首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim For conservation purposes, it is important to understand the forces that shape biodiversity in transitional waters (TWs) and to evaluate the effects of small‐scale latitudinal changes. To this end, we analysed data on soft‐sediment macroinvertebrates from nine Italian TWs in order to (1) investigate the structure and distribution of the benthic fauna and their relationships with environmental and geographical variables, and (2) examine species richness and β‐diversity at various spatial scales. Location European Transition Waters Ecoregion 6. Methods Using a data set collected along a 7° latitudinal cline between 45°28′ N and 39°56′ N, we used Spearman’s rank correlation analysis to evaluate the relationships between species richness and both environmental and geographical variables, and linear regression analysis to show the relationships between α‐, β‐ and γ‐diversity. Three measures were used to assess β‐diversity: Whittaker’s βW, and two similarity indices, namely the Bray‐Curtis similarity index and Δs. Using multivariate analyses, we determined the similarity in composition of the benthic community between sites and compared the biotic ordination with abiotic (geographical and environmental) characteristics. Results Two hundred and sixty‐eight species were recorded from 46 sites. Of these, 53.4% were restricted to one TW. Annelida was the dominant taxonomic group, followed by Crustacea and Mollusca. The α‐diversity was highly variable (5–87 species) and was correlated with latitude. The γ‐diversity, measured at the TW scale, was correlated significantly with α‐diversity. The β‐diversity increased with spatial scale and habitat heterogeneity. In the community pattern identified by multivariate analysis, TWs were segregated by latitude and biogeography, and this reflected different climatic conditions. Main conclusions We found that α‐diversity increased when moving from higher to lower latitudes, and that it depended on both regional and local factors. In addition, we detected latitudinal variations in the extent of regional influence on local species richness. The observed distribution pattern of TW faunas depended mostly on climate type. We suggest that the distribution of annelidan species could be used as a proxy for assessing general community patterns for Italian TWs.  相似文献   

2.
Understanding the structure of and spatial variability in the species composition of ecological communities is at the heart of biogeography. In particular, there has been recent controversy about possible latitudinal trends in compositional heterogeneity across localities (β‐diversity). A gradient in the size of the regional species pool alone can be expected to impose a parallel gradient on β‐diversity, but whether β‐diversity also varies independently of the size of the species pool remains unclear. A recently suggested methodological approach to correct latitudinal β‐diversity gradients for the species pool effect is based on randomization null models that remove the effects of gradients in α‐ and γ‐diversity on β‐diversity. However, the randomization process imposes constraints on the variability of α‐diversity, which in turn force γ‐ and β‐diversity to become interdependent, such that any change in one is mirrored in the other. We argue that simple null model approaches are inadequate to discern whether correlations between α‐, β‐ and γ‐diversity reflect processes of ecological interest or merely differences in the size of the species pool among localities. We demonstrate that this kind of Narcissus effect may also apply to other metrics of spatial or phylogenetic species distribution. We highlight that Narcissus effects may lead to artificially high rejection rates for the focal pattern (Type II errors) and caution that these errors have not received sufficient attention in the ecological literature.  相似文献   

3.
Understanding what mechanisms shape the diversity and composition of biological assemblages across broad‐scale gradients is central to ecology. Litter‐consuming detritivorous invertebrates in streams show an unusual diversity gradient, with α‐diversity increasing towards high latitudes but no trend in γ‐diversity. We hypothesized this pattern to be related to shifts in nestedness and several ecological processes shaping their assemblages (dispersal, environmental filtering and competition). We tested this hypothesis, using a global dataset, by examining latitudinal trends in nestedness and several indicators of the above processes along the latitudinal gradient. Our results suggest that strong environmental filtering and low dispersal in the tropics lead to often species‐poor local detritivore assemblages, nested in richer regional assemblages. At higher latitudes, dispersal becomes stronger, disrupting the nested assemblage structure and resulting in local assemblages that are generally more species‐rich and non‐nested subsets of the regional species pools. Our results provide evidence that mechanisms underlying assemblage composition and diversity of stream litter‐consuming detritivores shift across latitudes, and provide an explanation for their unusual pattern of increasing α‐diversity with latitude. When we repeated these analyses for whole invertebrate assemblages of leaf litter and for abundant taxa showing reverse or no diversity gradients we found no latitudinal patterns, suggesting that function‐based rather than taxon‐based analyses of assemblages may help elucidate the mechanisms behind diversity gradients.  相似文献   

