首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
High‐throughput sequencing has revolutionized population and conservation genetics. RAD sequencing methods, such as 2b‐RAD, can be used on species lacking a reference genome. However, transferring protocols across taxa can potentially lead to poor results. We tested two different IIB enzymes (AlfI and CspCI) on two species with different genome sizes (the loggerhead turtle Caretta caretta and the sharpsnout seabream Diplodus puntazzo) to build a set of guidelines to improve 2b‐RAD protocols on non‐model organisms while optimising costs. Good results were obtained even with degraded samples, showing the value of 2b‐RAD in studies with poor DNA quality. However, library quality was found to be a critical parameter on the number of reads and loci obtained for genotyping. Resampling analyses with different number of reads per individual showed a trade‐off between number of loci and number of reads per sample. The resulting accumulation curves can be used as a tool to calculate the number of sequences per individual needed to reach a mean depth ≥20 reads to acquire good genotyping results. Finally, we demonstrated that selective‐base ligation does not affect genomic differentiation between individuals, indicating that this technique can be used in species with large genome sizes to adjust the number of loci to the study scope, to reduce sequencing costs and to maintain suitable sequencing depth for a reliable genotyping without compromising the results. Here, we provide a set of guidelines to improve 2b‐RAD protocols on non‐model organisms with different genome sizes, helping decision‐making for a reliable and cost‐effective genotyping.  相似文献   

2.
    
The development of genomic markers is described for Nile tilapia, Oreochromis niloticus, using the Diversity Arrays Technology (DArT) genotype‐by‐sequencing platform. A total of 13 215 single nucleotide polymorphism (SNP) markers and 12 490 silicoDArT (dominant) markers were identified from broodstock of two selective breeding programs [Genetically Improved Farmed Tilapia (GIFT) strain from Malaysia and the Abbassa strain from Egypt]. Over 10 000 SNPs were polymorphic in either strain, and 2985 and 3087 showed strain‐specific polymorphisms for the GIFT and Abbassa strains respectively. We demonstrate the potential utility of these markers for rapid genomic screening and use in breeding programs.  相似文献   

3.
    
In a de novo genotyping‐by‐sequencing (GBS) analysis of short, 64‐base tag‐level haplotypes in 4657 accessions of cultivated oat, we discovered 164741 tag‐level (TL) genetic variants containing 241224 SNPs. From this, the marker density of an oat consensus map was increased by the addition of more than 70000 loci. The mapped TL genotypes of a 635‐line diversity panel were used to infer chromosome‐level (CL) haplotype maps. These maps revealed differences in the number and size of haplotype blocks, as well as differences in haplotype diversity between chromosomes and subsets of the diversity panel. We then explored potential benefits of SNP vs. TL vs. CL GBS variants for mapping, high‐resolution genome analysis and genomic selection in oats. A combined genome‐wide association study (GWAS) of heading date from multiple locations using both TL haplotypes and individual SNP markers identified 184 significant associations. A comparative GWAS using TL haplotypes, CL haplotype blocks and their combinations demonstrated the superiority of using TL haplotype markers. Using a principal component‐based genome‐wide scan, genomic regions containing signatures of selection were identified. These regions may contain genes that are responsible for the local adaptation of oats to Northern American conditions. Genomic selection for heading date using TL haplotypes or SNP markers gave comparable and promising prediction accuracies of up to r = 0.74. Genomic selection carried out in an independent calibration and test population for heading date gave promising prediction accuracies that ranged between r = 0.42 and 0.67. In conclusion, TL haplotype GBS‐derived markers facilitate genome analysis and genomic selection in oat.  相似文献   

4.
    
