首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Missense mutations at arginine residues in the S4 voltage-sensor domains of NaV1.4 are an established cause of hypokalemic periodic paralysis, an inherited disorder of skeletal muscle involving recurrent episodes of weakness in conjunction with low serum K+. Expression studies in oocytes have revealed anomalous, hyperpolarization-activated gating pore currents in mutant channels. This aberrant gating pore conductance creates a small inward current at the resting potential that is thought to contribute to susceptibility to depolarization in low K+ during attacks of weakness. A critical component of this hypothesis is the magnitude of the gating pore conductance relative to other conductances that are active at the resting potential in mammalian muscle: large enough to favor episodes of paradoxical depolarization in low K+, yet not so large as to permanently depolarize the fiber. To improve the estimate of the specific conductance for the gating pore in affected muscle, we sequentially measured Na+ current through the channel pore, gating pore current, and gating charge displacement in oocytes expressing R669H, R672G, or wild-type NaV1.4 channels. The relative conductance of the gating pore to that of the pore domain pathway for Na+ was 0.03%, which implies a specific conductance in muscle from heterozygous patients of ∼10 µS/cm2 or 1% of the total resting conductance.Unexpectedly, our data also revealed a substantial decoupling between gating charge displacement and peak Na+ current for both R669H and R672G mutant channels. This decoupling predicts a reduced Na+ current density in affected muscle, consistent with the observations that the maximal dV/dt and peak amplitude of the action potential are reduced in fibers from patients with R672G and in a knock-in mouse model of R669H. The defective coupling between gating charge displacement and channel activation identifies a previously unappreciated mechanism that contributes to the reduced excitability of affected fibers seen with these mutations and possibly with other R/X mutations of S4 of NaV, CaV, and KV channels associated with human disease.  相似文献   

2.
The K+-agitated (Kag) mutant of Paramecium caudatum shows prolonged backward swimming in K+-rich solution. To understand the regulation mechanisms of the ciliary motility in P. caudatum, we examined the membrane electrical properties of the Kag mutant. The duration of the backward swimming of the Kag in K+-rich solution was about 10 times longer than that of the wild type. In response to an injection of the outward current, the wild type produced an initial action potential and a subsequent membrane depolarization due to I-R potential drop, while the Kag exhibited repetitive action potentials during the depolarization. Under voltage-clamp conditions, the depolarization-activated transient inward current exhibited by the Kag was slightly smaller than that exhibited by the wild type. In response to an application of K+-rich solution, both the wild type and the Kag exhibited a depolarizing afterpotential representing the activation of the K+-induced Ca2+ conductance. The inactivation time course of the K+-induced Ca2+ conductance of Kag was about 10 times longer than that of the wild type. This difference corresponds well with the difference in behavioral responses between Kag and wild type to K+-rich solution. We conclude that the overreaction of the Kag mutant to the K+-rich solution is caused by slowing down of the inactivation of the K+-induced Ca2+ conductance.  相似文献   

3.
The mechanisms of the hyperpolarizing and depolarizing actions of cesium were studied in cardiac Purkinje fibers perfused in vitro by means of a microelectrode technique under conditions that modify either the Na+-K+ pump activity or If. Cs+ (2 mM) inconsistently increased and then decreased the maximum diastolic potential (MDP); and markedly decreased diastolic depolarization (DD). Increase and decrease in MDP persisted in fibers driven at fast rate (no diastolic interval and no activation of If). In quiescent fibers, Cs+ caused a transient hyperpolarization during which elicited action potentials were followed by a markedly decreased undershoot and a much reduced DD. In fibers depolarized at the plateau in zero [K+]o (no If), Cs+ induced a persistent hyperpolarization. In 2 mM [K+]o, Cs+ reduced the undershoot and suppressed spontaneous activity by hyperpolarizing and thus preventing the attainment of the threshold. In 7 mM [K+]o, DD and undershoot were smaller and Cs+ reduced them. In 7 and 10 mM [K+]o, Cs+ caused a small inconsistent hyperpolarization and a net depolarization in quiescent fibers; and decreased MDP in driven fibers. In the presence of strophanthidin, Cs+ hyperpolarized less. Increasing [Cs+]o to 4, 8 and 16 mM gradually hyperpolarized less, depolarized more and abolished the undershoot. We conclude that in Purkinje fibers Cs+ hyperpolarizes the membrane by stimulating the activity of the electrogenic Na+-K+ pump (and not by suppressing If); and blocks the pacemaker potential by blocking the undershoot, consistent with a Cs+ block of a potassium pacemaker current.  相似文献   