4.
5.
Are rates of evolution and speciation fastest where diversity is greatest – the tropics? A commonly accepted theory links the latitudinal diversity gradient to a speciation pump model whereby the tropics produce species at a faster rate than extra‐tropical regions. In this issue of Molecular Ecology, Botero et al. ( 2014 ) test the speciation pump model using subspecies richness patterns for more than 9000 species of birds and mammals as a proxy for incipient speciation opportunity. Rather than using latitudinal centroids, the authors investigate the role of various environmental correlates of latitude as drivers of subspecies richness. Their key finding points to environmental harshness as a positive predictor of subspecies richness. The authors link high subspecies richness in environmental harsh areas to increased opportunities for geographic range fragmentation and/or faster rates of trait evolution as drivers of incipient speciation. Because environmental harshness generally increases with latitude, these results suggest that opportunity for incipient speciation is lowest where species richness is highest. The authors interpret this finding as incompatible with the view of the tropics as a cradle of diversity. Their results are consistent with a growing body of evidence that reproductive isolation and speciation occur fastest at high latitudes.  相似文献   

6.
Aim To test how far can macroecological hypotheses relating diversity to environmental factors be extrapolated to functional and phylogenetic diversities, i.e. to the extent to which functional traits and evolutionary backgrounds vary among species in a community or region. We use a spatial partitioning of diversity where regional or γ‐diversity is calculated by aggregating information on local communities, local or α‐diversity corresponds to diversity in one locality, and turnover or β‐diversity corresponds to the average turnover between localities and the region. Location France. Methods We used the Rao quadratic entropy decomposition of diversity to calculate local, regional and turnover diversity for each of three diversity facets (taxonomic, phylogenetic and functional) in breeding bird communities of France. Spatial autoregressive models and partial regression analyses were used to analyse the relationships between each diversity facet and environmental gradients (climate and land use). Results Changes in γ‐diversity are driven by changes in both α‐ and β‐diversity. Low levels of human impact generally favour all three facets of regional diversity and heterogeneous landscapes usually harbour higher β‐diversity in the three facets of diversity, although functional and phylogenetic turnover show some relationships in the opposite direction. Spatial and environmental factors explain a large percentage of the variation in the three diversity facets (>60%), and this is especially true for phylogenetic diversity. In all cases, spatial structure plays a preponderant role in explaining diversity gradients, suggesting an important role for dispersal limitations in structuring diversity at different spatial scales. Main conclusions Our results generally support the idea that hypotheses that have previously been applied to taxonomic diversity, both at local and regional scales, can be extended to phylogenetic and functional diversity. Specifically, changes in regional diversity are the result of changes in both local and turnover diversity, some environmental conditions such as human development have a great impact on diversity levels, and heterogeneous landscapes tend to have higher diversity levels. Interestingly, differences between diversity facets could potentially provide further insights into how large‐ and small‐scale ecological processes interact at the onset of macroecological patterns.  相似文献   

7.
We ask whether rates of evolution in traits important for reproductive isolation vary across a latitudinal gradient, by quantifying evolutionary rates of two traits important for pre-mating isolation-avian syllable diversity and song length. We analyse over 2500 songs from 116 pairs of closely related New World passerine bird taxa to show that evolutionary rates for the two main groups of passerines-oscines and suboscines-doubled with latitude in both groups for song length. For syllable diversity, oscines (who transmit song culturally) evolved more than 20 times faster at high latitudes than in low latitudes, whereas suboscines (whose songs are innate in most species and who possess very simple song with few syllable types) show no clear latitudinal gradient in rate. Evolutionary rates in oscines and suboscines were similar at tropical latitudes for syllable complexity as well as for song length. These results suggest that evolutionary rates in traits important to reproductive isolation and speciation are influenced by latitude and have been fastest, not in the tropics where species diversity is highest, but towards the poles.  相似文献   

