article compares limnological attributes of two of the world’s largest shallow lakes—Lake Okeechobee in Florida, USA and Lake Taihu in P.R. China. Both the systems support an array of ecological and societal values including fish and wildlife habitat, public water supply, flood protection, and recreation. Both have extensive research programs, largely because of concern regarding the lakes’ frequent cyanobacterial blooms. By evaluating these systems together, we compare and contrast properties that can generally advance the understanding and management of large shallow lowland lakes. Because of shallow depth, long fetch, and unconsolidated mud sediments, water chemistry, and transparency in both the lakes are strongly influenced by resuspended sediments that affect light and nutrient conditions. In the central region of both the lakes, where depth is the greatest, evaluation of limiting factors by a trophic state index approach indicates that light most often limits phytoplankton biomass. In contrast, the more sheltered shoreline areas of both the lakes display evidence of nitrogen (N) limitation, which also has been confirmed in nutrient assays conducted in earlier studies. This N limitation most likely is a result of excessive levels of phosphorus (P) that have developed in the lakes due to high external loads over recent decades and the currently high internal P recycling. Comparisons of these lakes show that Lake Taihu has higher N than, similar total phosphorus (TP) and similar light conditions to that of Lake Okeechobee, but less chlorophyll a (CHL). The latter may be as a result of lower winter temperatures in Lake Taihu (around 5°C) compared to Lake Okeechobee (around 15°C), which could reduce phytoplankton growth and abundance through the other seasons of the year. In these systems, the important role of light, temperature, and nutrients in algal bloom dynamics must be considered, especially due to possible adverse and unintended effects that might occur with projects such as sediment removal, and in the long term, in regard to buffering lake responses to external load reduction. Handling editor: D. Hamilton  相似文献   

20.
Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long‐term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole‐lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P < 0.01). A redundancy analysis (RDA) of the 41‐lake data set identified BiomEpiV as a significant (P < 0.05) variable in structuring sedimentary diatom assemblages. The MRT analysis classified the lakes into three groups. These groups were (A) high‐macrophyte, nutrient‐limited lakes (BiomEpiV ≥525 μg · L?1; total phosphorus [TP] <35 μg · L?1; 23 lakes); (B) low‐macrophyte, nutrient‐limited lakes (BiomEpiV <525 μg · L?1; TP <35 μg · L?1; 12 lakes); and (C) eutrophic lakes (TP ≥35 μg · L?1; six lakes). A semiquantitative model correctly predicted the MRT group of the lake 71% of the time (P < 0.001). These results suggest that submerged macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号