首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

To identify new enzymatic bottlenecks of l-tyrosine pathway for further improving the production of l-tyrosine and its derivatives.

Result

When ARO4 and ARO7 were deregulated by their feedback resistant derivatives in the host strains, the ARO2 and TYR1 genes, coding for chorismate synthase and prephenate dehydrogenase were further identified as new important rate-limiting steps. The yield of p-coumaric acid in the feedback-resistant strain overexpressing ARO2 or TYR1, was significantly increased from 6.4 to 16.2 and 15.3 mg l?1, respectively. Subsequently, we improved the strain by combinatorial engineering of pathway genes increasing the yield of p-coumaric acid by 12.5-fold (from 1.7 to 21.3 mg l?1) compared with the wild-type strain. Batch cultivations revealed that p-coumaric acid production was correlated with cell growth, and the formation of by-product acetate of the best producer NK-M6 increased to 31.1 mM whereas only 19.1 mM acetate was accumulated by the wild-type strain.

Conclusion

Combinatorial metabolic engineering provides a new strategy for further improvement of l-tyrosine or other metabolic biosynthesis pathways in S. cerevisiae.
  相似文献   

2.

Objectives

To find a novel host for the production of 4-vinylphenol (4VPh) by screening Streptomyces species.

Results

The conversion of p-coumaric acid (pHCA) to 4VPh in Streptomyces mobaraense was evaluated using a medium containing pHCA. S. mobaraense readily assimilated pHCA after 24 h of cultivation to produce 4VPh. A phenolic acid decarboxylase, derived from S. mobaraense (SmPAD), was purified following heterologous expression in Escherichia coli. SmPAD was evaluated under various conditions, and the enzyme’s kcat/Km value was 0.54 mM ?1 s?1. Using intergenetic conjugation, a gene from Rhodobacter sphaeroides encoding a tyrosine ammonia lyase, which catalyzes the conversion of l-tyrosine to p-coumaric acid, was introduced into S. mobaraense. The resulting S. mobaraense transformant produced 273 mg 4VPh l?1 from 10 g glucose l?1.

Conclusion

A novel strain suitable for the production of 4VPh and potentially other aromatic compounds was isolated.
  相似文献   

3.
4.
Cinnamate 4-hydroxylase (C4H) catalyzes the regioselective para-hydroxylation of trans-cinnamic acid to form p-coumaric acid, the biosynthetic precursor of phenylpropanoid-based polymers. These biopolymers play an essential role in plant structure construction, development, and defense. Herein the open reading frame of CaC4H2 was cloned from Camptotheca acuminata, a deciduous camptothecin-producing tree native to China. CaC4H2 showed 94 % amino acid residues identity with those of reported CaC4H, which suggested that CaC4H2 is an isoform of C4Hs presented in C. acuminata. The intact CaC4H2 was overexpressed in Escherichia coli with its functional reaction partner cytochrome P450 reductase, CamCPR, which transfers electrons from NADPH to CaC4H2 to support the catalytic hydroxylation activity of CaC4H2. Upon incubating trans-cinnamic acid with the recombinant CaC4H2 and tCamCPR, the formation of p-coumaric acid was confirmed by the HPLC–DAD and UPLC-DAD-ESIMS analyses, which indicated the catalytic hydroxylation activity of CaC4H2. Quantitative real-time PCR analyses showed that CaC4H2 was expressed in all tissues of C. acuminata seedlings, which is consistent with the well-known conclusion that the C4H-catalyzed hydroxylation reaction is a key step within the biosynthetic pathway of phenylpropanoids. The functional characterization of CaC4H2 will be useful for molecular breeding and sustainable utilization and protection of the camptothecin-producing plant.  相似文献   

5.
Volatile phenols are aromatic compounds produced by some yeasts of the genus Brettanomyces as defense against the toxicity of hydroxycinnamic acids (p-coumaric acid, ferulic acid and caffeic acid). The origin of these compounds in winemaking involves the sequential action of two enzymes: coumarate decarboxylase and vinylphenol reductase. The first one converts hydroxycinnamic acids into hydroxystyrenes, which are then reduced to ethyl derivatives by vinylphenol reductase. Volatile phenols derived from p-coumaric acid (4-vinylphenol and 4-ethylphenol) have been described as the major contributors to self-defeating aromas associated with stable, gouache, wet mouse, etc., which generates large economic losses in the wine industry. The gene responsible for the production of 4-vinylphenol from p-coumaric acid has been identified as PAD1, which encodes a phenylacrylic acid decarboxylase. PAD1 has been described for many species, among them Candida albicans, Candida dubliniensis, Debaryomyces hansenii and Pichia anomala. In Brettanomyces bruxellensis LAMAP2480, a 666 bp reading frame (DbPAD) encodes a coumarate decarboxylase. Recent studies have reported the existence of a new reading frame belonging to DbPAD called DbPAD2 of 531 bp, which could encode a protein with similar enzymatic activity to PAD1. The present study confirmed that the transformation of Saccharomyces cerevisiae strain BY4722 with reading frame DbPAD2 under the control of the B. bruxellensis ACT1 promoter, encodes an enzyme with coumarate decarboxylase activity. This work has provided deeper insight into the origin of aroma defects in wine due to contamination by Brettanomyces spp.  相似文献   

