共查询到20条相似文献,搜索用时 15 毫秒
1.
Denis Bourguet Sergine Ponsard Rejane Streiff Serge Meusnier Philippe Audiot Jing Li Zhen‐Ying Wang 《Molecular ecology》2014,23(2):325-342
New agricultural pest species attacking introduced crops may evolve from pre‐existing local herbivores by ecological speciation, thereby becoming a species by becoming a pest. We compare the evolutionary pathways by which two maize pests (the Asian and the European corn borers, ACB and ECB) in the genus Ostrinia (Lepidoptera, Crambidae) probably diverged from an ancestral species close to the current Adzuki bean borer (ABB). We typed larval Ostrinia populations collected on maize and dicotyledons across China and eastern Siberia, at microsatellite and mitochondrial loci. We found only two clusters: one on maize (as expected) and a single one on dicotyledons despite differences in male mid‐tibia morphology, suggesting that all individuals from dicotyledons belonged to the ABB. We found evidence for migrants and hybrids on both host plant types. Hybrids suggest that field reproductive isolation is incomplete between ACB and ABB. Interestingly, a few individuals with an ‘ABB‐like’ microsatellite profile collected on dicotyledons had ‘ACB’ mtDNA rather than ‘ABB‐like’ mtDNA, whereas the reverse was never found on maize. This suggests asymmetrical gene flow directed from the ACB towards the ABB. Hybrids and backcrosses in all directions were obtained in no‐choice tests. In laboratory conditions, they survived as well as parental strain individuals. In Xinjiang, we found ACB and ECB in sympatry, but no hybrids. Altogether, our results suggest that reproductive isolation between ACB and ABB is incomplete and mostly prezygotic. This points to ecological speciation as a possible evolutionary scenario, as previously found for ECB and ABB in Europe. 相似文献
2.
Martin Schäfer Christoph Brütting Klaus Gase Michael Reichelt Ian Baldwin Stefan Meldau 《The Plant journal : for cell and molecular biology》2013,76(3):506-518
Field experiments with transgenic plants often reveal the functional significance of genetic traits that are important for the performance of the plants in their natural environments. Until now, only constitutive overexpression, ectopic expression and gene silencing methods have been used to analyze gene‐related phenotypes in natural habitats. These methods do not allow sufficient control over gene expression for the study of ecological interactions in real time, of genetic traits that play essential roles in development, or of dose‐dependent effects. We applied the sensitive dexamethasone (DEX)‐inducible pOp6/LhGR expression system to the ecological model plant Nicotiana attenuata and established a lanolin‐based DEX application method to facilitate ectopic gene expression and RNA interference‐mediated gene silencing in the field and under challenging conditions (e.g. high temperature, wind and UV radiation). Fully established field‐grown plants were used to silence phytoene desaturase and thereby cause photobleaching only in specific plant sectors, and to activate expression of the cytokinin (CK) biosynthesis gene isopentenyl transferase (ipt). We used ipt expression to analyze the role of CKs in both the glasshouse and the field to understand resistance to the native herbivore Tupiocoris notatus, which attacks plants at small spatial scales. By spatially restricting ipt expression and elevating CK levels in single leaves, damage by T. notatus increased, demonstrating the role of CKs in this plant–herbivore interaction at a small scale. As the arena of most ecological interactions is highly constrained in time and space, these tools will advance the genetic analysis of dynamic traits that matter for plant performance in nature. 相似文献
3.
Novel evidence suggests that a ‘Rickettsia felis‐like’ organism is an endosymbiont of the desert flea,Xenopsylla ramesis 下载免费PDF全文
Sabine Rzotkiewicz Ricardo Gutiérrez Boris R. Krasnov Danny Morick Irina S. Khokhlova Yaarit Nachum‐Biala Gad Baneth Shimon Harrus 《Molecular ecology》2015,24(6):1364-1373
Fleas are acknowledged vectors and reservoirs of various bacteria that present a wide range of pathogenicity. In this study, fleas collected from wild rodents from the Negev desert in southern Israel were tested for RickettsiaDNA by targeting the 16S rRNA (rrs) gene. Thirty‐eight Xenopsylla ramesis, 91 Synosternus cleopatrae and 15 Leptopsylla flea pools (a total of 568 fleas) were screened. RickettsiaDNA was detected in 100% of the X. ramesis and in one S. cleopatrae flea pools. None of L. algira flea pools was found positive. All positive flea pools were further characterized by sequencing of five additional genetic loci (gltA, ompB, ompA, htrA and fusA). The molecular identification of the positive samples showed all sequences to be closely related to the ‘Rickettsia felis‐like’ organisms (99–100% similarities in the six loci). To further investigate the association between ‘R. felis‐like’ and X. ramesis fleas, ten additional single X. ramesis adult fleas collected from the wild and five laboratory‐maintained X. ramesis imago, five larva pools (2–18 larvae per pool) and two egg pools (18 eggs per pool) were tested for the presence of ‘R. felis‐like’ DNA. All samples were found positive by a specific ompAPCR assay, confirming the close association of this Rickettsia species with X. ramesis in all its life stages. These results suggest a symbiotic association between ‘Rickettsia felis‐like’ and X. ramesis fleas. 相似文献
4.
