首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The partition behaviour of cutinase on poly(ethylene glycol) (PEG)–hydroxypropyl starch aqueous two-phase systems was characterized. The effect of molecular mass of PEG, the pH of the system and tie-line length on cutinase partition coefficient and cutinase yield to the top phase was investigated for systems prepared with a purified hydroxypropyl starch (Reppal PES 100) and a crude one (HPS). The effect of the presence of different salts, such as sodium chloride, sodium sulphate and ammonium sulphate, on cutinase partition was also studied. The results lead to the conclusion that aqueous two-phase systems composed of PEG and hydroxypropyl starch are not efficient in the purification of cutinase. In the majority of cases, the partition coefficients were very close to 1, with pH being the factor which affects most cutinase partition. Partition coefficients were significantly improved when salts were added to the systems. For PEG 4000–Reppal PES 100 [at pH 4.0; 0.5 M (NH4)2SO4], the partition coefficient for cutinase was 3.7, while a value of 12 was obtained for PEG 4000–HPS (at pH 4.0; 1 M NaCl). An isoelectric point (pI) of 7.8 was confirmed for cutinase by constructing a cross partition graphic from the results obtained in the experiments with different salts.  相似文献   

2.
Antimicrobial peptide P34 is a promising biopreservative for utilization in the food industry. In this work, aqueous biphasic systems (ABS) and aqueous biphasic micellar systems (ABMS) were studied as prestep for purification of peptide P34. The ABS was prepared with polyethylene glycol (PEG) and inorganic salts and the ABMS with Triton X-114 was chosen as the phase-forming surfactant. Results indicate that peptide P34 partitions preferentially to PEG-rich phase and extraction with ammonium sulfate [(NH4)2SO4], yielding a 75% recovery of the antimicrobial activity, specific activity of 1,530 antimicrobial units per mg of protein, and purification fold of 2.48. Protein partition coefficient and partition coefficient for the biological activity with (NH4)2SO4 system were 0.48 and 64, respectively. Addition of sodium chloride did not affect recovery, but decreased protein amount in the PEG-rich phase, indicating a higher partition of biomolecules. ABMS did not yield good recovery of antimicrobial activity. Purification fold using PEG–(NH4)2SO4 and 1.0?mol l?1 sodium chloride was twice higher than that obtained by conventional protocol, indicating a successful utilization of ABS as a step for purification of peptide P34.  相似文献   

3.
The partitioning behaviour of endo-polygalacturonase (endo-PG) and total protein from a clarified Kluyveromyces marxianus fermentation broth in polyethylene glycol (PEG)-ammonium sulfate and PEG-potassium phosphate (pH=7) aqueous two-phase systems was experimentally investigated. Both the enzyme and total protein partitioned in the bottom phase for these two kinds of systems. The enzyme partitioning coefficient can be lower than 0.01 in PEG8000-(NH4)2SO4 ATPS with a large phase volume ratio and a moderate tie-line length, which implies the possibility of concentration operation using aqueous two phase partitioning. An ion-exchange separation of high purification efficiency was applied to analyze the clarified and dialyzed fermentation broth. A total purification factor of only 2.3 was obtained, which indicated the high enzyme protein content in the total protein of the fermentation broth. Consequently, the main purpose for separating endo-PG is concentration rather than purification. A separation scheme using an aqueous two-phase extraction process with polymer recycling and a dialysis was proposed to recover endo-PG from the fermentation supernatant of K. marxianus for commercial purpose. A high enzyme recovery up to 95% and a concentration factor of 5 to 8 with a purification factor of about 1.25 were obtained using the single aqueous two-phase extraction process. More than 95% polymer recycled will not affect the enzyme recovery and purification factor. Dialysis was used mainly to remove salts in the bottom phase. The dialysis step has no enzyme loss and can further remove small bulk proteins. The total purification factor for the scheme is about 1.7.  相似文献   