Unusual patterns of mtDNA diversity can reveal interesting aspects of a species’ biology. However, making such inferences requires discerning among the many alternative scenarios that could underlie any given mtDNA pattern. Next‐generation sequencing methods provide large, multilocus data sets with increased power to resolve unusual mtDNA patterns. A mtDNA‐based phylogeography of the Savannah sparrow (Passerculus sandwichensis) previously identified two sympatric, but divergent (~2%) clades within the nominate subspecies group and a third clade that consisted of birds sampled from northwest Mexico. We revisited the phylogeography of this species using a population genomic data set to resolve the processes leading to the evolution of sympatric and divergent mtDNA lineages. We identified two genetic clusters in the genomic data set corresponding to (a) the nominate subspecies group and (b) northwestern Mexico birds. Following divergence, the nominate clade maintained a large, stable population, indicating that divergent mitochondrial lineages arose within a panmictic population. Simulations based on parameter estimates from this model further confirmed that this demographic history could produce observed levels of mtDNA diversity. Patterns of divergent, sympatric mtDNA lineages are frequently interpreted as admixture of historically isolated lineages. Our analyses reject this interpretation for Savannah sparrows and underscore the need for genomic data sets to resolve the evolutionary mechanisms behind anomalous, locus‐specific patterns.  相似文献   

5.
    
An extensive survey of the standing genetic variation in natural populations is among the priority steps in developing a species into a model system. In recent years, green foxtail (Setaria viridis), along with its domesticated form foxtail millet (S. italica), has rapidly become a promising new model system for C4 grasses and bioenergy crops, due to its rapid life cycle, large amount of seed production and small diploid genome, among other characters. However, remarkably little is known about the genetic diversity in natural populations of this species. In this study, we survey the genetic diversity of a worldwide sample of more than 200 S. viridis accessions, using the genotyping‐by‐sequencing technique. Two distinct genetic groups in S. viridis and a third group resembling S. italica were identified, with considerable admixture among the three groups. We find the genetic variation of North American S. viridis correlates with both geography and climate and is representative of the total genetic diversity in this species. This pattern may reflect several introduction/dispersal events of S. viridis into North America. We also modelled demographic history and show signal of recent population decline in one subgroup. Finally, we show linkage disequilibrium decay is rapid (<45 kb) in our total sample and slow in genetic subgroups. These results together provide an in‐depth understanding of the pattern of genetic diversity of this new model species on a broad geographic scale. They also provide key guidelines for on‐going and future work including germplasm preservation, local adaptation, crossing designs and genomewide association studies.  相似文献   

6.
    
The spruce budworm, Choristoneura fumiferana, is presumed to be panmictic across vast regions of North America. We examined the extent of panmixia by genotyping 3,650 single nucleotide polymorphism (SNP) loci in 1975 individuals from 128 collections across the continent. We found three spatially structured subpopulations: Western (Alaska, Yukon), Central (southeastern Yukon to the Manitoba–Ontario border), and Eastern (Manitoba–Ontario border to the Atlantic). Additionally, the most diagnostic genetic differentiation between the Central and Eastern subpopulations was chromosomally restricted to a single block of SNPs that may constitute an island of differentiation within the species. Geographic differentiation in the spruce budworm parallels that of its principal larval host, white spruce (Picea glauca), providing evidence that spruce budworm and spruce trees survived in the Beringian refugium through the Last Glacial Maximum and that at least two isolated spruce budworm populations diverged with spruce/fir south of the ice sheets. Gene flow in the spruce budworm may also be affected by mountains in western North America, habitat isolation in West Virginia, regional adaptations, factors related to dispersal, and proximity of other species in the spruce budworm species complex. The central and eastern geographic regions contain individuals that assign to Eastern and Central subpopulations, respectively, indicating that these barriers are not complete. Our discovery of previously undetected geographic and genomic structure in the spruce budworm suggests that further population modelling of this ecologically important insect should consider regional differentiation, potentially co‐adapted blocks of genes, and gene flow between subpopulations.  相似文献   

7.
    
