首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Fungal laccase oxidized derivatives of hydroxycinnamic acid. The rates decreased in the order sinapic acid > ferulic acid ≥p-coumaric acid. The laccase oxidized sinapyl alcohol faster than coniferyl alcohol. The rates of oxidation of the hydroxycinnamic acid derivatives by an isoenzyme of peroxidase from horseradish decreased in the order p-coumaric acid > ferulic acid ≥ sinapic acid. The peroxidase oxidized coniferyl alcohol much faster than sinapyl alcohol. The laccase and the peroxidase predominantly oxidized (a) ferulic acid in a reaction mixture that contained p-coumaric acid and ferulic acid, (b) sinapic acid in a mixture of p-coumaric acid plus sinapic acid, and (c) sinapic acid in a mixture of ferulic acid plus sinapic acid. In a reaction mixture that contained both coniferyl and sinapyl alcohols, both fungal laccase and horseradish peroxidase predominantly oxidized sinapyl alcohol. From these results, it is concluded (1) that the p-hydroxyphenyl radical can oxidize guaiacyl and syringyl groups and produce their radicals and (2) that the guaiacyl radical can oxidize the syringyl group under formation of its radical; and that (3) in both cases the reverse reactions are very slow.  相似文献   

2.
3.
A R Barceló  F Pomar 《Phytochemistry》2001,57(7):1105-1113
The xylem of 26-day old Zinnia elegans hypocotyls synthesizes lignins derived from coniferyl alcohol and sinapyl alcohol with a G/S ratio of 43/57 in the aryl-glycerol-beta-aryl ether core, as revealed by thioacidolysis. Thioacidolysis of Z. elegans lignins also reveals the presence of coniferyl aldehyde end groups linked by beta-0-4 bonds. Both coniferyl and sinapyl alcohols, as well as coniferyl and sinapyl aldehyde, are substrates of a xylem cell wall-located strongly basic peroxidase, which is capable of oxidizing them in the absence and in the presence of hydrogen peroxide. This peroxidase shows a particular affinity for cinnamyl aldehydes with kappa(M) values in the mu(M) range, and some specificity for syringyl-type phenols. The affinity of this strongly basic peroxidase for cinnamyl alcohols and aldehydes is similar to that shown by the preceding enzymes in the lignin biosynthetic pathway (microsomal 5-hydroxylases and cinnamyl alcohol dehydrogenase), which also use cinnamyl alcohols and aldehydes as substrates, indicating that the one-way highway of construction of the lignin macromolecule has no metabolic "potholes" in which the lignin building blocks might accumulate. This fact suggests a high degree of metabolic plasticity for this basic peroxidase, which has been widely conserved during the evolution of vascular plants, making it one of the driving forces in the evolution of plant lignin heterogeneity.  相似文献   

4.
13C- and deuterium (D)-labeled ferulic acid and sinapic acid ([8-(13)C, 3-OCD3]-ferulic acid and [8-(13)C, 3,5-OCD3]-sinapic acid) were administered to robinia (Robinia pseudoacacia L.) shoots. To estimate the distribution of the label from administrated ferulic or sinapic acid, continuous 50-microm-thick tangential sections cut from the cambium of robinia were subjected to lignin chemical analysis by the DFRC method. Labeled ferulic acid was incorporated into guaiacyl and syringyl lignin. The incorporation of labeled ferulic acid into syringyl units was observed only in the later stage of lignification. Labeled sinapic acid was incorporated into syringyl lignin in the early stage and the later stage of lignification. In general, syringyl lignin was deposited in the later stage of cell wall lignification. Thus, the incorporation of sinapic acid to syringyl lignin in the early stage of lignification was abnormal. Taken together, the aromatic ring-modifying reactions (the conversion from guaiacyl to syringyl moiety, including the hydroxylation and methylation) were more important for the regulation of the sinapyl alcohol biosynthesis than the reducing reactions (the reduction of acids to alcohols) in the differentiating xylem.  相似文献   