4.
《Process Biochemistry》2007,42(9):1296-1301
Recombinant Bacillus sphaericus phenylalanine dehydrogenase (PheDH) partitioning was studied in polyethylene glycol (PEG) and ammonium sulfate aqueous two-phase systems (ATPS). The objectives of this work were to investigate influences; varying the molecular mass and concentration of PEG, pH, phase volume ratio (VR), tie-line length (TLL) and concentration of (NH4)2SO4 on the partition behavior of PheDH. It was revealed that the partitioning was not affected by VR, while PEG molecular mass and concentration and (NH4)2SO4 concentration had significant effects on enzyme partitioning. Longer TLL and higher pH resulted in better partitioning into the top phase. Under the most favorable partition conditions with 8.5% (w/w) PEG-6000, 17.5% (w/w) (NH4)2SO4 and VR = 0.25 at pH 8.0, partition coefficient (KE), recovery (R%), yield (Y%) and TLL were achieved 58.7%, 135%, 94.42% and 39.89% (w/w), respectively. Overall, the promising results obtained in this research indicated that the ATPS partitioning can be provided an efficient and powerful tool for recovery and purification of recombinant PheDH.  相似文献   

5.
Pretreatment of biomass with dilute H2SO4 results in residual acid which is neutralized with alkalis such as Ca(OH)2, NaOH and NH4OH. The salt produced after neutralization has an effect on the fermentation of Pichia stipitis. Synthetic media of xylose (60 g total sugar/l) was fermented to ethanol in the presence and absence of the salts using P. stipitis CBS 6054. CaSO4 enhanced growth and xylitol production, but produced the lowest ethanol concentration and yield after 140 h. Na2SO4 inhibited xylitol production, slightly enhanced growth towards the end of fermentation but had no significant effect on xylose consumption and ethanol concentration. (NH4)2SO4 inhibited growth, had no effect on xylitol production, and enhanced xylose consumption and ethanol production.  相似文献   

6.
Product inhibition is a barrier for enzymatic conversion of cellulose into reducing sugar in single aqueous phase. In addition, the difficulty in the recovery of cellulase also leads to high cost for the enzymatic hydrolysis of cellulose. In this study, enzymatic degradation of cellulose was carried out in pH–pH recyclable aqueous two-phase systems (ATPS) composed by copolymers poly (AA-co-DMAEMA-co-BMA) (abbreviated PADB3.8) and poly (MAA-co-DMAEMA-co-BMA) (abbreviated PMDB). In the systems, cellulase was immobilized on pH-response copolymer PMDB by using 1-Ethyl-3-(3-dimethyllaminopropyl)-carbodiimide hydrochloride (EDC) as cross-linker. Optimized partition coefficient of product in the systems was 2.45, in the presence of 40 mM (NH4)2SO4. Insoluble substrate and immobilized enzyme were biased to bottom phase, while the product was partitioned to top phase. Microcrystalline cellulose was hydrolyzed into reducing sugar, and the product entered into top phase. The yield of saccharification in ATPS could reach 70.57% at the initial substrate concentration of 0.5% (w/v), and the value was 9.3% higher than that in the single aqueous phase. Saccharification yield could reach 66.15% after immobilized cellulase was recycled five times in ATPS.  相似文献   

7.
Thermostable a-amylase with temperature optimum at 80 °C, molecular mass 58 kDa and pI point 6.9 was purified from a catabolite resistant Bacillus licheniformis strain. The enzyme was sensitive to inhibition by metal ions and N-bromosuccinimide. The partition behaviour of this enzyme in aqueous two-phase systems (ATPS) of the polymer-polymer-water type was investigated and some effects of type, molecular weight and concentration of phase components were studied. Up to 100% retention in the bottom phase of polyethylene glycol 10,000—20,000/dextran 200 system was reached. Best partition conditions were obtained in PEG 10,000—20,000/polyvinyl alcohol 200 systems, where the partition coefficient K increased 750 times to 7.5. Simultaneous production and purification of a-amylase and serine proteinase in PEG-polymer-water ATPS were examined. In the system PEG 6,000/ficoll, up to 90% of the amylase was retained in the bottom phase, whereas about 95% of the total protein (K = 22.8) and 60—75% of the proteinase were in the top phase. Similar separation of the enzymes from laboratory supernatant was obtained in system PEG/Na2SO4.  相似文献   

