首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
High‐density genome‐wide sequencing increases the likelihood of discovering genes of major effect and genomic structural variation in organisms. While there is an increasing availability of reference genomes across broad taxa, the greatest limitation to whole‐genome sequencing of multiple individuals continues to be the costs associated with sequencing. To alleviate excessive costs, pooling multiple individuals with similar phenotypes and sequencing the homogenized DNA (Pool‐Seq) can achieve high genome coverage, but at the loss of individual genotypes. Although Pool‐Seq has been an effective method for association mapping in model organisms, it has not been frequently utilized in natural populations. To extend bioinformatic tools for rapid implementation of Pool‐Seq data in nonmodel organisms, we developed a pipeline called PoolParty and illustrate its effectiveness in genetic association mapping. Alignment expectations based on five pooled Chinook salmon (Oncorhynchus tshawytscha) libraries showed that approximately 48% genome coverage per library could be achieved with reasonable sequencing effort. We additionally examined male and female O. tshawytscha libraries to illustrate how Pool‐Seq techniques can successfully map known genes associated with functional differences among sexes such as growth hormone 2. Finally, we compared pools of individuals of different spawning ages for each sex to discover novel genes involved with age at maturity in O. tshawytscha such as opsin4 and transmembrane protein19. While not appropriate for every system, Pool‐Seq data processed by the PoolParty pipeline is a practical method for identifying genes of major effect in nonmodel organisms when high genome coverage is necessary and cost is a limiting factor.  相似文献   

3.
4.
5.
6.
7.
High‐throughput sequencing methods for genotyping genome‐wide markers are being rapidly adopted for phylogenetics of nonmodel organisms in conservation and biodiversity studies. However, the reproducibility of SNP genotyping and degree of marker overlap or compatibility between datasets from different methodologies have not been tested in nonmodel systems. Using double‐digest restriction site‐associated DNA sequencing, we sequenced a common set of 22 specimens from the butterfly genus Speyeria on two different Illumina platforms, using two variations of library preparation. We then used a de novo approach to bioinformatic locus assembly and SNP discovery for subsequent phylogenetic analyses. We found a high rate of locus recovery despite differences in library preparation and sequencing platforms, as well as overall high levels of data compatibility after data processing and filtering. These results provide the first application of NGS methods for phylogenetic reconstruction in Speyeria and support the use and long‐term viability of SNP genotyping applications in nonmodel systems.  相似文献   

8.
9.
Molecular markers produced by next‐generation sequencing (NGS) technologies are revolutionizing genetic research. However, the costs of analysing large numbers of individual genomes remain prohibitive for most population genetics studies. Here, we present results based on mathematical derivations showing that, under many realistic experimental designs, NGS of DNA pools from diploid individuals allows to estimate the allele frequencies at single nucleotide polymorphisms (SNPs) with at least the same accuracy as individual‐based analyses, for considerably lower library construction and sequencing efforts. These findings remain true when taking into account the possibility of substantially unequal contributions of each individual to the final pool of sequence reads. We propose the intuitive notion of effective pool size to account for unequal pooling and derive a Bayesian hierarchical model to estimate this parameter directly from the data. We provide a user‐friendly application assessing the accuracy of allele frequency estimation from both pool‐ and individual‐based NGS population data under various sampling, sequencing depth and experimental error designs. We illustrate our findings with theoretical examples and real data sets corresponding to SNP loci obtained using restriction site–associated DNA (RAD) sequencing in pool‐ and individual‐based experiments carried out on the same population of the pine processionary moth (Thaumetopoea pityocampa). NGS of DNA pools might not be optimal for all types of studies but provides a cost‐effective approach for estimating allele frequencies for very large numbers of SNPs. It thus allows comparison of genome‐wide patterns of genetic variation for large numbers of individuals in multiple populations.  相似文献   

10.
11.
12.
13.
14.
Sequencing pools of individuals (Pool‐Seq) is a cost‐effective method to determine genome‐wide allele frequency estimates. Given the importance of meta‐analyses combining data sets, we determined the influence of different genomic library preparation protocols on the consistency of allele frequency estimates. We found that typically no more than 1% of the variation in allele frequency estimates could be attributed to differences in library preparation. Also read length had only a minor effect on the consistency of allele frequency estimates. By far, the most pronounced influence could be attributed to sequence coverage. Increasing the coverage from 30‐ to 50‐fold improved the consistency of allele frequency estimates by at least 27%. We conclude that Pool‐Seq data can be easily combined across different library preparation methods, but sufficient sequence coverage is key to reliable results.  相似文献   

15.
16.
17.
18.
Advanced resources for genome‐assisted research in barley (Hordeum vulgare) including a whole‐genome shotgun assembly and an integrated physical map have recently become available. These have made possible studies that aim to assess genetic diversity or to isolate single genes by whole‐genome resequencing and in silico variant detection. However such an approach remains expensive given the 5 Gb size of the barley genome. Targeted sequencing of the mRNA‐coding exome reduces barley genomic complexity more than 50‐fold, thus dramatically reducing this heavy sequencing and analysis load. We have developed and employed an in‐solution hybridization‐based sequence capture platform to selectively enrich for a 61.6 megabase coding sequence target that includes predicted genes from the genome assembly of the cultivar Morex as well as publicly available full‐length cDNAs and de novo assembled RNA‐Seq consensus sequence contigs. The platform provides a highly specific capture with substantial and reproducible enrichment of targeted exons, both for cultivated barley and related species. We show that this exome capture platform provides a clear path towards a broader and deeper understanding of the natural variation residing in the mRNA‐coding part of the barley genome and will thus constitute a valuable resource for applications such as mapping‐by‐sequencing and genetic diversity analyzes.  相似文献   

19.
20.
Sequencing of pooled samples (Pool-Seq) using next-generation sequencing technologies has become increasingly popular, because it represents a rapid and cost-effective method to determine allele frequencies for single nucleotide polymorphisms (SNPs) in population pools. Validation of allele frequencies determined by Pool-Seq has been attempted using an individual genotyping approach, but these studies tend to use samples from existing model organism databases or DNA stores, and do not validate a realistic setup for sampling natural populations. Here we used pyrosequencing to validate allele frequencies determined by Pool-Seq in three natural populations of Arabidopsis halleri (Brassicaceae). The allele frequency estimates of the pooled population samples (consisting of 20 individual plant DNA samples) were determined after mapping Illumina reads to (i) the publicly available, high-quality reference genome of a closely related species (Arabidopsis thaliana) and (ii) our own de novo draft genome assembly of A. halleri. We then pyrosequenced nine selected SNPs using the same individuals from each population, resulting in a total of 540 samples. Our results show a highly significant and accurate relationship between pooled and individually determined allele frequencies, irrespective of the reference genome used. Allele frequencies differed on average by less than 4%. There was no tendency that either the Pool-Seq or the individual-based approach resulted in higher or lower estimates of allele frequencies. Moreover, the rather high coverage in the mapping to the two reference genomes, ranging from 55 to 284x, had no significant effect on the accuracy of the Pool-Seq. A resampling analysis showed that only very low coverage values (below 10-20x) would substantially reduce the precision of the method. We therefore conclude that a pooled re-sequencing approach is well suited for analyses of genetic variation in natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号