5.
Leaf temperatures were lower when light entry at the leaf tip window was prevented through covering the window with reflective tape, relative to leaf temperatures of plants with leaf tip windows covered with transparent tape. This was true when leaf temperatures were measured with an infrared thermometer, but not with a fine‐wire thermocouple. Leaf tip windows of Lithops growing in high‐rainfall regions of southern Africa were larger than the windows of plants (numerous individuals of 17 species) growing in areas with less rainfall and, thus, more annual insolation. The results of this study indicate that leaf tip windows of desert plants with an underground growth habit can allow entry of supra‐optimal levels of radiant energy, thus most likely inhibiting photosynthetic activity. Consequently, the size of the leaf tip windows correlates inversely with habitat solar irradiance, minimising the probability of photoinhibition, while maximising the absorption of irradiance in cloudy, high‐rainfall regions. 相似文献
6.
The evolutionary history of the ‘alba’ polymorphism in the butterfly subfamily Coliadinae (Lepidoptera: Pieridae) 下载免费PDF全文
Lisa B. Limeri Nathan I. Morehouse 《Biological journal of the Linnean Society. Linnean Society of London》2016,117(4):716-724
Polymorphisms are common in the natural world and have played an important role in our understanding of how selection maintains multiple phenotypes within extant populations. Studying the evolutionary history of polymorphisms has revealed important features of this widespread form of phenotypic diversity, including its role in speciation, niche breadth, and range size. In the present study, we examined the evolutionary history of a ubiquitous colour polymorphism in the sulphur butterflies (subfamily: Coliadinae) termed the ‘alba’ polymorphism. We investigated the origin and stability of the ‘alba’ polymorphism using ancestral state reconstruction analysis. Our results indicate that the ancestor of the Coliadinae was polymorphic and that this polymorphism has undergone repeated transitions to monomorphism. Repeated loss of polymorphism suggests that the ‘alba’ polymorphism may be relatively unstable over evolutionary time. These results provide a framework for future studies on the origin and maintenance of the ‘alba’ polymorphism and guide the direction of future hypotheses. We discuss these results in light of current understandings of how the ‘alba’ polymorphism is maintained in extant populations. 相似文献
7.
Sarah N. Cockburn Tamara S. Haselkorn Phineas T. Hamilton Elizabeth Landzberg John Jaenike Steve J. Perlman 《Ecology letters》2013,16(5):609-616
Facultative symbionts can represent important sources of adaptation for their insect hosts and thus have the potential for rapid spread. Drosophila neotestacea harbours a heritable symbiont, Spiroplasma, that confers protection against parasitic nematodes. We previously found a cline in Spiroplasma prevalence across central Canada, ending abruptly at the Rocky Mountains. Resampling these populations 9 years later revealed that Spiroplasma had increased substantially across the region, resembling a Fisherian wave of advance. Associations between Spiroplasma infection and host mitochondrial DNA indicate that the increase was due to local increase of Spiroplasma‐infected flies. Finally, we detected Spiroplasma west of the Rocky Mountains for the first time and showed that defence against nematodes occurs in flies with a western genetic background. Because nematode infection is common throughout D. neotestacea's range, we expect Spiroplasma to spread to the Pacific coast. 相似文献
8.
