首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single s.c. injection of hCG (100 i.u.) produced a biphasic serum testosterone response in adult male rats, peaks being noted at 2 h (24 ng/ml) and 3 days (16 ng/ml). The levels fell to control during the intervening interval (8 ng/ml), although there were elevated levels of serum hCG. Maintenance of high oestradiol levels by a s.c. injection of 50 micrograms oestradiol benzoate given on Day 2 after the initial hCG injection failed to prolong the refractory period and the secondary peak of testosterone (16 ng/ml) occurred on Day 3. Administration of the antioestrogen, tamoxifen (2 mg or 3 micrograms), 24 h before or simultaneously with hCG did not prevent testicular refractoriness in vivo because serum testosterone levels still declined after 2 h to reach a nadir at 2 days. The basal in-vitro testosterone production by decapsulated testes from animals injected with hCG was enhanced at 2 h. Stimulation by hCG increased the amount of testosterone produced (X 1.5 that in controls). By 12 h basal production decreased and there was no further increment in testosterone in the presence of hCG. This refractoriness to further hCG stimulation prevailed until Day 3, but the total production of testosterone fell so that at 24 h and 2 days testes were producing basal amounts of testosterone. Testes recovered from refractoriness at 4 and 5 days, when basal and stimulated testosterone production were greater than in controls. Injection of 50 micrograms oestradiol benzoate at 2 days did not prolong the in-vitro refractory period and 2 mg or 3 micrograms tamoxifen had no effect on the in-vitro steroidogenic activity, since testes were still refractory to further hCG stimulation from 12 h to 3 days. The results of the present study do not support the hypothesis that oestradiol is involved in the hCG-induced refractoriness of the Leydig cell. The nadir between the peaks of serum testosterone in vivo corresponds to the period during which the testis is refractory to in-vitro stimulation by hCG.  相似文献   

2.
The testosterone responses to a single injection of hCG (100 i.u.) in hypophysectomized (hypox.), cryptorchid or sham-operated rats were followed over a 5-day period. In sham-operated rats, hCG induced a biphasic rise in serum testosterone, peaks being observed at 2 and 72 h. Reduced testis weights, elevated FSH and LH levels and reduced serum testosterone levels were found after 4 weeks of cryptorchidism, but hCG stimulation resulted in a normal 2 h peak in serum testosterone. However, the secondary rise at 72 h in cryptorchid rats was significantly lower than sham-operated rats. Reduced testis weight and undetectable serum FSH and LH levels together with decreased testosterone levels were found 4 weeks after hypophysectomy. Serum testosterone levels rose 2 h after hCG in comparison to hypox. controls but this peak was significantly reduced compared with sham-operated rats. The second rise in serum testosterone began on day 2, peaking on day 4 at levels comparable to that seen in sham-operated rats after hCG. The in vitro basal and hCG stimulated secretion of testosterone by cryptorchid testes was greater than that secreted by normal rat testes (518.0 +/- 45.9 and 3337.6 +/- 304.1 pmol per testis per 4 h compared with 223.6 +/- 24.9 and 1312.9 +/- 141.4 pmol per testis per 4 h for normal rat testes). In cryptorchid animals a single injection of 100 i.u. hCG resulted in a pattern of in vitro refractoriness similar to normal rats, lasting from 12 h to 2 days, during which testosterone secretion was reduced to near basal levels. The in vitro basal and hCG-stimulated secretion of testosterone by hypox. rat testes was severely diminished compared with normal rat testes. The temporal pattern of in vitro secretion of testosterone from hypox. rat testes mimicked the in vivo serum testosterone pattern seen in these animals. This study demonstrates important differences in the in vivo and in vitro testosterone response to hCG after testicular damage.  相似文献   

3.
Tamoxifen was administered i.m. for 9 days to adult male rats in a daily dose of 100 micrograms or 1 mg. The treatment resulted in a significant reduction of the plasma levels of testosterone and LH, without modification of the plasma levels of FSH and of the testes weight. Upon incubation, the testes from the tamoxifen-treated rats produced less testosterone and 7 alpha-hydroxytestosterone, but metabolized [4-14C]testosterone in the same way as the control animals. Small doses of hCG (0.5 i.u. for 9 days) were unable to modify the tamoxifen effect on the testicular function, while tamoxifen significantly inhibited the increase of the plasma levels of testosterone induced by the administration of moderate doses of hCG (1.5 i.u. or 2.5 i.u. for 9 days) to hypophysectomized rats. Tamoxifen treatment, however, did not modify significantly the reactivity of the testes towards high doses of hCG (10 i.u.), administered either 2 h before sacrifice or for 9 days. It is concluded that a prolonged administration of tamoxifen in the rat has, besides an indirect effect resulting from a decrease of the LH levels, a direct inhibitory influence on the testicular testosterone formation, which can be reversed by high doses of hCG.  相似文献   