8.
Dispersal of organisms connects physical localities, but the strength of connection varies widely. Variability in the influence of dispersal can be predictable in sharply defined networks like river systems because some sections of the network are more isolated, leading to different balances of local (i.e. environmental filtering, species interactions) and regional (i.e. dispersal‐driven) processes in structuring communities. We examined the influence of spatial isolation on the relative contributions of α‐ and β‐diversity to regional (γ) diversity, and examined how that influence differed between common and rare species in stream macroinvertebrate communities. One explanation for rarity on a regional scale is that common species are habitat generalists while rare species are specialists. Therefore, common species should be influenced more by dispersal‐driven processes while rare species should be more influenced by local processes. We predicted that for rare taxa, β‐diversity should represent a higher fraction of γ‐diversity in isolated headwaters but that differences between rare and common taxa with regard to the contribution of β‐diversity to γ‐diversity should be less distinct in well‐connected mainstem habitats. To test these predictions, we used macroinvertebrate communities from 634 sites across 22 watersheds. Regardless of rarity, β‐ and γ‐diversity were higher in headwaters compared to mainstems. However, α‐diversity was similar regardless of isolation for rare assemblages. But contrary to our predictions, common assemblages of predators and herbivores did exhibit differences in α‐diversity between locations. Our predictions were strongly supported for two guilds of consumers, the detritivores and collectors, but less so for herbivores and predators. However, these results make sense considering differences in life histories between the groups. For detritivores and collectors, species turnover (β‐diversity) was higher in isolated regions in river networks, and rarity exacerbated this effect, resulting in higher regional diversity of rare species, supporting the general theory that rarity reflects habitat specialization.  相似文献   

9.
We reviewed published phylogenies and selected 111 phylogenetic studies representing mammals, birds, insects, and flowering plants. We then mapped the latitudinal range of all taxa to test the relative importance of the tropical conservatism, out of the tropics, and diversification rate hypotheses in generating latitudinal diversity gradients. Most clades originated in the tropics, with diversity peaking in the zone of origin. Transitions of lineages between latitudinal zones occurred at 16–22% of the tree nodes. The most common type of transition was range expansions of tropical lineages to encompass also temperate latitudes. Thus, adaptation to new climatic conditions may not represent a major obstacle for many clades. These results contradict predictions of the tropical conservatism hypothesis (i.e., few clades colonizing extratropical latitudes), but support the out‐of‐the‐tropics model (i.e., tropical originations and subsequent latitudinal range expansions). Our results suggest no difference in diversification between tropical and temperate sister lineages; thus, diversity of tropical clades was not explained by higher diversification rates in this zone. Moreover, lineages with latitudinal stasis diversified more compared to sister lineages entering a new latitudinal zone. This preserved preexisting diversity differences between latitudinal zones and can be considered a new mechanism for why diversity tends to peak in the zone of origin.  相似文献   

10.
The underlying drivers of β‐diversity along latitudinal gradients have been unclear. Previous studies have focused on β‐diversities calculated at a local scale and shed limited light on regional β‐diversity. We tested the much‐debated effects of range size vs. environmental filtering on the β‐gradient using data from the US Forest Inventory Analysis Program. We showed that the drivers of the β‐gradient were scale dependent. At the local scale species spatial patterns contributed little to the β‐gradient, whereas at the regional scale spatial patterns dominated the gradient and a U‐shape latitudinal relationship for the standardised β‐diversity deviation was revealed. The relationship can be explained by spatial variation in climate and soil texture, thus supporting the environmental filtering hypothesis. But it is inconsistent with Rapoport's rule about the effect of range size on β‐gradient. These results resolve the debate on whether species spatial distributions contribute to β‐gradient and attest the importance of environmental filtering in determining regional β‐diversity.  相似文献   