The speciation history of Anaspides tasmaniae (Crustacea: Malacostraca) and its close relatives (family Anaspididae) was studied by phylogenetic and molecular clock analyses of mitochondrial DNA sequences. The phylogenetic analyses revealed that the Anaspides morphotype conceals at least three cryptic species belonging to different parts of its range. The occurrence of multiple cryptic phylogenetic species within one morphological type shows that substantial genetic evolution has occurred independently of morphological evolution. Molecular clock dating of the speciation events that generated both the cryptic and the morphological species of Anaspididae indicated continuous speciation within this group since the Palaeocene ~55 million years ago. This relatively constant rate of recent morphological and cryptic speciation within the Anaspididae suggests that the speciation rate in this group does not correlate with its low extinction rate or morphological conservatism. 相似文献
9.
Meral Kence Devrim Oskay Tugrul Giray Aykut Kence 《Entomologia Experimentalis et Applicata》2013,149(1):36-43
Honey bee [Apis mellifera L. (Hymenoptera: Apidae)] genetic diversity may be the key to responding to novel health challenges faced by this important pollinator. In this study, we first compared colonies of four honey bee races, A. m. anatoliaca, A. m. carnica, A. m. caucasica, and A. m. syriaca from Turkey, with respect to honey storage, bee population size, and defenses against varroa. The mite Varroa destructor Anderson & Trueman (Acari: Varroidae) is an important pest of honey bee colonies. There are genetic correlates with two main defenses of bees against this parasite: hygienic behavior, or removing infested brood, and grooming, which involves shaking and swiping off mites and biting them. In the second part of this study, we examined the relationship of these two types of defenses, hygiene and grooming, and their correlation with infestation rates in 32 genetically diverse colonies in a ‘common garden’ apiary. Mite biting was found to be negatively correlated with mite infestation levels. 相似文献
10.
11.
Thomas Knebelsberger Monica Landi Hermann Neumann Matthias Kloppmann Anne F. Sell Patrick D. Campbell Silke Laakmann Michael J. Raupach Gary R. Carvalho Filipe O. Costa 《Molecular ecology resources》2014,14(5):1060-1071
Valid fish species identification is an essential step both for fundamental science and fisheries management. The traditional identification is mainly based on external morphological diagnostic characters, leading to inconsistent results in many cases. Here, we provide a sequence reference library based on mitochondrial cytochrome c oxidase subunit I (COI) for a valid identification of 93 North Atlantic fish species originating from the North Sea and adjacent waters, including many commercially exploited species. Neighbour‐joining analysis based on K2P genetic distances formed nonoverlapping clusters for all species with a ≥99% bootstrap support each. Identification was successful for 100% of the species as the minimum genetic distance to the nearest neighbour always exceeded the maximum intraspecific distance. A barcoding gap was apparent for the whole data set. Within‐species distances ranged from 0 to 2.35%, while interspecific distances varied between 3.15 and 28.09%. Distances between congeners were on average 51‐fold higher than those within species. The validation of the sequence library by applying BOLDs barcode index number (BIN) analysis tool and a ranking system demonstrated high taxonomic reliability of the DNA barcodes for 85% of the investigated fish species. Thus, the sequence library presented here can be confidently used as a benchmark for identification of at least two‐thirds of the typical fish species recorded for the North Sea. 相似文献
12.
Over time, populations of species can expand, contract, fragment and become isolated, creating subpopulations that must adapt to local conditions. Understanding how species maintain variation after divergence as well as adapt to these changes in the face of gene flow is of great interest, especially as the current climate crisis has caused range shifts and frequent migrations for many species. Here, we characterize how a mycophageous fly species, Drosophila innubila, came to inhabit and adapt to its current range which includes mountain forests in south‐western USA separated by large expanses of desert. Using population genomic data from more than 300 wild‐caught individuals, we examine four populations to determine their population history in these mountain forests, looking for signatures of local adaptation. In this first extensive study, establishing D. innubila as a key genomic "Sky Island" model, we find D. innubila spread northwards during the previous glaciation period (30–100 KYA) and have recently expanded even further (0.2–2 KYA). D. innubila shows little evidence of population structure, consistent with a recent establishment and genetic variation maintained since before geographic stratification. We also find some signatures of recent selective sweeps in chorion proteins and population differentiation in antifungal immune genes suggesting differences in the environments to which flies are adapting. However, we find little support for long‐term recurrent selection in these genes. In contrast, we find evidence of long‐term recurrent positive selection in immune pathways such as the Toll signalling system and the Toll‐regulated antimicrobial peptides. 相似文献
13.