4.
Adult mice, rats and hamsters were injected with 0 or 0.3 IU hCG/g BW, 24 h before sacrifice. Basal LH receptor concentration was highest in rats and lowest in hamsters (rats greater than mice greater than hamsters). Injection of hCG caused LH receptor down-regulation in rats and mice, and up-regulation in hamsters. Basal plasma progesterone was highest in hamsters and lowest in rats (hamsters greater than mice greater than rats), however, hCG increased plasma progesterone levels in mice and rats, but not in hamsters. Mice had much higher plasma and testicular testosterone levels than other species, but hCG did not induce a relatively more dramatic increase in any species. When testes fragments were incubated with 0 or 12.5 mIU hCG/ml for 4 h, hCG increased media progesterone levels in rats and control mice, but not in hamsters and hCG-injected mice. Also, hCG elevated media testosterone levels in control but not in hCG-injected animals. Furthermore, addition of hCG in vitro partially prevented the elevation of media testosterone induced by in vivo hCG. The present results indicate that the mechanisms for the transduction of the gonadotropic signal by the Leydig cells are species-defined.  相似文献   

5.
Adult rats were made bilaterally cryptorchid and studied at intervals of 3, 7, 14 or 21 days to study temporal changes in Leydig cell function. Serum FSH and LH levels were measured and the cross-sectional area of the Leydig cells assessed by morphometry. The function of the Leydig cells was judged by the binding of 125I-labelled hCG to testicular tissue in vitro and the testosterone response of the testis to hCG stimulation in vitro. By 3 days after cryptorchidism, the binding of labelled hCG to testicular tissue was significantly decreased compared to that of controls, but the testes were able to respond to hCG stimulation in vitro. At 7, 14 and 21 days after cryptorchidism, an enhanced testosterone response was observed and the size of the Leydig cells was significantly greater than that of the controls, which indicated increased secretory activity by the cryptorchid testis. Although serum FSH levels were significantly elevated after 3 days of cryptorchidism, serum LH levels did not rise until 7 days, thereby suggesting that the loss of receptors is unlikely to result from down-regulation by LH. The reduced testosterone response of the cryptorchid testis in vivo to low doses of hCG and the enhanced response at high doses are probably related to the reduced blood flow to the cryptorchid testis and the decreased sensitivity of the Leydig cells induced by LH/hCG receptor loss.  相似文献   

6.
Levels of testosterone and insulin-like peptide 3 (INSL3) secretions in response to different doses of human chorionic gonadotropin (hCG) in cultured interstitial cells were compared between retained and scrotal testes in dogs. Retained (n=10) and scrotal (n=9) testes were obtained from small-breed dogs. The testicular tissues were dispersed in Dulbecco's Modified Eagle Medium with Ham's nutrient mixture containing 2000 PU/ml dispase II and 10% fetal bovine serum. The cells were plated with differing concentrations (0-10 IU/ml) of hCG for 18 h in multiwell-plates. Testosterone and INSL3 in the same spent medium were measured by enzyme-immunoassays (EIA). A new EIA with a reliable detection range of 0.025-5 ng/ml was developed in order to measure canine INSL3 in culture medium. Dose-dependent stimulation of testosterone by hCG was observed in the cells of both retained and scrotal testes. The incremental rate of testosterone secretion was significantly lower at 0.1, 1 and 10 IU/ml hCG in the cells of retained testes than in scrotal testes, however. INSL3 secretion was significantly stimulated at 10 IU/ml hCG relative to unstimulated controls comprising cells of scrotal testes; no such stimulation was observed in the cells of retained testes. At 10 IU/ml hCG, the incremental rate of INSL3 was significantly lower in the cells of retained testes than scrotal testes. These results suggest that LH-induced secretory testosterone and INSL3 responses are lower in the interstitial cells of retained testes than of scrotal testes. Furthermore, the high concentrations of LH may acutely stimulate INSL3 release in scrotal testes of dogs, but not in retained testes.  相似文献   