8.
《Process Biochemistry》2010,45(7):1163-1167
The kinetically controlled synthesis of cephalexin in aqueous two-phase systems was studied, using immobilized penicillin acylase, 7-amino 3-desacetoxycephalosporanic acid as nucleophile and phenylglycine methyl ester as acyl donor. The organic phases used were 80% (v/v) polyethyleneglycol 400 and 600 and the aqueous phase was 2.5 M (NH4)2SO4. 7-amino 3-desacetoxycephalosporanic acid and cephalexin partition coefficients were determined at pH 7.4 and 7.8, at 14 °C and 20 °C. Highest partition coefficient for cephalexin was obtained for polyethyleneglycol 400–(NH4)2SO4 at pH 7.4 and 20 °C, while the lowest partition coefficient for 7-amino desacetoxycephalosporanic acid was obtained in the same system at pH 7.8 and 14 °C. No significant effect of pH was observed on conversion yield and productivity of cephalexin synthesis; however, higher values were obtained with polyethyleneglycol 400 as organic phase. Higher conversion yields with both biphasic systems were obtained at the lowest temperature, where product hydrolysis was lower; volumetric productivity was higher for the fully aqueous medium (control), being higher at 20 °C. All parameters of synthesis were improved at higher substrates concentrations, obtaining conversion yields of 78.2% and 65.4%, with 60 mM 7-amino desacetoxycephalosporanic acid for the polyethyleneglycol 400–(NH4)2SO4 system and the control, respectively.  相似文献   

9.
The firefly luciferase has been extensively used for sensitive detection of bacteria, gene expression and environmental toxins (biosensors). The aim of the present study was to design a simple and more efficient method for the purification and concentration of luciferase using aqueous two-phase extraction (ATPE). Downstream processing of luciferase from North American Firefly Photinus pyralis was carried out, for the first time, using polymer/salt aqueous two phase system (ATPS) at 4 °C. The enzyme was observed to preferentially partition to the polyethylene glycol (PEG) rich top phase. The best results of purification (13.69 fold) and enzyme activity recovery (118.34%) were observed in the system containing 4.0% (w/w) PEG (1500) and 20.5% (w/w) (NH4)2SO4 with a phase volume ratio of 0.21.  相似文献   

10.
Aqueous two-phase systems (ATPS) formed by polymer and salt have been utilized to enrich the desired biomolecule into one of the phase with higher yield and purity. The eco-friendly, biodegradable poly ethylene glycol (PEG) and different citrate salts were chosen as ATPS phase components to investigate the partitioning behavior of α-lactalbumin (α-La). System factors and process parameters such as type and concentration of salt, molecular weight and concentration of PEG, pH, temperature and the effect of additives were studied and the results are discussed in detail. PEG 1000–tri-potassium citrate system yields high partition coefficient of 20 with a better yield of 98 % in the top phase. The addition of NaCl as an additive and acidic pH lowers the yield of α-La in the top phase. Influence of phase volume ratio (V r) on partitioning was studied and found that the partition coefficient remains almost constant along the tie line. High yield was achieved at a V r of 3.5 at the tie line length of 50.63 (%, w/w).  相似文献   

11.
To relieve lactic acid inhibition, an aqueous two-phase system (ATPS) was used to grow Lactococcus lactis. Its composition was 11% (w/v) PEG 20000/3.5% (w/v) MgSO4 7H2O. In this ATPS medium, the cells were completely partitioned in the bottom phase, and lactic acid had the biggest partition coefficient of the eight ATPS media tested. The cell biomass in this medium was 0.64 mg ml–1, only 60% of that of the control medium, but nisin production (803 IU ml–1) was enhanced by 33%. The increase in nisin was explained as a result of extraction of lactic acid from the bottom phase to the top one. The changes of tie-line length and phase volume ratio for the identical tie line could affect cell growth and nisin accumulation.  相似文献   

12.
Full geometric optimization of endo-tricyclo[3.2.1.02,4]oct-6-ene (endo-TCO) by ab initio and DFT methods allowed us to investigate the structure of the molecule. The double bond is endo-pyramidalized and its two faces are no longer found to be equivalent. The exo face of the double bond has regions with far more electron density (qi,HOMO) and more negative electrostatic potential. The endo-TCO-Br2 system was investigated at the B3LYP/6-311+G** level and the endo-TCO···Br2(exo) molecular complex was found to be relatively more stable than the endo-TCO···Br2(endo) complex. The cationic intermediates of the reaction were studied by ab initio and DFT methods. The bridged exo-bromonium cation(I) is relatively more stable than the endo-bromonium cation(II). An absolute exo-facial selectivity should be observed in the addition reaction of Br2 to endo-TCO, which is caused by steric and electronic factors. The nonclassical rearranged cation IV was found to be the most stable ion among the cationic intermediates and the ionic addition occurs via the formation of this cation. The mechanism of the addition reaction is also discussed.  相似文献   