4.
Conversion of graded responsiveness of lobster muscle fibers to all-or-none activity by alkali-earth and tetraethylammonium (TEA) ions appears to be due to a combination of effects. The membrane is hyperpolarized, its resistance is increased, and its sensitivity to external K+ is diminished, all effects which indicate diminished K+ conductance. While the spikes are prolonged, the conductance is higher throughout the response than it is in the resting membrane. Repetitive activity becomes prominent. These effects indicate maintained high conductance for an ion which causes depolarization. This is normally Na+, since its presence in low concentrations potentiates the effects of Ba++, but the alkali-earth ions and TEA can also carry inward charge. Ba++, Sr++, and TEA appear to be more effective than is Ca++ in its normal role, which is probably to depress K+ conductance and Na inactivation. Thus, conversion of graded to all-or-none responsiveness appears to occur because of the relative increase of depolarizing inward ion flux and decrease of repolarizing outward flux.  相似文献   

5.
We have examined whole-cell K+ currents and a Ca2+-dependent K+ channel at the single channel level in rostral pars distalis cells of Gillichthys mirabilis. Whole-cell K+ currents activated by depolarizing pulses have an inactivating component and a sustained component. The magnitude of both of these components is increased when a hyperpolarizing prepulse is delivered prior to depolarization. Both components are partially blocked by application of 5 mM TEA+. The Ca-dependent K+ channel, (K(Ca)), was sensitive to 2 mM TEA+ in outside-out patches (O/O) but not in inside-out patches (I/O). Channel open probability (P(o)) was dependent on membrane potential (Vm), with depolarization leading to an increase in P(o). Calcium on the cytoplasmic face of I/O patches increased channel P(o) in a dose-dependent manner. A portion of the single K(Ca) channels studied displayed inactivation after depolarizing pulses. These channels may be a component of the inactivating whole-cell current.  相似文献   

6.
Electrical and mechanical studies have been made of the deep abdominal extensor muscles, medial (DEAM) and lateral (DEAL), of crayfish and lobster. The medial muscle responds to direct (intracellular) and indirect stimulation with a transient membrane depolarization which exhibits the properties of a propagated non-decremental action potential but does not overshoot the zero level. The amplitude is about 30 mv in crayfish and 50 mv in lobster. It is followed by a fast all-or-none twitch whose duration at 20°C is 30 to 50 msec. and whose developed tension is 500 gm/cm2 or about half the tetanic value. Membrane potential is K+-dependent and immersion in high K+ induces a brief transient tension rise as in other twitch-type muscles. The action potential and twitch are normal even if all external Na+ is replaced with sucrose but vary with external Ca++, the action potential increasing 8 to 10 mv for a twofold increase in Ca++. The lateral muscle (DEAL) is much slower and responds to intracellular stimulation only with an electrotonic or a local response. Mechanical responses and relaxation speeds are slow with minimal duration of contraction of 0.5 to 2 seconds. Immersion in high K solutions induces large maintained tensions. Sarcomere length in the fast DEAM is uniform and about 2 µ at rest, but in the DEAL speed is less and sarcomere length is greater averaging about 4.5 µ but with a mixed population of fibers.  相似文献   

7.
The membrane potential of isolated muscle fibers was controlled with a two-electrode voltage clamp, and the radial extent of contraction elicited by depolarizing pulses of increasing magnitude was observed microscopically. Depolarizations of the fiber surface only 1–2 mv greater than the contraction threshold produced shortening throughout the entire cross-section of the muscle fiber. The radial spread of contraction was less effective in fibers exposed to tetrodotoxin or to a bathing medium with a greatly reduced sodium concentration. The results provide evidence that depolarization of a muscle fiber produces an increase in sodium conductance in the T tubule membrane and that the resultant sodium current contributes to the spread of depolarization along the T system.  相似文献   