7.
Pretreatment of 9-day-old rats for 3 days with human chorionic gonadotropin (hCG) increases the amount of estradiol secreted by the testis in response to in vivo or in vitro stimulation with follicle-stimulating hormone (FSH). Potential mechanisms for this sensitizing effect were studied by treating infant rats with a variety of agents and then using radioimmunoassay to determine testicular estradiol secretion. Substitution of 3 days priming with estradiol for hCG did not enhance subsequent in vitro responsiveness to FSH. Subcutaneous capsules of 1,4,6-androstatriene-3,17-dione (ATD) blocked stimulation of testicular aromatization in vivo by hCG or FSH. ATD capsules alone, or when combined with the antiestrogen tamoxifen, were not able to alter the ability of hCG pretreatment to increase responsiveness to in vitro FSH. It was concluded that estradiol was not involved in the sensitization caused by hCG in this model system. When gonadal tissue from 12-day-old rats was incubated in the presence or absence of 0.6 microM testosterone and various concentrations of FSH, more estradiol was secreted by testes in the containing testosterone. The amount secreted was not different from that noted after hCG priming. Priming of 9-day-old rats for 3 days with the nonaromatizable androgen 5 alpha-dihydrotestosterone did not influence the amount of estradiol secreted in response to FSH. It is further concluded that hCG augments the testicular aromatization response of infant rats to FSH by providing additional substrate for these reactions.  相似文献   

8.
Previous in vivo studies have shown that in male rabbits prolactin inhibits the testosterone production stimulated by luteinizing hormone (LH) or human chorionic gonadotropin (hCG). This inhibition has now been studied in vitro using both mouse and rat testicular interstitial cells. First, the dose response of human LH (hLH) stimulation of testosterone was studied in detail using testicular interstitial cells from both species. Next, a small but stimulatory dose of hLH was selected and extensive prolactin doses were studied in vitro. NIH B-6 (bovine) prolactin in varying doses was added to the interstitial cells 30 min prior to the addition of a constant dose of hLH. Under these circumstances prolactin inhibited LH action over a wide range of doses. In both species a biphasic dose-response curve existed: large doses of 100 to 1000 ng/ml produced less inhibition or augmented LH action, compared to smaller doses. Next, entire hLH dose-response curves were produced in the presence of three doses of prolactin (0.33, 33, and 1000 ng/ml) as well as in the absence of prolactin. The addition of prolactin shifted the hLH dose-response curve to the right and depressed the maximal response in comparison to the curve without prolactin. Finally, inhibitory doses of prolactin resulted in no detectable change in LH receptor number as estimated from Scatchard plots. It is concluded that prolactin inhibits LH action on interstitial cells as determined by rate of testosterone production except at very large doses of prolactin where LH action is less inhibited or augmented. The inhibitory action of prolactin in this in vitro interstitial cell assay was not accompanied by a decrease in LH receptor number. Thus, a postreceptor action is likely to be involved.  相似文献   

9.
Immature rats were treated with PMSG followed 56 h later by 10 i.u. hCG. Follicles were removed at intervals after hCG injection. Transient increases in progesterone, testosterone and oestradiol synthesis were first evident 1 h after hCG, but values peaked at 3-5 h and returned to control levels by 10 h. Increased synthesis of PGE-2 and PGF-2 alpha was not evident until 3 h and peaked at more than 10 h after hCG. Ovulation began between 8 and 10 h after hCG and 83% of animals had ovulated within 12 h. Doses of 90 or 1800 micrograms indomethacin given together with hCG substantially inhibited ovulation and PG synthesis, but only the higher dose inhibited the hCG-induced elevation of progesterone and testosterone synthesis; hCG-induced oestradiol synthesis was not affected by either dose of indomethacin. We conclude that the peak of PG synthesis after hCG treatment related closely to the timing of ovulation; the steroidogenic response to hCG was not blocked by doses of indomethacin sufficient to inhibit synthesis of PGE-2 and PGF-2 alpha by more than 80%.  相似文献   