13.
Salt‐enhanced cultivation as a morphology engineering tool for the filamentous actinomycete Actinomadura namibiensis was evaluated in 500‐mL shaking flasks (working volume 100 mL) with the aim of increasing the concentration of the pharmaceutically interesting peptide labyrinthopeptin A1. Among the inorganic salts added to a complex production medium, the addition of (NH4)2SO4 led to the highest amount of labyrinthopeptin A1 production. By using 50 mM (NH4)2SO4, the labyrinthopeptin A1 concentration increased up to sevenfold compared to the non‐supplemented control, resulting in 325 mg L?1 labyrinthopeptin A1 after 10 days of cultivation. The performance of other ammonium‐ and sulfate‐containing salts (e.g., NH4Cl, K2SO4) was much lower than the performance of (NH4)2SO4. A positive correlation between the uptake of glycerol as one of the main carbon sources and nongrowth‐associated labyrinthopeptin productivity was found. The change in the cell morphology of A. namibiensis in conjunction with increased osmolality by the addition of 50 mM (NH4)2SO4, was quantified by image analysis. A. namibiensis always developed a heterogeneous morphology with pellets and loose mycelia present simultaneously. In contrast to the non‐supplemented control, the morphology of (NH4)2SO4‐supplemented cultures was characterized by smaller and circular pellets that were more stable against disintegration in the stationary production phase.  相似文献   

14.
Wang H  Dong Y  Xiu ZL 《Biotechnology letters》2008,30(12):2079-2084
Microwave-assisted, aqueous two-phase extraction was investigated to obtain effective constituents, including piceid, resveratrol and emodin in Polygonum cuspidatum. An aqueous two-phase system consisting of 25% (w/w) ethanol 21% (w/w) (NH4)2SO4 gave equal yields of piceid, and 1.1- and 1.9-times higher yields of resveratrol and emodin, respectively, than that achieved by microwave-assisted extraction and heat reflux extraction. Three-separate operations, extraction, clarification and concentration, are hereby integrated into a single step to get higher yields at lower cost. This is therefore a potentially useful method for the extraction and purification of target products.  相似文献   

15.
The partitioning of vancomycin in polyethylene glycol (PEG)-dextran and PEG-phosphate aqueous two-phase systems was studied at different pHs, at varying concentrations of neutral salts, and with an affinity ligand attached to methoxy polyethylene glycol (MPEG). Vancomycin is found to partition preferentially into the PEG-rich top phase, and its partition coefficient increases nearly exponentially with the addition of water structure-making salts, such as sodium sulfate and sodium chloride, but is independent of sodium phosphate concentration. In the PEG-dextran system the vancomycin partition coefficient increases 3-fold in acidic and neutral solutions, while in the PEG-phosphate system it increases about 30-fold on the addition of the same amount of sodium chloride (1. 5 mol/kg). In basic solution, above its isoelectric point, the vancomycin partition coefficient increases slightly with NaCI concentration in the PEG-dextran system. We also examined the use of the dipeptide D-ala-D-ala as an affinity ligand on MPEG to extract vancomycin into the PEG-rich phase. The vancomycin partition coefficient increased almost 7-fold upon adding the MPEG-ligand in an amount equal to approximately 3% of the total PEG in the system. Finally, fractionation of the polydisperse phase-forming polymers in the two-phase PEG-dextran system was observed. The effect of this polymer fractionation on the partition coefficient of vancomycin is discussed.  相似文献   

16.
Influence of different nitrogen salts at electrical conductivity levels (EC2, 4 and 8?mmhos/cm) on tomato and root-knot nematode (Meloidogyne javanica) and their interactions was evaluated under field conditions. It was found that both diammonium phosphate ((NH4)2HPO4) and ammonium sulphate ((NH4)2SO4) were more effective than ammonium chloride (NH4Cl) in causing an obvious suppression of M. javanica infection on tomato through reducing root galling and nematode reproduction and improving tomato growth and yield and their suppressive effect was similar to that of oxamyl or ethoprophos. At higher ECs, the tested nitrogen salts did not greatly affect pH, EC and salinity of rhizospheric soil except NH4Cl at EC8 that caused higher EC and salinity over the untreated control which makes NH4Cl less suitable candidate. Therefore, the use of (NH4)2HPO4 and (NH4)2SO4 alone or in combination with other control measures could control M. javanica and improve the growth and yield of tomato under field conditions.  相似文献   