5.
Apoplastic peroxidase isoenzymes from stems of Nicotiana tabacumrapidly oxidized sinapic acid and sinapyl alcohol, in additionto 4-coumaric acid, ferulic acid and coniferyl alcohol. By contrast,the peroxidase isoenzymes from stems of Vigna angularis oxidizedsinapic acid and sinapyl alcohol quite slowly but rapidly oxidizedcompounds with a 4-hydroxyphenyl or a guaiacyl group. However,the oxidation of sinapyl alcohol was greatly enhanced by 4-coumaricacid, ferulic acid and an ester of ferulic acid. Intercellularwashing fluid of V. angularis, which contained apoplastic components,also enhanced the oxidation of sinapyl alcohol. Based on theseresults, a possible mechanism for the oxidation of sinapyl alcoholis discussed on the assumption that the biosynthesis of ligninproceeds mainly via peroxidases which cannot oxidize sinapylalcohol in V. angularis. (Received October 23, 1995; Accepted April 3, 1996)  相似文献   

6.
Lignins are cell wall heteropolymers that arise from the peroxidase-mediated coupling of p-coumaryl, coniferyl and sinapyl alcohols. In gymnosperms, they are derived from coniferyl alcohol, whereas in angiosperms, lignins are derived from coniferyl and sinapyl alcohols. Thus, although it is frequently assumed that the chemical complexity of lignins has increased during plant evolution, it is frequently forgotten that pteridophytes have lignins that are derived from sinapyl alcohol. Until recently, most peroxidases characterized in flowering plants only oxidized coniferyl alcohol. However, recent reports have described the molecular characterization of peroxidases capable of oxidizing sinapyl alcohol (syringyl peroxidases). Current molecular studies propose that the structural motifs of syringyl peroxidases predate the radiation of tracheophytes, which suggests that syringyl peroxidases existed before the appearance of syringyl lignins.  相似文献   

7.
The white rot fungus, Trametes sp., was cultivated in a medium containing ferulic acid, glucose and ethanol under aerobic conditions in submerged culture. The ferulic acid was transformed into coniferyl alcohol, coniferylaldehyde, dihydroconiferyl alcohol, vanillic acid, vanillyl alcohol, 2-methoxyhydroquinone and 2-methoxyquinone during 48–120 hr of cultivation. The amount of coniferyl alcohol in the culture reached a maximum after 90 hr with ca 40% of the initial amount of ferulic acid. Cinnamic acid, p-methoxycinnamic acid, 3,4-dimethoxycinnamic acid, p -coumaric acid and sinapic acid were also transformed into the corresponding alcohols, benzoic acids and benzyl alcohols in the fungus culture.  相似文献   

8.
Multiform biosynthetic pathway of syringyl lignin in angiosperms   总被引:6,自引:0,他引:6  
To clarify the pathway for biosynthesis of sinapyl alcohol in angiosperms, tracer experiments using stable isotopes were performed on robinia ( Robinia pseudoacacia L.), oleander ( Nerium indicum Mill.), magnolia ( Magnolia kobus DC.) and Arabidopsis thaliana (L.) Heynh. Precursors used in the experiment were (13)C- and (2)H ( D)-labeled [8-(13)C, 3-OCD(3)]ferulic acid and [8-(13)C, 3,5-OCD(3)]sinapic acid. The incorporation of labeled precursor into lignin was confirmed by gas chromatography-mass spectrometry of the products of derivatization followed by reductive cleavage. Crude extracts of differentiating xylem or stems from these plants were also assayed for 4-coumarate-CoA ligase (4CL; EC 6.2.1.12) activity using sinapic acid and ferulic acid as substrates. In robinia and oleander, 4CL activity toward sinapic acid was detected, and labeled sinapic acids were incorporated into syringyl lignin. These results indicate that robinia and oleander have a pathway that produces sinapyl alcohol from sinapic acid via sinapoyl-CoA. By contrast, in magnolia and Arabidopsis, 4CL activity toward sinapic acid could not be detected, and labeled sinapic acid was not incorporated into lignin. These results suggest that syringyl lignin biosynthesis in angiosperms operates via multiple pathways that depend on the species.  相似文献   