11.
Aim To investigate how reef fish trophic structure responds to latitudinal changes, using a simple model: the extensive Brazilian coast. Location Six Brazilian tropical and subtropical coral and rocky coastal reefs, and the oceanic island of Atol das Rocas, between latitudes 0° and 27° S. Methods Underwater visual census data collected by the authors (five locations) or obtained from the literature (two locations) were used to estimate the relative abundance of 123 fish species belonging to 33 reef‐associated families. Cryptic species were excluded from the analysis. Fishes were grouped in eight trophic categories: roving herbivores, territorial herbivores, mobile invertebrate feeders, sessile invertebrate feeders, omnivores, planktivores, piscivores and carnivores. After a series of detailed predictions based on phylogeny, physiological constraints and anthropogenic impacts was established, the community trophic structure was analysed along a latitudinal gradient and among coastal, mid‐shore and oceanic sites. Results The trophic structure of Brazilian reef fish assemblages clearly changed with latitude. Roving herbivores such as scarids and acanthurids were proportionally more abundant at low latitudes. The browsing herbivores kyphosids followed an opposite latitudinal pattern. The parrotfish genus Sparisoma, more plastic in its feeding habits than Scarus, presented wider distribution. The relative abundance of territorial herbivores did not decrease towards higher latitudes. Mobile invertebrate feeders were the most important (in low latitudes) or the second most important trophic guild (in high latitudes) at all coastal sites. Sessile invertebrate feeders did not show any clear latitudinal trend, despite an expected increase in abundance towards low latitudes. Omnivores dominated high latitude reefs (27° S) and planktivores the oceanic island Atol das Rocas. Piscivores and carnivores were proportionally better represented in high latitudes. Main conclusions Latitudinal patterns seem to be influenced by phylogeny, physiological constraints (mainly related to temperature), and also by anthropogenic impacts. Grazing scarids and acanthurids are largely restricted to tropical reefs and show an abrupt decline beyond 23° S. This does not reflect the amount of algae present, but probably temperature‐dependent physiological constraints. Other herbivores seem to overcome this through symbiotic microbial digestive processes (kyphosids), manipulating the structure of algal turfs or increasing animal protein from within the territory (pomacentrids). Omnivores dominate the southern sites Arraial do Cabo and Arvoredo, being more adapted to environment constraints related to seasonal and/or stochastic shifts. Large carnivores (including piscivores) extend farther into high‐latitude habitats, apparently not constrained by thermal thresholds that limit the herbivores. Overfishing and/or ornamental harvesting certainly has been modifying local fish communities, but could not be detected properly at the large‐scale patterns found in this study. The data presented put in evidence for the first time how reef fish trophic structure behave in the extensive south‐western Atlantic latitudinal gradient.  相似文献   

12.
Two of the major themes resulting from recent macroecological research are the central roles that body size and niche breadth may play as determinants of species geographical distribution. Unanswered questions, however, linger regarding how similarities in body size or niche breadth affect the allocation of α‐ and β‐diversity across spatial scales. Using data on moth diversity in the eastern deciduous forest of North America, we tested the predictions that smaller‐bodied and diet‐restricted species would have lower levels of α‐diversity within forest stands and greater β‐diversity at higher sampling scales compared to larger or more generalist species. Moths were sampled using a nested sampling design consisting of three hierarchical levels: 20 forest stands, 5 sites and 3 ecoregions. Body size for 492 species was estimated as mean forewing length, and diet breadth was assessed from the published literature. Moth species were then classified according to body size (small or large) or diet breadth (generalist or restricted), and partitioning was conducted on each group. Diversity partitions for large‐ and small‐bodied species yielded similar patterns. When observed diversity components differed from those derived from our null model, a consistent pattern was observed: α‐diversity was greater than expected, β‐diversity among forest stands was less than expected, and β‐diversity among sites and ecoregions was higher than expected. In contrast, diet‐restricted moths contributed significantly less to stand‐level α‐diversity than generalist feeders. Furthermore, specialists contributed to a greater proportion of β‐diversity across scales compared to generalist moths. Because absolute measures of β‐diversity among stands were greater for generalists than for restricted feeders, we suggest that regional β‐diversity of forest moths may be influenced by several possible factors: intraspecific aggregation of diet‐restricted species, local fluctuations in population size of eruptive generalists and small geographical distributions of generalist moths than predicted by the geographical extent of putative host plants  相似文献   