10.
Several steps of cAMP- and substrate-dependent testosterone production in the testes were studied with laboratory mouse micropopulations of six inbred strains (A/He, CBA/Lac, C57BL/6J, DD, YT, PT). The strains differed in basal testosterone production in the gonads and in its response to activation of the adenylate cyclase signal transduction pathway at various steps by human chorionic gonadotropin (hCG), the cholera toxin, forskolin, and dibutyryl-cAMP and in the presence of pregnenolone, an early precursor of testosterone. Establishment of dominant-subordinate relationships in mouse populations substantially affected testosterone production in response to all activators of testicular steroidogenesis. The secretory activity of the testes decreased at the early establishment of social hierarchy in experimental micropopulations, then returned to the initial level, and again decreased in the case of activation with hCG, dibutyryl-cAMP, and pregnenolone. With all activators of steroidogenesis, basal and activated testosterone production changed in the same direction during the establishment and maintenance of social hierarchy, suggesting coordinated changes in all examined steps of testosterone biosynthesis in the testes. The among-strain differences in response to all activators of steroidogenesis remained much the same at various stages of the establishment of social hierarchy. The parameters of cAMP- and substrate-dependent testosterone production averaged over individual stages of the establishment of social hierarchy proved associated. Their genotypic correlations were positive and, in many cases, significant. Subsequent component analysis showed that one principal component accounted for more than 80% of the total among-strain variation, suggesting a coordinated genetic control of the endocrine function of the testes.  相似文献   

11.
The regulation of testicular hCG binding and steroidogenesis in adult mutant mice with hereditary diabetes and obesity was studied. Low doses of hCG caused no change in hCG binding in obese (ob/ob) mice, whereas, in diabetic (db/db) mice, the increase in binding measured 24 h after hCG administration was not as great as in normal males. Intermediate doses of hCG caused a decrease in hCG binding in obese and normal mice, but not in diabetic animals. However, 72 h after injection of intermediate doses of hCG, a decrease in hCG binding also was observed in diabetic mice. Plasma testosterone was elevated 24 h after hCG injection in all types of mice studied, but the increase in diabetic mice was smaller than in normal animals. However, 72 h after treatment with hCG, plasma testosterone was still elevated in diabetic mice, but not in normal males. In vitro, hCG stimulated testicular testosterone synthesis in all groups of mice, but the observed increase was smaller in diabetic and obese than in normal animals. Plasma LH levels were higher in diabetic than in normal mice, whereas plasma FSH and prolactin levels were lower in obese mice than in normal animals. All parameters (i.e., LH receptors and circulating hormone levels) measured in yellow (Ay/a) mice were similar to those in normal (a/a) mice. The present study indicates that in these models for noninsulin-dependent diabetes, the testicular metabolism of LH receptors and capacity to secrete steroids is altered.  相似文献   

12.
In this study, biomarkers of testicular damage were compared. In particular, urinary creatine was evaluated as a non-invasive marker of damage. Male rats were exposed to various doses of cadmium chloride, an established testicular toxicant. Pathological damage, testes weights, urinary creatine and creatinine, serum LDH-C4 and serum testosterone were determined. Cadmium chloride caused dose-dependent damage to the testes undetectable at the lowest dose (0.75 mg kg-1) but apparent at a dose of 1.125 mg kg-1. Urinary creatine was significantly raised after doses of 1.125 mg kg-1 and above 24-48 hr after dosing, and at the highest dose within 24 hr after dosing. Testes weight and serum testosterone were significantly decreased, and LDH-C4 significantly increased, at the highest dose (3.0 mg kg-l). Therefore urinary creatine was the most sensitive marker of acute cadmium-induced testicular damage and dysfunction.  相似文献   

13.
In contrast to the situation in adults, desensitization of androgen production, secondary to loss of enzyme activity, was not found in testes of neonatal rats exposed to human Chorionic Gonadotropin (hCG). In the present study attention was given to the acute effects of a single injection of hCG upon the activity of testicular 17 alpha-hydroxylase, C17,20-lyase and the concentration of testosterone in the serum of 5, 10 or 28-30 day old rats was investigated. Tritiated H2O from 17 alpha-[3H]progesterone and 14CH3COOH from 21-[14C]progesterone were the products measured to evaluate hydroxylase and lyase activities respectively. Large increases in hCG in the serum were detected within 2 h of a subcutaneous injection. Testosterone, which was highest in 5 day animals, increased quickly in all animals given hCG. In 28-30-day old animals, the concentration of this steroid began to fall 24 h after injection of hCG. 17 alpha-Hydroxylase activity decreased in the testes of all animals given hCG, but only after a brief increase. Activity returned to the starting level, or above, within 24 h in 5 or 10-day old animals. In 28-30-day old rats the activity of both enzymes decreased dramatically to a nadir at 24 h, but increased thereafter. The results indicate that desensitization of testicular androgen synthesizing enzymes occurs in neonatal as well as older testes stimulated with hCG, but the desensitization was very brief in neonatal animals and no desensitization of lyase was found in 5-day old rat testes.  相似文献   