Targeted GBS is a recent approach for obtaining an effective characterization for hundreds to thousands of markers. The high throughput of next‐generation sequencing technologies, moreover, allows sample multiplexing. The aims of this study were to (i) define a panel of single nucleotide polymorphisms (SNPs) in the cat, (ii) use GBS for profiling 16 cats, and (iii) evaluate the performance with respect to the inference using standard approaches at different coverage thresholds, thereby providing useful information for designing similar experiments. Probes for sequencing 230 variants were designed based on the Felis_catus_8.0. 8.0 genome. The regions comprised anonymous and non‐anonymous SNPs. Sixteen cat samples were analysed, some of which had already been genotyped in a large group of loci and one having been whole‐genome sequenced in the 99_Lives Cat Genome Sequencing Project. The accuracy of the method was assessed by comparing the GBS results with the genotypes already available. Overall, GBS achieved good performance, with 92–96% correct assignments, depending on the coverage threshold used to define the set of trustable genotypes. Analyses confirmed that (i) the reliability of the inference of each genotype depends on the coverage at that locus and (ii) the fraction of target loci whose genotype can be inferred correctly is a function of the total coverage. GBS proves to be a valid alternative to other methods. Data suggested a depth of less than 11× is required for greater than 95% accuracy. However, sequencing depth must be adapted to the total size of the targets to ensure proper genotype inference.  相似文献   

8.
    
Urban environments are warmer, have higher levels of atmospheric CO2 and have altered patterns of disturbance and precipitation than nearby rural areas. These differences can be important for plant growth and are likely to create distinct selective environments. We planted a common garden experiment with seeds collected from natural populations of the native annual plant Lepidium virginicum, growing in five urban and nearby rural areas in the northern United States to determine whether and how urban populations differ from those from surrounding rural areas. When grown in a common environment, plants grown from seeds collected from urban areas bolted sooner, grew larger, had fewer leaves, had an extended time between bolting and flowering, and produced more seeds than plants grown from seeds collected from rural areas. Interestingly, the rural populations exhibited larger phenotypic differences from one another than urban populations. Surprisingly, genomic data revealed that the majority of individuals in each of the urban populations were more closely related to individuals from other urban populations than they were to geographically proximate rural areas – the one exception being urban and rural populations from New York which were nearly identical. Taken together, our results suggest that selection in urban environments favors different traits than selection in rural environments and that these differences can drive adaptation and shape population structure.  相似文献   

9.
    
The origin and history of species are shaped by various evolutionary dynamics, including their persistence in the face of potential gene flow from related taxa. In this study, we use broad geographical and taxonomic sampling (2,219 individuals) to establish the distribution of species, hybrids and cryptic genetic variation within the conifer genus Picea (spruce) across western North America. We demonstrate that the six species of spruce in this region are distinguishable based on their genetic composition, and that the more closely related Engelmann spruce (P. engelmannii) and white spruce (P. glauca) have generated numerous and widespread hybrids. These hybrids occur in the central Rocky Mountains, well to the south of the well‐established region of admixture in Canada. Additionally, we provide evidence for subdivision within Engelmann spruce, manifested as a southern Rocky Mountains form, and a northern Rocky Mountain and Cascade mountains (western) form. In the intervening central Rocky Mountains region (forests in Wyoming and adjacent states) we found primarily individuals with admixed ancestry. Following their origin, these species of spruce have interacted repeatedly and in different geographical contexts. Multiple pairs of species have been shown to hybridize, yet the species persist and retain distinguishable compositions. At the same time, large geographical areas exist where hybrids are pervasive. Consequently, spruce provide a case study for the maintenance of species boundaries, particularly for how widespread hybridization need not lead to the collapse and loss of species.  相似文献   

10.
11.
    
Cyst nematodes are important agricultural pests responsible for billions of dollars of losses each year. Plant resistance is the most effective management tool, but it requires a close monitoring of population genetics. Current technologies for pathotyping and genotyping cyst nematodes are time‐consuming, expensive and imprecise. In this study, we capitalized on the reproduction mode of cyst nematodes to develop a simple population genetic analysis pipeline based on genotyping‐by‐sequencing and Pool‐Seq. This method yielded thousands of SNPs and allowed us to study the relationships between populations of different origins or pathotypes. Validation of the method on well‐characterized populations also demonstrated that it was a powerful and accurate tool for population genetics. The genomewide allele frequencies of 23 populations of golden nematode, from nine countries and representing the five known pathotypes, were compared. A clear separation of the pathotypes and fine genetic relationships between and among global populations were obtained using this method. In addition to being powerful, this tool has proven to be very time‐ and cost‐efficient and could be applied to other cyst nematode species.  相似文献   

12.
    