13.
Describing how ecological interactions change over space and time and how they are shaped by environmental conditions is crucial to understand and predict ecosystem trajectories. However, it requires having an appropriate framework to measure network diversity locally, regionally and between samples (α‐, γ‐ and β‐diversity). Here, we propose a unifying framework that builds on Hill numbers and accounts both for the probabilistic nature of biotic interactions and the abundances of species or groups. We emphasise the importance of analysing network diversity across different species aggregation levels (e.g. from species to trophic groups) to get a better understanding of network structure. We illustrate our framework with a simulation experiment and an empirical analysis using a global food‐web database. We discuss further usages of the framework and show how it responds to recent calls on comparing ecological networks and analysing their variation across environmental gradients and time.  相似文献   

14.
Abstract We examined broad scale patterns of diversity and distribution of lotic Chironomidae (Diptera) within the Wet Tropics bioregion of northern Queensland, Australia. Field surveys across broad latitudinal and altitudinal gradients within the Wet Tropics revealed a fauna of 87 species‐level taxa in 49 genera comprising three main elements: a small genuinely tropical fraction, and larger cosmopolitan and Gondwanan components. The latter group originated when Australia, as part of the ancient Gondwana supercontinent, was situated over Antarctic latitudes with a cooler, wetter climate than today. In the Wet Tropics, cool Gondwanan taxa occurred predominantly in upland and shaded lowland sites, but no species appeared narrowly temperature restricted, and there was no faunal zonation with altitude. Most chironomid species occurred at all latitudes within the Wet Tropics, with no evidence for an enduring effect of the historical rainforest contractions on current‐day distribution patterns. These findings contrast with those for aquatic faunas elsewhere in the world and for the terrestrial Wet Tropics fauna. We relate this to the generally broad environmental tolerances of Australian chironomids, and comment on why the latitudinal diversity gradient does not apply to the Australian chironomid fauna.  相似文献   

15.
甘肃鸡类物种多样性研究   总被引:3,自引:0,他引:3  
刘乃发 《动物学研究》1993,14(3):233-239
甘肃鸡类有19种,随纬度变化形成了物种多样性梯度。本文通过气候(年无霜天数、元月均温、年均温、7月均温和年降水量),海拔高差,纬度和植被类型多样性与各县鸡类多样性相关统计分析,揭示了7月均温,年均降水量,海拔高差和纬度是控制甘肃鸡类多样性的主要因素,而甘肃鸡类多样性与植被类型多样性无关。在降水量400—650mm和海拔高差1500—3500m的地带种类最多。一个地区物种的多少不仅取决于其离物种库的远近,还取决于这一地区环境空间异质性程度。  相似文献   

16.
Abstract. The spatial heterogeneity hypothesis predicts a positive relationship between habitat complexity and species diversity: the greater the heterogeneity of a habitat, the greater the number of species in that habitat. On a regional scale, this hypothesis has been proposed to explain the increases in species diversity from the poles to the tropics: the tropics are more diverse because they contain more habitats. On the local scale, the spatial heterogeneity hypothesis suggests that the tropics are more diverse because they contain more microhabitats. The positive relationship between habitat heterogeneity and species diversity, on the local scale, is well documented. In this paper, we test whether habitat heterogeneity on the local scale can explain the latitudinal gradient of species diversity on the regional scale. We determined the latitudinal gradient of species diversity of 305 species of North American grasshoppers using published distribution maps. We compared the slope of this multihabitat (regional-scale) gradient with the slope of a within-habitat (local-scale) gradient in the prairie grasslands. Our results show no significant difference between the slopes at the two scales. We tested the generality of our results by comparing multi- and within-habitat latitudinal gradients of species diversity for ants, scorpions and mammals using data from the literature. These results are in accordance with those from grasshoppers. We can therefore reject the local-scale spatial heterogeneity hypothesis as a mechanism explaining the regional-scale latitudinal gradient of species diversity. We discuss alternative mechanisms that produce this gradient.  相似文献   