9.
Pomar F  Merino F  Barceló AR 《Protoplasma》2002,220(1-2):17-28
The nature and specificity of the Wiesner test (phloroglucinol-HCl reagent) for the aromatic aldehyde fraction contained in lignins is studied. Phloroglucinol reacted in ethanol-hydrochloric acid with coniferyl aldehyde, sinapyl aldehyde, vanillin, and syringaldehyde to yield either pink pigments (in the case of hydroxycinnamyl aldehydes) or red-brown pigments (in the case of hydroxybenzaldehydes). However, coniferyl alcohol, sinapyl alcohol, and highly condensed dehydrogenation polymers derived from these cinnamyl alcohols and aldehydes did not react with phloroglucinol in ethanol-hydrochloric acid. The differences in the reactivity of phloroglucinol with hydroxycinnamyl aldehydes and their dehydrogenation polymers may be explained by the fact that, in the latter, the unsubstituted (alpha,beta-unsaturated) cinnamaldehyde functional group, which is responsible for the dye reaction, is lost due to lateral chain cross-linking reactions involving the beta carbon. Fourier transform infrared spectroscopy and thioacidolysis analyses of phloroglucinol-positive lignifying plant cell walls belonging to the plant species Zinnia elegans L., Capsicum annuumvar. annuum, Populus albaL., and Pinus halepensisL. demonstrated the presence of 4- O-linked hydroxycinnamyl aldehyde end groups and 4- O-linked 4-hydroxy-3-methoxy-benzaldehyde (vanillin) end groups in lignins. However, given the relatively low abundance of 4- O-linked vanillin in lignifying cell walls and the low extinction coefficient of its red-brown phloroglucinol adduct, it is unlikely that vanillin contributes to a great extent to the phloroglucinol-positive stain reaction. These results suggest that the phloroglucinol-HCl pink stain of lignifying xylem cell walls actually reveals the 4- O-linked hydroxycinnamyl aldehyde structures contained in lignins. Histochemical studies showed that these aldehyde structures are assembled, as in the case of coniferyl aldehyde, during the early stages of xylem cell wall lignification.  相似文献   

10.
Efficiency of lignin biosynthesis: a quantitative analysis   总被引:8,自引:0,他引:8  
Amthor JS 《Annals of botany》2003,91(6):673-695
Lignin is derived mainly from three alcohol monomers: p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. Biochemical reactions probably responsible for synthesizing these three monomers from sucrose, and then polymerizing the monomers into lignin, were analysed to estimate the amount of sucrose required to produce a unit of lignin. Included in the calculations were amounts of respiration required to provide NADPH (from NADP(+)) and ATP (from ADP) for lignin biosynthesis. Two pathways in the middle stage of monomer biosynthesis were considered: one via tyrosine (found in monocots) and the other via phenylalanine (found in all plants). If lignin biosynthesis proceeds with high efficiency via tyrosine, 76.9, 70.4 and 64.3 % of the carbon in sucrose can be retained in the fraction of lignin derived from p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol, respectively. The corresponding carbon retention values for lignin biosynthesis via phenylalanine are less, at 73.2, 65.7 and 60.7 %, respectively. Energy (i.e. heat of combustion) retention during lignin biosynthesis via tyrosine could be as high as 81.6, 74.5 and 67.8 % for lignin derived from p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol, respectively, with the corresponding potential energy retention values for lignin biosynthesis via phenylalanine being less, at 77.7, 69.5 and 63.9 %, respectively. Whether maximum efficiency occurs in situ is unclear, but these values are targets that can be considered in: (1) plant breeding programmes aimed at maximizing carbon or energy retention from photosynthate; (2) analyses of (minimum) metabolic costs of responding to environmental change or pest attack involving increased lignin biosynthesis; (3) understanding costs of lignification in older tissues; and (4) interpreting carbon balance measurements of organs and plants with large lignin concentrations.  相似文献   