14.
In this study, biomarkers of testicular damage were compared. In particular, urinary creatine was evaluated as a non-invasive marker of damage. Male rats were exposed to various doses of cadmium chloride, an established testicular toxicant. Pathological damage, testes weights, urinary creatine and creatinine, serum LDH-C4 and serum testosterone were determined. Cadmium chloride caused dose-dependent damage to the testes undetectable at the lowest dose (0.75 mg kg-1) but apparent at a dose of 1.125 mg kg-1. Urinary creatine was significantly raised after doses of 1.125 mg kg-1 and above 24-48 hr after dosing, and at the highest dose within 24 hr after dosing. Testes weight and serum testosterone were significantly decreased, and LDH-C4 significantly increased, at the highest dose (3.0 mg kg-l). Therefore urinary creatine was the most sensitive marker of acute cadmium-induced testicular damage and dysfunction.  相似文献   

15.
Age-related changes in responsiveness of rat Leydig cells to hCG   总被引:1,自引:0,他引:1  
The responsiveness of decapsulated testes and isolated Leydig cell preparations from rats (30-80 days of age) to a constant dose of 3 ng hCG/2 ml was assessed by comparison of the production of testosterone and "total 17beta-hydroxy androgen" (17beta-HA). When testosterone secretion was used as the index of response, there was a marked increase in the production with age by decapsulated testes and also by equal numbers of Leydig cells. When 17beta-HA was taken as the response parameter this increase was only marginal for the decapsulated testes and there was an age-dependent decrease when expressed per 10(6) cells. These differences probably reflect changes in the metabolism of testosterone to 5alpha-reduced products with increasing age because 80% of androgen secreted at 30 days is 3alpha-androstanediol and 86% is secreted as testosterone at 80 days. We conclude that for studies on hCG responsiveness and the steroidogenic capacity of immature rat Leydig cells (a) testosterone is an inappropriate response parameter and (b) this response undergoes a decrease rather than an increase during prepubertal development.  相似文献   

16.
Rats were made bilaterally cryptorchid at 21 days of age; sham-operated rats were used as controls. At 35 days, the animals were injected i.m. with saline or with 10 IU hCG. Progesterone, 17-hydroxyprogesterone, androstenedione and testosterone were measured in both testes and plasma under basal conditions and 2, 4, 8, 12, 24 and 72 h respectively after injection. The plasma levels and intratesticular contents of the steroids were generally lower in cryptorchid rats. The patterns of the steroid response to hCG were similar in both groups: in the testes and in the plasma, they increased acutely following hCG injection (except testicular androstenedione), then, after 72 h, returned to normal values in the plasma but remained higher than the basal values in the testes. These results suggest that there are no gross abnormalities in the testicular steroidogenic pathways and that the mechanism of action of hCG on the Leydig cells is unaltered in bilaterally cryptorchid immature rats.  相似文献   

17.
Prepubertal (28-30 days old) female rats were infused s.c. over a 60-h period with a purified porcine pituitary follicle-stimulating hormone (FSH) preparation having FSH specific activity 8.4 times that of NIH-FSH-S1 and luteinizing hormone (LH) specific activity less than 0.005 times that of NIH-LH-S1, based on radioreceptor assays. When the FSH infusion rate of this preparation was increased over the range of 0.5-2 units/day (mg NIH-FSH-S1 equivalent), an all-or-none response was observed, with the threshold dose for superovulation being between 1 and 2 units/day. Eleven of twelve rats receiving the 2 units/day dose ovulated a mean +/- SEM of 67 +/- 8 oocytes on the morning of the third day after the beginning of FSH infusion. Addition of human chorionic gonadotrophin (hCG), as a source of LH activity, to a subthreshold (1 U/day) FSH infusion rate resulted in 20% of rats ovulating at an hCG dosage of 50 mIU/day; increasing the hCG infusion to 200 mIU/day concomitant with the subthreshold FSH infusion rate increased ovulation rate to a mean of 69 +/- 8/rat, with 100% of rats ovulating. To determine the effect of varying both FSH infusion rates and LH:FSH ratios, FSH was infused at several rates, with hCG added to give varying hCG:FSH ratios for each FSH infusion rate. Administration of hCG alone was ineffective in causing ovulation except at the highest infusion rates. Adding hCG to FSH to reach a ratio of 0.2 IU hCG/U FSH significantly increased the superovulatory response to an intermediate, 1 U/day FSH dose, but not to the low, 0.5 U/day dose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Adult male rats were injected with different doses of hCG, or with 2.5 micrograms ovine LH subcutaneously, and other rats were mated with oestrous females. The animals were examined 4 h after treatments. Treatment with hCG resulted in a dose-dependent increase in leucocyte concentration in testicular blood vessels and in the number of blood vessels which could be labelled with intravenously injected carbon particles. Carbon leakage was not observed in control testes. Treatment with a low dose of ovine LH or inducing an endogenous LH peak by mating also resulted in leucocyte accumulation and vascular leakage of carbon in the testis. The magnitude of the response was considerably lower than after high doses of hCG. The physiological relevance of the discrete response observed after physiological LH stimulation is unknown but LH-induced changes in testicular microcirculation could be of interest for the understanding of the physiology and pathophysiology of the testis.  相似文献   