17.
Landscape connectivity structure, specifically the dendritic network structure of rivers, is expected to influence community diversity dynamics by altering dispersal patterns, and subsequently the unfolding of species interactions. However, previous comparative and experimental work on dendritic metacommunities has studied diversity mostly from an equilibrium perspective. Here we investigated the effect of dendritic versus linear network structure on local (α‐diversity), among (β‐diversity) and total (γ‐diversity) temporal species community diversity dynamics. Using a combination of microcosm experiments, which allowed for active dispersal of 14 protists and a rotifer species, and numerical analyses, we demonstrate the general importance of spatial network configuration and basic life history tradeoffs as driving factors of different diversity patterns in linear and dendritic systems. We experimentally found that community diversity patterns were shaped by the interaction of dispersal within the networks and local species interactions. Specifically, α‐diversity remained higher in dendritic networks over time, especially at highly connected sites. β‐diversity was initially greater in linear networks, due to increased dispersal limitation, but became more similar to β‐diversity in dendritic networks over time. Comparing the experimental results with a neutral metacommunity model we found that dispersal and network connectivity alone may, to a large extent, explain α‐ and β‐diversity dynamics. However, additional mechanisms, such as variation in carrying capacity and competition–colonization tradeoffs, were needed in the model to capture the detailed temporal diversity dynamics of the experiments, such as a general decline in γ‐diversity and long‐term dynamics in α‐diversity.  相似文献   

18.
Plant spectral diversity – how plants differentially interact with solar radiation – is an integrator of plant chemical, structural, and taxonomic diversity that can be remotely sensed. We propose to measure spectral diversity as spectral variance, which allows the partitioning of the spectral diversity of a region, called spectral gamma (γ) diversity, into additive alpha (α; within communities) and beta (β; among communities) components. Our method calculates the contributions of individual bands or spectral features to spectral γ‐, β‐, and α‐diversity, as well as the contributions of individual plant communities to spectral diversity. We present two case studies illustrating how our approach can identify 'hotspots’ of spectral α‐diversity within a region, and discover spectrally unique areas that contribute strongly to β‐diversity. Partitioning spectral diversity and mapping its spatial components has many applications for conservation since high local diversity and distinctiveness in composition are two key criteria used to determine the ecological value of ecosystems.  相似文献   

19.
Abstract: Marine shelf diversity patterns correlate with macroecological features of basic importance that may play causal roles in macroevolution. We have investigated the global diversity pattern of living Bivalvia, which is dominated by the latitudinal diversity gradient (LDG), maintained by high tropical origination rates. Generic‐level lineages expand poleward, chiefly through speciation, so that species richness within provinces and globally is positively correlated with generic geographical ranges. A gradient in diversity accommodation progressively lowers both immigration and speciation rates in higher latitudes. The LDG correlates with seasonality of trophic resources but not with area; tropical provinces are not diverse because they are large but because they are tropical. A similar dynamic evidently underlays Jurassic and Carboniferous LDGs. Larval developmental modes correlate with the LDG and thus with resource seasonality, with tropical dominance of planktotrophs offset by increasing nonplanktotrophy to poleward. The acquisition of planktotrophy in several early Palaeozoic clades indicates a change in macroecological relationships during Cambrian and Ordovician radiations.  相似文献   

20.
Community assembly is determined by a combination of historical events and contemporary processes that are difficult to disentangle, but eco‐evolutionary mechanisms may be uncovered by the joint analysis of species and genetic diversity across multiple sites. Mountain streams across Europe harbour highly diverse macroinvertebrate communities whose composition and turnover (replacement of taxa) among sites and regions remain poorly known. We studied whole‐community biodiversity within and among six mountain regions along a latitudinal transect from Morocco to Scandinavia at three levels of taxonomic hierarchy: genus, species and haplotypes. Using DNA barcoding of four insect families (>3100 individuals, 118 species) across 62 streams, we found that measures of local and regional diversity and intraregional turnover generally declined slightly towards northern latitudes. However, at all hierarchical levels we found complete (haplotype) or high (species, genus) turnover among regions (and even among sites within regions), which counters the expectations of Pleistocene postglacial northward expansion from southern refugia. Species distributions were mostly correlated with environmental conditions, suggesting a strong role of lineage‐ or species‐specific traits in determining local and latitudinal community composition, lineage diversification and phylogenetic community structure (e.g., loss of Coleoptera, but not Ephemeroptera, at northern sites). High intraspecific genetic structure within regions, even in northernmost sites, reflects species‐specific dispersal and demographic histories and indicates postglacial migration from geographically scattered refugia, rather than from only southern areas. Overall, patterns were not strongly concordant across hierarchical levels, but consistent with the overriding influence of environmental factors determining community composition at the species and genus levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号