11.
本研究利用生物信息学结合RT-PCR技术从二穗短柄草(Brachypodium distachyon)中克隆出BdAD1的c DNA基因,该基因编码一个包含500个氨基酸残基的乙醛脱氢酶家族蛋白。系统进化关系分析表明,该BdAD1蛋白序列与小麦(Triticum aestivum)、羊草(Leymus chinensis)和大麦(Hordeum vulgare)的同源蛋白具有较近的亲缘关系。BdAD1基因在植物细胞的细胞核和细胞质中均有表达,而且BdAD1蛋白兼具松柏醛脱氢酶和芥子醛脱氢酶的活性(CALDH/SALDH),可将松柏醛与芥子醛分别酶解生成阿魏酸和芥子酸,但它对松柏醛的催化效率显著高于芥子醛,因此推测BdAD1可能在苯丙烷代谢途径中对阿魏酸的合成具有重要的调控作用。  相似文献   

12.
13.
Lim EK  Jackson RG  Bowles DJ 《FEBS letters》2005,579(13):2802-2806
This study describes the substrate recognition profile of UGT72E1, an UDP-glucose:glycosyltransferase of Arabidopsis thaliana that is the third member of a branch of glycosyltransferases, capable of conjugating lignin monomers and related metabolites. The data show that UGT72E1, in contrast to the two closely related UGTs 72E2 and 72E3, is specific for sinapyl and coniferyl aldehydes. The biochemical properties of UGT72E1 are characterised, and are compared with that of UGT72E2, which is capable of glycosylating the aldehydes as well as coniferyl and sinapyl alcohols.  相似文献   

14.
Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP(+)-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall-esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes.  相似文献   

15.
F. Pomar  F. Merino  A. Ros Barceló 《Protoplasma》2002,220(1-2):0017-0028
Summary.  The nature and specificity of the Wiesner test (phloroglucinol-HCl reagent) for the aromatic aldehyde fraction contained in lignins is studied. Phloroglucinol reacted in ethanol-hydrochloric acid with coniferyl aldehyde, sinapyl aldehyde, vanillin, and syringaldehyde to yield either pink pigments (in the case of hydroxycinnamyl aldehydes) or red-brown pigments (in the case of hydroxybenzaldehydes). However, coniferyl alcohol, sinapyl alcohol, and highly condensed dehydrogenation polymers derived from these cinnamyl alcohols and aldehydes did not react with phloroglucinol in ethanol-hydrochloric acid. The differences in the reactivity of phloroglucinol with hydroxycinnamyl aldehydes and their dehydrogenation polymers may be explained by the fact that, in the latter, the unsubstituted (α,β-unsaturated) cinnamaldehyde functional group, which is responsible for the dye reaction, is lost due to lateral chain cross-linking reactions involving the β carbon. Fourier transform infrared spectroscopy and thioacidolysis analyses of phloroglucinol-positive lignifying plant cell walls belonging to the plant species Zinnia elegans L., Capsicum annuum var. annuum, Populus alba L., and Pinus halepensis L. demonstrated the presence of 4-O-linked hydroxycinnamyl aldehyde end groups and 4-O-linked 4-hydroxy-3-methoxy-benzaldehyde (vanillin) end groups in lignins. However, given the relatively low abundance of 4-O-linked vanillin in lignifying cell walls and the low extinction coefficient of its red-brown phloroglucinol adduct, it is unlikely that vanillin contributes to a great extent to the phloroglucinol-positive stain reaction. These results suggest that the phloroglucinol-HCl pink stain of lignifying xylem cell walls actually reveals the 4-O-linked hydroxycinnamyl aldehyde structures contained in lignins. Histochemical studies showed that these aldehyde structures are assembled, as in the case of coniferyl aldehyde, during the early stages of xylem cell wall lignification. Received April 17, 2002; accepted May 21, 2002; published online October 31, 2002 RID="*" ID="*" Correspondence and reprints: Department of Plant Biology, University of Murcia, 30100 Murcia, Spain. Abbreviations: DHP dehydrogenation polymers; FT-IR spectroscopy Fourier transform infrared spectroscopy.  相似文献   