Global climate change poses a serious threat to the future health of coral reef ecosystems. This calls for management strategies that are focused on maximizing the evolutionary potential of coral reefs. Fundamental to this is an accurate understanding of the spatial genetic structure in dominant reef‐building coral species. In this study, we apply a genotyping‐by‐sequencing approach to investigate genome‐wide patterns of genetic diversity, gene flow, and local adaptation in a reef‐building coral, Pocillopora damicornis, across 10 degrees of latitude and a transition from temperate to tropical waters. We identified strong patterns of differentiation and reduced genetic diversity in high‐latitude populations. In addition, genome‐wide scans for selection identified a number of outlier loci putatively under directional selection with homology to proteins previously known to be involved in heat tolerance in corals and associated with processes such as photoprotection, protein degradation, and immunity. This study provides genomic evidence for both restricted gene flow and local adaptation in a widely distributed coral species, and highlights the potential vulnerability of leading‐edge populations to rapid environmental change as they are locally adapted, reproductively isolated, and have reduced levels of genetic diversity.  相似文献   

13.
    
Analysis of genetic diversity and population structure among Quercus fabri populations is essential for the conservation and utilization of Q. fabri resources. Here, the genetic diversity and structure of 158 individuals from 13 natural populations of Quercus fabri in China were analyzed using genotyping‐by‐sequencing (GBS). A total of 459,564 high‐quality single nucleotide polymorphisms (SNPs) were obtained after filtration for subsequent analysis. Genetic structure analysis revealed that these individuals can be clustered into two groups and the structure can be explained mainly by the geographic barrier, showed gene introgression from coastal to inland areas and high mountains could significantly hinder the mutual introgression of genes. Genetic diversity analysis indicated that the individual differences within groups are greater than the differences between the two groups. These results will help us better understand the genetic backgrounds of Q. fabri.  相似文献   

14.
    
A proactive approach to conservation must be predictive, anticipating how habitats will change and which species are likely to decline or prosper. We use composite species distribution modelling to identify suitable habitats for 18 members of the North American Atlantic Coastal Plain Flora (ACPF) since the Last Glacial Maximum and project these into the future. We then use Scirpus longii (Cyperaceae), a globally imperiled ACPF sedge with many of the characteristics of extinction vulnerability, as a case study. We integrate phylogeographical and population genetic analyses and species distribution modelling to develop a broad view of its current condition and prognosis for conservation. We use genotyping‐by‐sequencing to characterize the genomes of 142 S. longii individuals from 20 populations distributed throughout its range (New Jersey to Nova Scotia). We measure the distribution of genetic diversity in the species and reconstruct its phylogeographical history using the snapp and rase models. Extant populations of S. longii originated from a single refugium south of the Laurentide ice sheet around 25 ka. The genetic diversity of S. longii is exceedingly low, populations exhibit little genetic structure and the species is slightly inbred. Projected climate scenarios indicate that nearly half of extant populations of S. longii will be exposed to unsuitable climate by 2070. Similar changes in suitable habitat will occur for many other northern ACPF species—centres of diversity will shift northward and Nova Scotia may become the last refuges for those species not extinguished.  相似文献   

15.
    
Crop wild relatives (CWR) provide an important source of allelic diversity for any given crop plant species for counteracting the erosion of genetic diversity caused by domestication and elite breeding bottlenecks. Hordeum bulbosum L. is representing the secondary gene pool of the genus Hordeum. It has been used as a source of genetic introgressions for improving elite barley germplasm (Hordeum vulgare L.). However, genetic introgressions from Hbulbosum have yet not been broadly applied, due to a lack of suitable molecular tools for locating, characterizing, and decreasing by recombination and marker‐assisted backcrossing the size of introgressed segments. We applied next‐generation sequencing (NGS) based strategies for unlocking genetic diversity of three diploid introgression lines of cultivated barley containing chromosomal segments of its close relative H. bulbosum. Firstly, exome capture‐based (re)‐sequencing revealed large numbers of single nucleotide polymorphisms (SNPs) enabling the precise allocation of H. bulbosum introgressions. This SNP resource was further exploited by designing a custom multiplex SNP genotyping assay. Secondly, two‐enzyme‐based genotyping‐by‐sequencing (GBS) was employed to allocate the introgressed H. bulbosum segments and to genotype a mapping population. Both methods provided fast and reliable detection and mapping of the introgressed segments and enabled the identification of recombinant plants. Thus, the utilization of H. bulbosum as a resource of natural genetic diversity in barley crop improvement will be greatly facilitated by these tools in the future.  相似文献   

16.
17.
    