Chia‐Hao Chang Kwang‐Tsao Shao Han‐Yang Lin Yung‐Chieh Chiu Mao‐Ying Lee Shih‐Hui Liu Pai‐Lei Lin 《Molecular ecology resources》2017,17(4):796-805
Species identification based on the DNA sequence of a fragment of the cytochrome c oxidase subunit I gene in the mitochondrial genome, DNA barcoding, is widely applied to assist in sustainable exploitation of fish resources and the protection of fish biodiversity. The aim of this study was to establish a reliable barcoding reference database of the native ray‐finned fishes in Taiwan. A total of 2993 individuals, belonging to 1245 species within 637 genera, 184 families and 29 orders of ray‐finned fishes and representing approximately 40% of the recorded ray‐finned fishes in Taiwan, were PCR amplified at the barcode region and bidirectionally sequenced. The mean length of the 2993 barcodes is 549 bp. Mean congeneric K2P distance (15.24%) is approximately 10‐fold higher than the mean conspecific one (1.51%), but approximately 1.4‐fold less than the mean genetic distance between families (20.80%). The Barcode Index Number (BIN) discordance report shows that 2993 specimens represent 1275 BINs and, among them, 86 BINs are singletons, 570 BINs are taxonomically concordant, and the other 619 BINs are taxonomically discordant. Barcode gap analysis also revealed that more than 90% of the collected fishes in this study can be discriminated by DNA barcoding. Overall, the barcoding reference database established by this study reveals the need for taxonomic revisions and voucher specimen rechecks, in addition to assisting in the management of Taiwan's fish resources and diversity. 相似文献
14.
15.
16.
‘Fukusensor:’ a genetically engineered plant for reporting DNA damage in response to gamma radiation
Yanhui Peng Sara Allen Reginald J. Millwood C. Neal Stewart Jr 《Plant biotechnology journal》2014,12(9):1329-1332
Transgenic plants can be designed to be ‘phytosensors’ for detection of environmental contaminants and pathogens. In this study, we describe the design and testing of a radiation phytosensor in the form of green fluorescence protein (GFP)‐transgenic Arabidopsis plant utilizing a DNA repair deficiency mutant background as a host. Mutant lines of Arabidopsis AtATM (At3g48190), which are hypersensitive to gamma irradiation, were used to generate stable GFP transgenic plants in which a gfp gene was under the control of a strong constitutive CaMV 35S promoter. Mutant and nonmutant genetic background transgenic plants were treated with 0, 1, 5, 10 and 100 Gy radiation doses, respectively, using a Co‐60 source. After 1 week, the GFP expression levels were drastically reduced in young leaves of mutant background plants (treated by 10 and 100 Gy), whereas there were scant visible differences in the fluorescence of the nonmutant background plants. These early results indicate that transgenic plants could serve in a relevant sensor system to report radiation dose and the biological effects to organisms in response to radionuclide contamination. 相似文献
17.
18.
Paul D. Rymer Christopher W. Dick Giovanni G. Vendramin Anna Buonamici David Boshier 《Journal of Biogeography》2013,40(4):693-706
Aim Although hundreds of tree species have broad geographic ranges in the Neotropics, little is known about how such widespread species attained disjunct distributions around mountain, ocean and xeric barriers. Here, we examine the phylogeographic structure of a widespread and economically important tree, Cordia alliodora, to: (1) test the roles of vicariance and dispersal in establishing major range disjunctions, (2) determine which geographic regions and/or habitats contain the highest levels of genetic diversity, and (3) infer the geographic origin of the species. Location Twenty‐five countries in Central and South America, and the West Indies. Methods Chloroplast simple sequence repeats (cpSSR; eight loci) were assayed in 67 populations (240 individuals) sampled from the full geographic range of C. alliodora. Chloroplast (trnH–psbA) and nuclear (internal transcribed spacer, ITS) DNA sequences were sampled from a geographically representative subset. Genetic structure was determined with samova , structure and haplotype networks. Analysis of molecular variance (AMOVA) and rarefaction analyses were used to compare regional haplotype diversity and differentiation. Results Although the ITS region was polymorphic it revealed limited phylogeographic structure, and trnH–psbA was monomorphic. However, structure analysis of cpSSR variation recovered three broad demes spanning Central America (Deme 1), the Greater Antilles and the Chocó (Deme 2), and the Lesser Antilles and cis‐Andean South America (Deme 3). samova showed two predominant demes (Deme 1 + 2 and Deme 3). The greatest haplotype diversity was detected east of the Andes, while significantly more genetic variation was partitioned among trans‐Andean populations. Populations experiencing high precipitation seasonality (dry ecotype) had greater levels of genetic variation. Main conclusions Cordia alliodora displayed weak cis‐ and trans‐Andean phylogeographic structure based on DNA sequence data, indicative of historical dispersal around this barrier and genetic exchange across its broad range. The cpSSR data revealed phylogeographic structure corresponding to three biogeographic zones. Patterns of genetic diversity are indicative of an origin in the seasonally dry habitats of South America. Therefore, C. alliodora fits the disperser hypothesis for widespread Neotropical species. Dispersal is evident in the West Indies and the northern Andean cordilleras. The dry ecotype harbours genetic variation that is likely to represent the source for the establishment of populations under future warmer and drier climatic scenarios. 相似文献
19.