6.
Simple and convergent synthesis of a tetra- and a trisaccharide portions of an antitumor compound Julibroside J28, isolated from Albizia julibrissin, that showed significant in vitro antitumor activity against HeLa, Bel-7402 and PC-3M-1E8 cancer cell lines is reported. The tetrasaccharide has been synthesized as its p-methoxyphenyl glycoside starting from commercially available d-glucose, l-rhamnose and l-arabinose. The trisaccharide part has been synthesized from commercially available N-acetyl d-glucosamine, d-fucose and d-xylose using simple protecting group manipulations. Sulfuric acid immobilized on silica has been used successfully as a Brönsted acid catalyst for the crucial glycosylation steps.  相似文献   

7.
Expression of acid ectophosphatase by Enterobacter asburiae, isolated from Cattleya walkeriana (Orchidaceae) roots and identified by the 16S rRNA gene sequencing analysis, was strictly regulated by phosphorus ions, with its optimal activity being observed at an inorganic phosphate concentration of 7 mM. At the optimum pH 3.5, intact cells released p-nitrophenol at a rate of 350.76 ± 13.53 nmol of p-nitrophenolate (pNP)/min/108 cells. The membrane-bound enzyme was obtained by centrifugation at 100,000 × g for 1 h at 4°C. p-Nitrophenylphosphate (pNPP) hydrolysis by the enzyme follows “Michaelis-Menten” kinetics with V = 61.2 U/mg and K0.5 = 60 μM, while ATP hydrolysis showed V = 19.7 U/mg, K0.5 = 110 μM, and nH = 1.6 and pyrophosphate hydrolysis showed V = 29.7 U/mg, K0.5 = 84 μM, and nH = 2.3. Arsenate and phosphate were competitive inhibitors with Ki = 0.6 mM and Ki = 1.8 mM, respectively. p-Nitrophenyl phosphatase (pNPPase) activity was inhibited by vanadate, while p-hydroxymercuribenzoate, EDTA, calcium, copper, and cobalt had no inhibitory effects. Magnesium ions were stimulatory (K0.5 = 2.2 mM and nH = 0.5). Production of an acid ectophosphatase can be a mechanism for the solubilization of mineral phosphates by microorganisms such as Enterobacter asburiae that are versatile in the solubilization of insoluble minerals, which, in turn, increases the availability of nutrients for plants, particularly in soils that are poor in phosphorus.  相似文献   

8.
During our search for novel prenyltransferases, a putative gene ATEG_04218 from Aspergillus terreus raised our attention and was therefore amplified from strain DSM 1958 and expressed in Escherichia coli. Biochemical investigations with the purified recombinant protein and different aromatic substrates in the presence of dimethylallyl diphosphate revealed the acceptance of all the tested tryptophan-containing cyclic dipeptides. Structure elucidation of the main enzyme products by NMR and MS analyses confirmed the attachment of the prenyl moiety to C-7 of the indole ring, proving the identification of a cyclic dipeptide C7-prenyltransferase (CdpC7PT). For some substrates, reversely C3- or N1-prenylated derivatives were identified as minor products. In comparison to the known tryptophan-containing cyclic dipeptide C7-prenyltransferase CTrpPT from Aspergillus oryzae, CdpC7PT showed a much higher substrate flexibility. It also accepted cyclo-l-Tyr-l-Tyr as substrate and catalyzed an O-prenylation at the tyrosyl residue, providing the first example from the dimethylallyltryptophan synthase (DMATS) superfamily with an O-prenyltransferase activity towards dipeptides. Furthermore, products with both C7-prenyl at tryptophanyl and O-prenyl at tyrosyl residue were detected in the reaction mixture of cyclo-l-Trp-l-Tyr. Determination of the kinetic parameters proved that (S)-benzodiazepinedione consisting of a tryptophanyl and an anthranilyl moiety was accepted as the best substrate with a K M value of 204.1 μM and a turnover number of 0.125 s?1. Cyclo-l-Tyr-l-Tyr was accepted with a K M value of 1,411.3 μM and a turnover number of 0.012 s?1.  相似文献   