16.
A recent in silico analysis revealed that the Arabidopsis genome has 14 genes annotated as putative 4-coumarate:CoA ligase isoforms or homologues. Of these, 11 were selected for detailed functional analysis in vitro, using all known possible phenylpropanoid pathway intermediates (p-coumaric, caffeic, ferulic, 5-hydroxyferulic and sinapic acids), as well as cinnamic acid. Of the 11 recombinant proteins so obtained, four were catalytically active in vitro, with fairly broad substrate specificities, confirming that the 4CL gene family in Arabidopsis has only four members. This finding is in agreement with our previous phylogenetic analyses, and again illustrates the need for comprehensive characterization of all putative 4CLs, rather than piecemeal analysis of selected gene members. All 11 proteins were expressed with a C-terminal His6-tag and functionally characterized, with one, At4CL1, expressed in native form for kinetic property comparisons. Of the 11 putative His6-tagged 4CLs, isoform At4CL1 best utilized p-coumaric, caffeic, ferulic and 5-hydroxyferulic acids as substrates, whereas At4CL2 readily transformed p-coumaric and caffeic acids into the corresponding CoA esters, while ferulic and 5-hydroxyferulic acids were converted quite poorly. At4CL3 also displayed broad substrate specificity efficiently converting p-coumaric, caffeic and ferulic acids into their CoA esters, whereas 5-hydroxyferulic acid was not as effectively utilized. By contrast, while At4CL5 is the only isoform capable of ligating sinapic acid, the two preferred substrates were 5-hydroxyferulic and caffeic acids. Indeed, both At4CL1 and At4CL5 most effectively utilized 5-hydroxyferulic acid with kenz approximately 10-fold higher than that for At4CL2 and At4CL3. The remaining seven 4CL-like homologues had no measurable catalytic activity (at approximately 100 microg protein concentrations), again bringing into sharp focus both the advantages to, and the limitations of, current database annotations, and the need to unambiguously demonstrate true enzyme function. Lastly, although At4CL5 is able to convert both 5-hydroxyferulic and sinapic acids into the corresponding CoA esters, the physiological significance of the latter observation in vitro was in question, i.e. particularly since other 4CL isoforms can effectively convert 5-hydroxyferulic acid into 5-hydroxyferuloyl CoA. Hence, homozygous lines containing T-DNA or enhancer trap inserts (knockouts) for 4cl5 were selected by screening, with Arabidopsis stem sections from each mutant line subjected to detailed analyses for both lignin monomeric compositions and contents, and sinapate/sinapyl alcohol derivative formation, at different stages of growth and development until maturation. The data so obtained revealed that this "knockout" had no significant effect on either lignin content or monomeric composition, or on the accumulation of sinapate/sinapyl alcohol derivatives. The results from the present study indicate that formation of syringyl lignins and sinapate/sinapyl alcohol derivatives result primarily from methylation of 5-hydroxyferuloyl CoA or derivatives thereof rather than sinapic acid ligation. That is, no specific physiological role for At4CL5 in direct sinapic acid CoA ligation could be identified. How the putative overlapping 4CL metabolic networks are in fact organized in planta at various stages of growth and development will be the subject of future inquiry.  相似文献   