‘Last In–First Out’: seasonal variations of non‐structural carbohydrates,glucose‐6‐phosphate and ATP in tubers of two Arum species 下载免费PDF全文
E. Petrussa F. Boscutti A. Vianello V. Casolo 《Plant biology (Stuttgart, Germany)》2018,20(2):346-356
- Knowledge on the metabolism of polysaccharide reserves in wild species is still scarce. In natural sites we collected tubers of Arum italicum Mill. and A. maculatum L. – two geophytes with different apparent phenological timing, ecology and chorology – during five stages of the annual cycle in order to understand patterns of reserve accumulation and degradation.
- Both the entire tuber and its proximal and distal to shoot portion were utilised. Pools of non‐structural carbohydrates (glucose, sucrose and starch), glucose‐6‐phosphate and ATP were analysed as important markers of carbohydrate metabolism.
- In both species, starch and glucose content of the whole tuber significantly increased from sprouting to the maturation/senescence stages, whereas sucrose showed an opposite trend; ATP and glucose‐6‐phosphate were almost stable and dropped only at the end of the annual cycle. Considering the two different portions of the tuber, both ATP and glucose‐6‐phosphate concentrations were higher in proximity to the shoot in all seasonal stages, except the flowering stage.
- Our findings suggest that seasonal carbon partitioning in the underground organ is driven by phenology and occurs independently of seasonal climate conditions. Moreover, our results show that starch degradation, sustained by elevated ATP and glucose‐6‐phosphate pools, starts in the peripheral, proximal‐to‐shoot portion of the tuber, consuming starch accumulated in the previous season, as a ‘Last In–First Out’ mechanism of carbohydrate storage.
20.
Mixed Infection and Natural Spread of ‘Candidatus Phytoplasma asteris’ and Mungbean Yellow Mosaic India Virus Affecting Soya Bean Crop in India 下载免费PDF全文
Shailender Kumar Prachi Sharma Susheel Sharma G. P. Rao 《Journal of Phytopathology》2015,163(5):395-406
Suspected phytoplasma and virus‐like symptoms of little leaf, yellow mosaic and witches’ broom were recorded on soya bean and two weed species (Digitaria sanguinalis and Parthenium hysterophorus), at experimental fields of Indian Agricultural Research Institute, New Delhi, India, in August–September 2013. The phytoplasma aetiology was confirmed in symptomatic soya bean and both the weed species by direct and nested PCR assays with phytoplasma‐specific universal primer pairs (P1/P6 and R16F2n/R16R2n). One major leafhopper species viz. Empoasca motti Pruthi feeding on symptomatic soya bean plants was also found phytoplasma positive in nested PCR assays. Sequencing BLASTn search analysis and phylogenetic analysis revealed that 16Sr DNA sequences of phytoplasma isolates of soya bean, weeds and leafhoppers had 99% sequence identity among themselves and were related to strains of ‘Candidatus Phytoplasma asteris’. PCR assays with Mungbean yellow mosaic India virus (MYMIV) coat‐protein‐specific primers yielded an amplicon of approximately 770 bp both from symptomatic soya bean and from whiteflies (Bemisia tabaci) feeding on soya bean, confirmed the presence of MYMIV in soya bean and whitefly. Hence, this study suggested the mixed infection of MYMIV and ‘Ca. P. asteris’ with soya bean yellow leaf and witches’ broom syndrome. The two weed species (D. sanguinalis and P. hysterophorus) were recorded as putative alternative hosts for ‘Ca. P. asteris’ soya bean Indian strain. However, the leafhopper E. motti was recorded as putative vector for the identified soya bean phytoplasma isolate, and the whitefly (B. tabaci) was identified as vector of MYMIV which belonged to Asia‐II‐1 genotype. 相似文献