8.
Summary Effects of divalent cations on oscillations of membrane potentials (i.e., spontaneous repetitive hyperpolarizing responses) and on hyperpolarizing responses induced by electrical stimuli as well as on resting potentials were studied in large nondividing L cells. Deprivation of Ca2+ from the external medium inhibited these hyperpolarizing responses accompanying slight depolarization of the resting potential. Sr2+ or Mn2+ applied to the external medium in place of Ca2+ was able to substitute for Ca2+ in the generation of hyperpolarizing responses, while Mg2+, Ba2+ or La3+ suppressed hyperpolarizing responses. The addition of A23187 to the bathing medium or intracellular injection of Ca2+, Sr2+, Mn2+ or La3+ induced membrane hyperpolarization. When the external Ca2+, Sr2+ or Mn2+ concentration was increased, the resting potential also hyperpolarized, in a saturating manner. The amplitude of maximum hyperpolarization produced by high external Ca2+ was of the same order of magnitude as those of hyperpolarizing responses and was dependent on the external K+ concentration. In the light of these experimental observations, it was deduced that the K+ conductance increase associated with the hyperpolarizing excitation is the result of an increase in the intracellular concentration of free Ca2+ mainly derived from the external solution.  相似文献   

9.
Potassium (K+) contracture tension, measured in small bundles of rat soleus muscle fibers during maintained depolarization, increases to a peak value and then decays either to the baseline or to a pedestal level. We have tested the hypothesis that the rise and fall of tension are determined by independent activation and inactivation processes. If the “Independence” hypothesis is correct, tension during the decay of K+ contractures should equal tension predicted from the product of the activation and inactivation parameters determined from the same K+ contractures. Both the measured and predicted tensions decayed to a pedestal level that was increased in amplitude in the presence of perchlorate ions. However, the measured tensions in normal solutions and in the presence of perchlorate were three to five times smaller than the predicted tensions. This result indicates that the activation and inactivation of processes controlling the rise and decay of K+ contracture tension are not independent.  相似文献   

10.
The resting membrane potential and electrogenic contribution of α1- and α2-isoforms of Na+/K+-ATPase in the rat soleus muscle at early stages of gravity unloading were analyzed. The role of L-type calcium channels in accumulation of calcium ions in the myoplasm under these conditions was estimated. After 3-day antiorthostatic suspension, the resting membrane potential of the muscle fibers decreased from ?71.0 ± 0.5 to ?66.8 ± 0.7 mV, the muscle excitability reduced, and a trend of muscle fatigue acceleration appeared. The electrogenic contribution of ouabain-sensitive α2-isoform of Na+/K+-ATPase, determined as the depolarization caused by 1μM ouabain, decreased after suspension from 6.2 ± 0.6 to 0.5 ± 0.8 mV. The contribution of ouabain-resistant α1-isoform of Na+/K+-ATPase, determined as an additional depolarization after addition of 500 μM ouabain, decreased from 4.6 ± 0.6 to 2.6 ± 0.6 mV. The intensity of Fluo-4AM fluorescence in individual muscle fibers increased after suspension more than fourfold, which suggests an elevated calcium concentration in the myoplasm. A local delivery of nifedipine, a blocker of the L-type calcium channels, to the muscle removed this effect. The existence of a selective mechanism suppressing the electrogenic contribution of Na+/K+-ATPase α2-isoform, which is the main cause of the muscle fiber membrane depolarization after 3-day suspension, is postulated. The depolarization can activate part of potential-sensitive L-type Ca2+ channels, causing the accumulation of calcium ions in the muscle fiber myoplasm.  相似文献   

11.
The minimal presynaptic depolarization (MPD) for producing a detectable postsynaptic potential (PSP) was lower than 25 mv in normal or tetrodotoxin (TTX)-containing seawater. The MPD was about 10 mv when a small amount of tetraethylammonium ions (TEA) was injected into the presynaptic terminal. Application of linearly increasing depolarizing current to the normal presynaptic terminal at times produced a PSP before a presynaptic spike was evoked; the rate of rise of the resulting PSP was much slower than that of a PSP triggered by the normal presynaptic spike. A brief depolarizing pulse that preceded the presynaptic spike in normal seawater or the initial transient presynaptic depolarization in TTX decreased the PSP. It increased the PSP when it was applied during the spike or initial transient depolarization. Hyperpolarizing pulses had the reverse effect. The Off-PSP was also modified by inserting pulses at an initial part of the recovery phase of the strong presynaptic depolarization. These results indicate further that increases in Na+ and K+ conductance during presynaptic spike activity are not a requirement for transmitter release; the rate of release of transmitter can be controlled by electrical manipulation of the presynaptic terminal; there is a superficial correspondence between the time courses of presynaptic depolarization and the resulting PSP. Thus presynaptic depolarization appears to be only the first step in the series of events constituting excitation-transmitter release coupling. It may not be a necessary step for the release mechanism.  相似文献   