17.
18.
In angiosperms, lignin is built from two main monomers, coniferyl and sinapyl alcohol, which are incorporated respectively as G and S units in the polymer. The last step of their synthesis has so far been considered to be performed by a family of dimeric cinnamyl alcohol dehydrogenases (CAD2). However, previous studies on Eucalyptus gunnii xylem showed the presence of an additional, structurally unrelated, monomeric CAD form named CAD1. This form reduces coniferaldehyde to coniferyl alcohol, but is inactive on sinapaldehyde. In this paper, we report the functional characterization of CAD1 in tobacco (Nicotiana tabacum L.). Transgenic tobacco plants with reduced CAD1 expression were obtained through an RNAi strategy. These plants displayed normal growth and development, and detailed biochemical studies were needed to reveal a role for CAD1. Lignin analyses showed that CAD1 down-regulation does not affect Klason lignin content, and has a moderate impact on G unit content of the non-condensed lignin fraction. However, comparative metabolic profiling of the methanol-soluble phenolic fraction from basal xylem revealed significant differences between CAD1 down-regulated and wild-type plants. Eight compounds were less abundant in CAD1 down-regulated lines, five of which were identified as dimers or trimers of monolignols, each containing at least one moiety derived from coniferyl alcohol. In addition, 3-trans-caffeoyl quinic acid accumulated in the transgenic plants. Together, our results support a significant contribution of CAD1 to the synthesis of coniferyl alcohol in planta, along with the previously characterized CAD2 enzymes. Sequences of NtCAD1-1 and NtCAD1-7 were deposited in GenBank under accession numbers AY911854 and AY911855, respectively.  相似文献   

19.
This study describes a method for determining cinnamyl alcohol dehydrogenase activity in sugarcane stems using reverse phase (RP) high-performance liquid chromatography to elucidate their possible lignin origin. Activity is assayed using the reverse mode, the oxidation of hydroxycinnamyl alcohols into hydroxycinnamyl aldehydes. Appearance of the reaction products, coniferaldehyde and sinapaldehyde is determined by measuring absorbance at 340 and 345 nm, respectively. Disappearance of substrates, coniferyl alcohol and sinapyl alcohol is measured at 263 and 273 nm, respectively. Isocratic elution with acetonitrile:acetic acid through an RP Mediterranea sea C18 column is performed. As case examples, we have examined two different cultivars of sugarcane; My 5514 is resistant to smut, whereas B 42231 is susceptible to the pathogen. Inoculation of sugarcane stems elicits lignification and produces significant increases of coniferyl alcohol dehydrogenase (CAD) and sinapyl alcohol dehydrogenase (SAD). Production of lignin increases about 29% in the resistant cultivar and only 13% in the susceptible cultivar after inoculation compared to uninoculated plants. Our results show that the resistance of My 5514 to smut is likely derived, at least in part, to a marked increase of lignin concentration by the activation of CAD and SAD.  相似文献   

20.
A cDNA encoding cinnamyl alcohol dehydrogenase (CAD), catalyzing conversion of cinnamyl aldehydes to corresponding cinnamyl alcohols, was cloned from secondary xylem of Leucaena leucocephala. The cloned cDNA was expressed in Escherichia coli BL21 (DE3) pLysS cells. Temperature and Zn(2+) ion played crucial role in expression and activity of enzyme, such that, at 18°C and at 2 mM Zn(2+) the CAD was maximally expressed as active enzyme in soluble fraction. The expressed protein was purified 14.78-folds to homogeneity on Ni-NTA agarose column with specific activity of 346 nkat/mg protein. The purified enzyme exhibited lowest Km with cinnamyl alcohol (12.2 μM) followed by coniferyl (18.1 μM) and sinapyl alcohol (23.8 μM). Enzyme exhibited high substrate inhibition with cinnamyl (beyond 20 μM) and coniferyl (beyond 100 μM) alcohols. The in silico analysis of CAD protein exhibited four characteristic consensus sequences, GHEXXGXXXXXGXXV; C(100), C(103), C(106), C(114); GXGXXG and C(47), S(49), H(69), L(95), C(163), I(300) involved in catalytic Zn(2+) binding, structural Zn(2+) binding, NADP(+) binding and substrate binding, respectively. Tertiary structure, generated using Modeller 9v5, exhibited a trilobed structure with bulged out structural Zn(2+) binding domain. The catalytic Zn(2+) binding, substrate binding and NADP(+) binding domains formed a pocket protected by two major lobes. The enzyme catalysis, sequence homology and 3-D model, all supported that the cloned CAD belongs to alcohol dehydrogenase family of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号