9.
Functional and structural characterizations of pyridoxal 5′-phosphate-independent aspartate racemase of the acidothermophilic archaeon Picrophilus torridus were performed. Picrophilus aspartate racemase exhibited high substrate specificity to aspartic acid. The optimal reaction temperature was 60 °C, which is almost the same as the optimal growth temperature. Reflecting the low pH in the cytosol, the optimal reaction pH of Picrophilus aspartate racemase was approximately 5.5. However, the activity at the putative cytosolic pH of 4.6 was approximately 6 times lower than that at the optimal pH of 5.5. The crystal structure of Picrophilus aspartate racemase was almost the same as that of other pyridoxal 5′-phosphate -independent aspartate racemases. In two molecules of the dimer, one molecule contained a tartaric acid molecule in the catalytic site; the structure of the other molecule was relatively flexible. Finally, we examined the intracellular existence of d-amino acids. Unexpectedly, the proportion of d-aspartate to total aspartate was not very high. In contrast, both d-proline and d-alanine were observed. Because Picrophilus aspartate racemase is highly specific to aspartate, other amino acid racemases might exist in Picrophilus torridus.  相似文献   

10.
An extracellular feruloyl esterase from the culture filtrates of the isolated fungus Alternaria tenuissima was successfully purified to apparent homogeneity by anion-exchange and size-exclusion chromatography. Peptide fragments of purified enzyme (designated as AltFAE; molecular weight of 30.3 kDa determined by SDS-PAGE) were identified by mass spectrometry using a NanoLC-ESI-MS/MS system. Michaelis-Menten constants (KM) and catalytic efficiencies (kcat/KM) were determined for typical substrates of feruloyl esterase, and the lowest KM of 50.6 μM (i.e., the highest affinity) and the highest kcat/KM (3.1 × 105 s—1 M–1) were observed for methyl p-coumarate and methyl ferulate, respectively. Not least, AltFAE catalyzed conversion of lignocellulosic material (e.g. wood meal) to release hydroxycinnamic products, i.e. ferulic- and p-coumaric acids.  相似文献   

11.
α-Amino-ε-caprolactam (ACL) racemizing activity was detected in a putative dialkylglycine decarboxylase (EC 4.1.1.64) from Citreicella sp. SE45. The encoding gene of the enzyme was cloned and transformed in Escherichia coli BL21 (DE3). The molecular mass of the enzyme was shown to be 47.4 kDa on SDS–polyacrylamide gel electrophoresis. The enzymatic properties including pH and thermal optimum and stabilities were determined. This enzyme acted on a broad range of amino acid amides, particularly unbranched amino acid amides including l-alanine amide and l-serine amide with a specific activity of 17.5 and 21.6 U/mg, respectively. The K m and V max values for d- and l-ACL were 5.3 and 2.17 mM, and 769 and 558 μmol/min.mg protein, respectively. Moreover, the turn over number (K cat) and catalytic efficiency (K cat/K m ) of purified ACL racemase from Citreicella sp. SE45 using l-ACL as a substrate were 465 S?1 and 214 S?1mM?1, respectively. The new ACL racemase from Citreicella sp. SE45 has a potential to be used as the biocatalytic application.  相似文献   

12.
l-Malic acid is an important component of a vast array of food additives, antioxidants, disincrustants, pharmaceuticals, and cosmetics. Here, we presented a pathway optimization strategy and a transporter modification approach to reconstruct the l-malic acid biosynthesis pathway and transport system, respectively. First, pyruvate carboxylase (pyc) and malate dehydrogenase (mdh) from Aspergillus flavus and Rhizopus oryzae were combinatorially overexpressed to construct the reductive tricarboxylic acid (rTCA) pathway for l-malic acid biosynthesis. Second, the l-malic acid transporter (Spmae) from Schizosaccharomyces pombe was engineered by removing the ubiquitination motification to enhance the l-malic acid efflux system. Finally, the l-malic acid pathway was optimized by controlling gene expression levels, and the final l-malic acid concentration, yield, and productivity were up to 30.25 g L?1, 0.30 g g?1, and 0.32 g L?1 h?1 in the resulting strain W4209 with CaCO3 as a neutralizing agent, respectively. In addition, these corresponding parameters of pyruvic acid remained at 30.75 g L?1, 0.31 g g?1, and 0.32 g L?1 h?1, respectively. The metabolic engineering strategy used here will be useful for efficient production of l-malic acid and other chemicals.  相似文献   