12.
Patch-clamp experiments in the sarcolemma of frog skeletal muscle evidenced the presence of three types of voltage-dependent single-channel K+ currents. According to their unitary conductance at a membrane voltage of +40 mV, we classified them as 16-, 13-, and 7-pS K+ channels. The 16-pS K+ channels are active close to a membrane voltage of −80 mV and they do not become inactivated during voltage pulses of 100 ms. Within 10 min after beginning the recording, these channels developed rundown with an exponential time course. The 13-pS K+ channels are active near −60 mV; upon a 100-ms depolarization, they exhibited inactivation with an approximate exponential time course. The 7-pS K+ channels were recorded at voltages positive to 0 mV. In patches containing all three types of K+ channels, the ensemble average currents resemble the kinetic properties of the macroscopic delayed rectifier K+ currents recorded in skeletal muscle and other tissues. In conclusion, the biophysical properties of unitary K+ currents suggest that these single-channel K+ currents may underlie the macroscopic delayed K+ currents in frog skeletal muscle fibers. In addition, since the 16- and 13-pS channels were more frequently recorded, both are the main contributors to the delayed K+ currents.  相似文献   

13.
The ionic mechanisms of the depolarizing and the hyperpolarizing quinine receptor potentials in the ciliate Paramecium caudatum were examined by using a behavioral mutant strain. The depolarizing receptor potential was induced by stimulating the anterior end of the specimen, and the hyperpolarizing receptor potential by stimulating the posterior end. The amplitude of both the depolarizing and the hyperpolarizing receptor potentials increased linearly with logarithmic increase in quinine concentration applied. Threshold concentration for inducing the depolarizing receptor potential was lower than that for the hyperpolarizing one. The peak level of the depolarizing receptor potential shifted towards the depolarizing direction with increasing external Ca2+ concentration while that of the hyperpolarizing receptor potential shifted in the depolarizing direction with increasing external K+ concentration. Under voltage-clamp conditions, the specimen produced an inward current in response to anterior stimulation, and an outward current in response to posterior stimulation. Both the peak inward and the peak outward currents showed a linear relationship with membrane potential. Current-voltage relationships of the receptor currents indicated conductance increase during the application of quinine. The depolarizing quinine receptor potential appears to be produced by an activation of Ca2+ channels, and the hyperpolarizing quinine receptor potential by an activation of K+ channels. Accepted: 3 October 1997  相似文献   

14.
Using the voltage-clamp technique, we investigated transmembrane ion currents in isolated smooth muscle cells of the guinea pigtaenia coli. In our study, we identified and studied a charibdotoxin-sensitive component of Ca2+-dependent K+ current carried through the channels of high conductance (in most publications called “big conductance,”I BK(Ca)). This component was completely blocked by 100 nM charibdotoxin and by tetraethylammonium in concentrations as low as 1 mM.I BK(Ca) demonstrated fast kinetics of inactivation, which nearly coincided with that of Ca2+ current. In addition to the dependence on Ca2+ concentration, this current also showed voltage-dependent properties: with a rise in the level of depolarization its amplitude increased. In many cells, depolarizing shifts in the membrane potential evoke spontaneous outward currents. Such currents probably represent the secondary effect of cyclic Ca2+ release from the caffeine-sensitive intracellular stores that result in short-term activation of charibdotoxin-sensitive Ca2+-dependent K+ channels.  相似文献   