Understanding the factors that contribute to the generation of reproductively isolated forms is a fundamental goal of evolutionary biology. Cryptic species are an especially interesting challenge to study in this context since they lack obvious morphological differentiation that provides clues to adaptive divergence that may drive reproductive isolation. Geographical isolation in refugial areas during glacial cycling is known to be important for generating genetically divergent populations, but its role in the origination of new species is still not fully understood and likely to be situation dependent. We combine analysis of 35,434 single‐nucleotide polymorphisms (SNPs) with environmental niche modeling (ENM) to investigate genomic and ecological divergence in three cryptic species formerly classified as the field vole (Microtus agrestis). The SNPs demonstrate high genomic divergence (pairwise FST values of 0.45–0.72) and little evidence of gene flow among the three field vole cryptic species, and we argue that genetic drift may have been a particularly important mechanism for divergence in the group. The ENM reveals three areas as potential glacial refugia for the cryptic species and differing climatic niches, although with spatial overlap between species pairs. This evidence underscores the role that glacial cycling has in promoting genetic differentiation and reproductive isolation by subdivision into disjunct distributions at glacial maxima in areas relatively close to ice sheets. Future investigation of the intrinsic barriers to gene flow between the field vole cryptic species is required to fully assess the mechanisms that contribute to reproductive isolation. In addition, the Portuguese field vole (M. rozianus) shows a high inbreeding coefficient and a restricted climatic niche, and warrants investigation into its conservation status.  相似文献   

18.
19.
    
Divergence in sexual signals may drive reproductive isolation between lineages, but behavioural barriers can weaken in contact zones. Here, we investigate the role of song as a behavioural and genetic barrier in a contact zone between two subspecies of white‐crowned sparrows (Zonotrichia leucophrys). We employed a reduced genomic data set to assess population structure and infer the history underlying divergence, gene flow and hybridization. We also measured divergence in song and tested behavioural responses to song using playback experiments within and outside the contact zone. We found that the subspecies form distinct genetic clusters, and demographic inference supported a model of secondary contact. Song phenotype, particularly length of the first note (a whistle), was a significant predictor of genetic subspecies identity and genetic distance along the hybrid zone, suggesting a close link between song and genetic divergence in this system. Individuals from both parental and admixed localities responded significantly more strongly to their own song than to the other subspecies song, supporting song as a behavioural barrier. Putative parental and admixed individuals were not significantly different in their strength of discrimination between own and other songs; however, individuals from admixed localities tended to discriminate less strongly, and this difference in discrimination strength was explained by song dissimilarity as well as genetic distance. Therefore, we find that song acts as a reproductive isolating mechanism that is potentially weakening in a contact zone between the subspecies. Our findings also support the hypothesis that intraspecific song variation can reduce gene flow between populations.  相似文献   

20.
    
Species delimitation has seen a paradigm shift as increasing accessibility of genomic‐scale data enables separation of lineages with convergent morphological traits and the merging of recently diverged ecotypes that have distinguishing characteristics. We inferred the process of lineage formation among Australian species in the widespread and highly variable genus Pelargonium by combining phylogenomic and population genomic analyses along with breeding system studies and character analysis. Phylogenomic analysis and population genetic clustering supported seven of the eight currently described species but provided little evidence for differences in genetic structure within the most widely distributed group that containing P. australe. In contrast, morphometric analysis detected three deep lineages within Australian Pelargonium; with P. australe consisting of five previously unrecognized entities occupying separate geographic ranges. The genomic approach enabled elucidation of parallel evolution in some traits formerly used to delineate species, as well as identification of ecotypic morphological differentiation within recognized species. Highly variable morphology and trait convergence each contribute to the discordance between phylogenomic relationships and morphological taxonomy. Data suggest that genetic divergence among species within the Australian Pelargonium may result from allopatric speciation while morphological differentiation within and among species may be more strongly driven by environmental differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号