17.
Gündüz U 《Bioseparation》2000,9(5):277-281
Partitioning of proteins in aqueous two-phase systems has been shown to provide a powerful method for separating and purifying mixtures of biomolecules by extraction. These systems are composed of aqueous solutions of either two water-soluble polymers, usually polyethylene glycol (PEG) and dextran (Dx), or a polymer and a salt, usually PEG and phosphate or sulfate. There are many factors which influence the partition coefficient K, the ratio of biomolecule concentration in the top phase to that in the bottom phase, in aqueous two-phase systems. The value of the partition coefficient relies on the physico-chemical properties of the target biomolecule and other molecules and their interactions with those of the chosen system. In this work, the partition behavior of pure bovine serum albumin in aqueous two-phase systems was investigated in order to see the effects of changes in phase properties on the partition coefficient K. The concentration of NaCl and pH were considered to be the factors having influence on K. Optimal conditions of these factors were obtained using the Box-Wilson experimental design. The optimum value of K was found as 0.0126 when NaCl concentration and pH were 0.14 M and 9.8, respectively, for a phase system composed of 8% (w/w) polyethylene glycol 3,350 - 9 (% w/w) dextran 37,500 - 0.05 M phosphate at 20 °C.  相似文献   

18.
Candida albicans strain B 311-10 with and without starvation was cultivated in the minimal synthetic medium of Shepherd et al. [18], modified without biotin, aminoacids, low glucose concentration [20] and with decreasing amounts of (NH4)2SO4, to determine the optimal growth requirement for this strain. All the experiments were carried out under sterile conditions at 25 °C in a thermostat with initial O.D.s (675 nm) of 0.500 and 0.100. Cell growth was generally monitored everyday for six days with a spectrophotometer by determining the absorbance of the cultures at 675 nm. All the experiments were repeated three times and a statistical analysis of the data with a probability of 99% and 1% of error was performed to confirm the validity of the results. Best growth was obtained with starved cells at an initial O.D. of 0.100 and with a 0.1 g/L concentration of (NH4)2SO4. At this concentration, the growth of C. albicans B 311-10 was best between the first and the fourth day with the maximum at the third day. With (NH4)2SO4 concentrations of 0.05 and 0.5 g/L, cell growth was the same.  相似文献   

19.
Aureobasidium pullulans NRRL 6220 synthesized polysaccharide most actively in media containing sucrose, fructose or maltose with (NH4)2SO4 (0.6 g/l) or ammonium acetate giving greatest yields of the polysaccharide. With (NH4)2SO4 at 1.2 g/l, production of polysaccharide was decreased considerably. Polysaccharide production was highest with an initial pH of 6.5 while biomass formation was better below an initial pH of 5.5. Optimum phosphate concentration for polysaccharide production was 0.03 m.S.M. Badr-Eldin, H.G. El-Masry and O.A. Abd El-Rahman are with the Microbial Chemistry Department, National Research Center, Dokki, Cairo, Egypt; F.H.A. Mohamad is with the Chemical Engineering and Pilot Plant Department, National Research Center, Dokki, Cairo, Egypt. O.M. El-Tayeb is with the Microbiology Department, Faculty of Pharmacy, Cairo University, Egypt.  相似文献   

20.
Partitioning of human granulocyte-macrophage colony stimulating factor (hGM-CSF) was achieved in the aqueous two-phase systems (ATPSs) using a crude extract of transgenic tobacco cell suspension culture. This study examined the effects of polyethylene glycol (PEG) molecular weight and concentration and the effects of sodium phosphate concentration in different PEG/sodium phosphate systems on the partition coefficient,K. The best ATPS system was 5% PEG 8,000/1.6 M sodium phosphate after 2 h of incubation at room temperature. In this system, hGM-CSF was partitioned in the PEG-rich phase with a yield of 57.99% andK hGM-CSF of 8.12. In another system, 3% PEG 10,000/1.6 M sodium phosphate, hGM-CSF was also partitioned primarily in the top phase with a yield of 45.66% andK hGM-CSF of 7.64 after 2 h of incubation at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号