19.
This study reports the development and application of techniques to assess the reproductive status of male echidnas. The pattern of testosterone secretion over a 24-h period in five echidnas was documented. Testosterone secretion after injection i.m. of either 1000 IU hCG (n=4) or 4 microg GnRH agonist (n=6) was determined to establish whether this could be used as a practical index of the prevailing steroidogenic capacity of the testes. hCG (1000 IU) was also used to assess seasonal changes in testosterone secretion in six echidnas over a 13-month period. Seasonal changes in testicular volume were examined by transabdominal ultrasonography. Electroejaculation was attempted to monitor seasonal changes in sperm production, which was also determined by spermatorrhea. There was no apparent diurnal pattern of testosterone secretion in echidnas and circulating concentrations of testosterone remained relatively low (maximum 1.2 ng/mL) and stable over 24h. Injection of hCG resulted in an increase (P<0.01; n=4) in testosterone concentration with a peak (2.9+/-0.3 ng/mL) approximately 4h after injection. GnRH also induced an increase (P<0.01; n=6) in circulating testosterone that was apparent after 1h (2.6+/-0.3 ng/mL) and concentrations remained elevated (3.4+/-0.3 ng/mL) for up to 8h after injection. Seasonal changes in testosterone secretion determined after injection of hCG, increased (P=0.03; n=6) from late-autumn, peaked in late-winter, and decreased by early-spring. Testicular volume followed a similar seasonal pattern (P<0.01; n=6) with an increase from late-autumn, peak in winter and a decline in mid-spring. There was no seasonal change in live weight. Electroejaculation was attempted throughout two breeding seasons but no semen was obtained. Spermatorrhoea in the echidna was described for the first time and was subsequently used to assess seasonal sperm production. Spermatozoa were found in the urine from June to September. This study has demonstrated that exogenous hormones can be used to obtain an index of the prevailing steroidogenic capacity of the testes in echidnas, which is not apparent with repetitive non-stimulated samples over 24 h. The assessment of testosterone secretion after injection of trophic hormones provides a valuable and practical procedure for the assessment of reproductive status. Testicular ultrasonography and spermatorrhea are useful in assessing reproductive status and in this study were successfully used to determine seasonal reproduction in captive echidnas.  相似文献   

20.
The specific testicular uptake in vivo of 125I-labelled hCG was compared in control adult rats and adult rats made bilaterally cryptorchid 5 weeks previously. Although a similar temporal pattern of uptake was observed in both groups, uptake of hCG by cryptorchid testes was reduced at all times after injection by up to 70%. The possible causes of this impairment were investigated. It could not be accounted for by differences in the rate of absorption or clearance of 125I-labelled hCG in the two groups. Therefore, because hCG-induced increase in the permeability of testicular capillaries is a crucial factor in determining hCG uptake by the testis, this change was compared in control and cryptorchid testes. Although hCG induced a characteristic increase in testicular capillary wall permeability in both groups, this change was temporally delayed in cryptorchid testes, and occurred after hCG values in the blood had fallen. Even when hCG had crossed the capillary wall into testicular interstitial fluid, its uptake into the testicular tissue was significantly lower in cryptorchid than in control testes. These changes probably account for the impairment of gonadotrophin uptake by the cryptorchid testis and have important implications with respect to the aetiology of Leydig cell changes in cryptorchidism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号