15.
The role of the inward K+ rectifier in the repetitive activity at depolarized levels was studied in guinea pig single ventricular myocytes by voltage- and current-clamp methods. In action potentials arrested at the plateau by a depolarizing current, small superimposed hyperpolarizing currents caused much larger voltage displacements than at the resting potential and sometimes induced a regenerative repolarization. Around –20 mV, sub- and suprathreshold repetitive inward currents were found. In the same voltage range, small hyperpolarizing currents reversed their polarity. During depolarizing voltage-clamp ramps, around –20 mV there was a sudden decrease in the outward current (Ins: current underlying the negative slope in the inward K+ rectifier steady state I–V relation). During repolarizing ramps, the reincrease in outward current was smaller and slower. During depolarizing and repolarizing current ramps, sudden voltage displacements showed a similar asymmetry. Repetitive Ins could continue as long as the potential was kept at the level at which they appeared. Depolarizing voltage-clamp steps also caused repetitive Ins and depolarizing current steps induced repetitive slow responses. Cadmium and verapamil reduced Ins amplitude during the depolarizing ramp. BRL 34915 (cromakalim), an opener of the ATP-sensitive K+ channel, eliminated the negative slope and Ins, whereas barium increased Ins frequency (an effect abolished by adding BRL). Depolarization-induced slow responses persisted in an NaCl-Ca-free solution. Thus, the mechanism of repetitive activity at the depolarized level appears to be related to the presence of the negative slope in the inward K+ rectifier I–V relation.  相似文献   

16.
The role of calcium in excitation-contraction coupling of lobster muscle   总被引:2,自引:1,他引:1  
Potassium contractures were induced in lobster muscle bundles under conditions which produced varying KCl fluxes into the fibers. The presence or absence of chloride fluxes during depolarization by high concentrations of potassium, had no effect on the tensions developed. The curve relating tension to the membrane potential had a typical sigmoid shape with an apparent "threshold" for tension at -60 mv. Soaking the muscles in low (0.1 mM) calcium salines for 30 min completely eliminated the potassium contractures but the caffeine contractures were only slightly reduced under these conditions. The potassium contracture could be completely restored in less than 2 min by return of the calcium ions to the saline. Evidence is presented for independent, superficial, and deep calcium sites; the superficial sites appear to be involved in the coupling mechanisms associated with potassium contractures. These sites are highly selective for Ca++, and attempts to substitute either Cd++, Co++, Mg++, Ba++, or Sr++ for Ca++ were unsuccessful. However, K+ appeared to compete with Ca++ for these sites, and the evoked tension could be reduced by prestimulation of the muscle fibers with high K+ salines. The results of studies on the influx of 45Ca during potassium contractures were compatible with the view of muscle activation by the entry of extracellular calcium.  相似文献   

17.
Changes in membrane properties of chick embryonic hearts during development   总被引:13,自引:3,他引:10  
The electrophysiological properties of embryonic chick hearts (ventricles) change during development; the largest changes occur between days 2 and 8. Resting potential (Em) and peak overshoot potential (+E max) increase, respectively, from -35 mv and +11 mv at day 2 to -70 mv and +28 mv at days 12–21. Action potential duration does not change significantly. Maximum rate of rise of the action potential (+V max) increases from about 20 v/sec at days 2–3 to 150 v/sec at days 18–21; + V max of young cells is not greatly increased by applied hyperpolarizing current pulses. In resting Em vs. log [K+]o curves, the slope at high K+ is lower in young hearts (e.g. 30 mv/decade) than the 50–60 mv/decade obtained in old hearts, but the extrapolated [K+]i values (125–140 mM) are almost as high. Input resistance is much higher in young hearts (13 MΩ at day 2 vs. 4.5 MΩ at days 8–21), suggesting that the membrane resistivity (Rm) is higher. The ratio of permeabilities, P Na/P K, is high (about 0.2) in young hearts, due to a low P K, and decreases during ontogeny (to about 0.05). The low K+ conductance (g K) in young hearts accounts for the greater incidence of hyperpolarizing afterpotentials and pacemaker potentials, the lower sensitivity (with respect to loss of excitability) to elevation of [K+]o, and the higher chronaxie. Acetylcholine does not increase g K of young or old ventricular cells. The increase in (Na+, K+)-adenosine triphosphatase (ATPase) activity during development tends to compensate for the increase in g K. +E max and + V max are dependent on [Na+]o in both young and old hearts. However, the Na+ channels in young hearts (2–4 days) are slow, tetrodotoxin (TTX)-insensitive, and activated-inactivated at lower Em. In contrast, the Na+ channels of cells in older hearts (> 8 days) are fast and TTX-sensitive, but they revert back to slow channels when placed in culture.  相似文献   