13.
Mulberroside A, a glycosylated stilbene, was isolated and identified from the ethanol extract of the roots of Morus alba. Oxyresveratrol, the aglycone of mulberroside A, was produced by enzymatic hydrolysis of mulberroside A using the commercial enzyme Pectinex®. Mulberroside A and oxyresveratrol showed inhibitory activity against mushroom tyrosinase with an IC50 of 53.6 and 0.49 μM, respectively. The tyrosinase inhibitory activity of oxyresveratrol was thus approximately 110-fold higher than that of mulberroside A. Inhibition kinetics showed mulberroside A to be a competitive inhibitor of mushroom tyrosinase with l-tyrosine and l-DOPA as substrate. Oxyresveratrol showed mixed inhibition and noncompetitive inhibition against l-tyrosine and l-DOPA, respectively, as substrate. The results indicate that the tyrosinase inhibitory activity of mulberroside A was greatly enhanced by the bioconversion process.  相似文献   

14.
Plants synthesize various phenol amides. Among them, hydroxycinnamoyl (HC) tryptamines and serotonins exhibit antioxidant, anti-inflammatory, and anti-atherogenic activities. We synthesized HC–tryptamines and HC–serotonin from several HCs and either tryptamine or serotonin using Escherichia coli harboring the 4CL (4-coumaroyl CoA ligase) and CaHCTT [hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase] genes. E. coli was engineered to synthesize N-cinnamoyl tryptamine from glucose. TDC (tryptophan decarboxylase) and PAL (phenylalanine ammonia lyase) along with 4CL and CaHCTT were introduced into E. coli and the phenylalanine biosynthetic pathway of E. coli was engineered. Using this strategy, approximately 110.6 mg/L of N-cinnamoyl tryptamine was synthesized. By feeding 100 μM serotonin into the E. coli culture, which could induce the synthesis of cinnamic acid or p-coumaric acid, more than 99 μM of N-cinnamoyl serotonin and N-(p-coumaroyl) serotonin were synthesized.  相似文献   

15.
Lactuca indica L. (Compositae) has been used as a folk medicine for the treatment of intestinal disorders. Phytochemical constituents of L. indica were investigated, and their antioxidant and α-glucosidase inhibitory activities thoroughly studied. A phytochemical investigation of the aerial parts of L. indica resulted in the isolation and identification of eight phenolic compounds. The structures of the compounds were elucidated on the basis of spectroscopic evidence as apigenin, luteolin, isoquercitrin, chlorogenic acid, protocatechuic acid, p-hydroxymethyl benzoic acid, trans-cinnamic acid, and p-coumaric acid. Luteolin, isoquercitrin, chlorogenic acid, and p-hydroxymethyl benzoic acid showed antioxidant activities with IC50 values in the range of 35.5–52.5 μM. In addition, apigenin and luteolin showed α-glucosidase inhibition activities with IC50 values of 96.4 and 100.7 μM, respectively. These findings strongly suggest that L. indica is a potential source of natural antioxidants and/or anti-diabetic agents in pharmaceutical and health functional foods.  相似文献   

16.
17.
18.
19.
Escherichia coli FB-04(pta1), a recombinant l-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (l-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key l-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)ΔpykF, showed a slightly higher l-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, l-tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)ΔpykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)ΔpykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)ΔpykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g?1 during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.  相似文献   

20.
Previously we have characterized a threonine dehydratase mutant TDF383V (encoded by ilvA1) and an acetohydroxy acid synthase mutant AHASP176S, D426E, L575W (encoded by ilvBN1) in Corynebacterium glutamicum IWJ001, one of the best l-isoleucine producing strains. Here, we further characterized an aspartate kinase mutant AKA279T (encoded by lysC1) and a homoserine dehydrogenase mutant HDG378S (encoded by hom1) in IWJ001, and analyzed the consequences of all these mutant enzymes on amino acids production in the wild type background. In vitro enzyme tests confirmed that AKA279T is completely resistant to feed-back inhibition by l-threonine and l-lysine, and that HDG378S is partially resistant to l-threonine with the half maximal inhibitory concentration between 12 and 14 mM. In C. glutamicum ATCC13869, expressing lysC1 alone led to exclusive l-lysine accumulation, co-expressing hom1 and thrB1 with lysC1 shifted partial carbon flux from l-lysine (decreased by 50.1 %) to l-threonine (4.85 g/L) with minor l-isoleucine and no l-homoserine accumulation, further co-expressing ilvA1 completely depleted l-threonine and strongly shifted carbon flux from l-lysine (decreased by 83.0 %) to l-isoleucine (3.53 g/L). The results demonstrated the strongly feed-back resistant TDF383V might be the main driving force for l-isoleucine over-synthesis in this case, and the partially feed-back resistant HDG378S might prevent the accumulation of toxic intermediates. Information exploited from such mutation-bred production strain would be useful for metabolic engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号