18.
The pacemaker current in cardiac Purkinje myocytes   总被引:3,自引:0,他引:3       下载免费PDF全文
It is generally assumed that in cardiac Purkinje fibers the hyperpolarization activated inward current i(f) underlies the pacemaker potential. Because some findings are at odds with this interpretation, we used the whole cell patch clamp method to study the currents in the voltage range of diastolic depolarization in single canine Purkinje myocytes, a preparation where many confounding limitations can be avoided. In Tyrode solution ([K+]o = 5.4 mM), hyperpolarizing steps from Vh = -50 mV resulted in a time-dependent inwardly increasing current in the voltage range of diastolic depolarization. This time- dependent current (iKdd) appeared around -60 mV and reversed near EK. Small superimposed hyperpolarizing steps (5 mV) applied during the voltage clamp step showed that the slope conductance decreases during the development of this time-dependent current. Decreasing [K+]o from 5.4 to 2.7 mM shifted the reversal potential to a more negative value, near the corresponding EK. Increasing [K+]o to 10.8 mM almost abolished iKdd. Cs+ (2 mM) markedly reduced or blocked the time-dependent current at potentials positive and negative to EK. Ba2+ (4 mM) abolished the time-dependent current in its usual range of potentials and unmasked another time-dependent current (presumably i(f)) with a threshold of approximately -90 mV (> 20 mV negative to that of the time-dependent current in Tyrode solution). During more negative steps, i(f) increased in size and did not reverse. During i(f) the slope conductance measured with small (8-10 mV) superimposed clamp steps increased. High [K+]o (10.8 mM) markedly increased and Cs+ (2 mM) blocked i(f). We conclude that: (a) in the absence of Ba2+, a time-dependent current does reverse near EK and its reversal is unrelated to K+ depletion; (b) the slope conductance of that time-dependent current decreases in the absence of K+ depletion at potentials positive to EK where inactivation of iK1 is unlikely to occur. (c) Ba2+ blocks this time-dependent current and unmasks another time-dependent current (i(f)) with a more negative (> 20 mV) threshold and no reversal at more negative values; (d) Cs+ blocks both time-dependent currents recorded in the absence and presence of Ba2+. The data suggest that in the diastolic range of potentials in Purkinje myocytes there is a voltage- and time-dependent K+ current (iKdd) that can be separated from the hyperpolarization- activated inward current i(f).  相似文献   

19.
Dually innervated Romalea muscle fibers which respond differently to stimulation of their fast and slow axons are excited by intracellularly applied depolarizing stimuli. The responses, though spike-like in appearance, are graded in amplitude depending upon the strength of the stimuli and do not exceed about 30 mv. in height. In other respects, however, these graded responses possess properties that are characteristic of electrically excitable activity: vanishingly brief latency; refractoriness; a post-spike undershoot. They are blocked by hyperpolarizing the fiber membrane; respond repetitively to prolonged depolarization, and are subject to depolarizing inactivation. As graded activity, these responses propagate decrementally. The fast and slow axons of the dually responsive muscle fibers initiate respectively large and small postsynaptic potentials (p.s.p.'s) in the muscle fiber. These responses possess properties that characterize electrically inexcitable depolarizing activity. They are augmented by hyperpolarization and diminished by depolarization. Their latency is independent of the membrane potential. They have no refractory period, thus being capable of summation. The fast p.s.p. evokes a considerable or maximal electrically excitable response. The combination, which resembles a spike, leads to a twitch-like contraction of the muscle fiber. The individual slow p.s.p.'s elicit no or only little electrically excitable responses, and they evoke slower smaller contractile responses. The functional aspects of dual responsiveness and the several aspects of the theoretical importance of the gradedly responsive, electrically excitable component are discussed.  相似文献   

20.
It was found that ouabain and marinobufagenin, specific inhibitors of Na+,K+-ATPase, increased the contraction of the isolated rat diaphragm by ~15% (positive inotropic effect) at EC50 = 1.2 ± 0.3 nM and 0.3 ± 0.1 nM, respectively, which was indicative of the participation of the ouabain-sensitive Na+,K+-ATPase α2 isoform. Analysis of the dose-response curves for the effect of ouabain on the resting membrane potential of muscle fibers in the absence and in the presence of 100 nM acetylcholine (hyperpolarizing the membrane) showed the presence of two pools of Na+,K+-ATPase α2 that differed in affinity for ouabain. Only the high-affinity pool (IC50 ~ 9 nM) mediates the hyperpolarizing effect of nanomolar concentrations of acetylcholine. Most likely, it is this pool of that is involved in the positive inotropic effect of ouabain, which can be a mechanism of regulation of the muscle function by circulating endogenous inhibitors of Na+,K+-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号