首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Several l-aminoacyl-tRNA synthetases can transfer a d-amino acid onto their cognate tRNA(s). This harmful reaction is counteracted by the enzyme d-aminoacyl-tRNA deacylase. Two distinct deacylases were already identified in bacteria (DTD1) and in archaea (DTD2), respectively. Evidence was given that DTD1 homologs also exist in nearly all eukaryotes, whereas DTD2 homologs occur in plants. On the other hand, several bacteria, including most cyanobacteria, lack genes encoding a DTD1 homolog. Here we show that Synechocystis sp. PCC6803 produces a third type of deacylase (DTD3). Inactivation of the corresponding gene (dtd3) renders the growth of Synechocystis sp. hypersensitive to the presence of d-tyrosine. Based on the available genomes, DTD3-like proteins are predicted to occur in all cyanobacteria. Moreover, one or several dtd3-like genes can be recognized in all cellular types, arguing in favor of the nearubiquity of an enzymatic function involved in the defense of translational systems against invasion by d-amino acids.Although they are detected in various living organisms (reviewed in Ref. 1), d-amino acids are thought not to be incorporated into proteins, because of the stereospecificity of aminoacyl-tRNA synthetases and of the translational machinery, including EF-Tu and the ribosome (2). However, the discrimination between l- and d-amino acids by aminoacyl-tRNA synthetases is not equal to 100%. Significant d-aminoacylation of their cognate tRNAs by Escherichia coli tyrosyl-, tryptophanyl-, aspartyl-, lysyl-, and histidyl-tRNA synthetases has been characterized in vitro (39). Recently, using a bacterium, transfer of d-tyrosine onto tRNATyr was shown to occur in vivo (10).With such misacylation reactions, the resulting d-aminoacyl-tRNAs form a pool of metabolically inactive molecules, at best. At worst, d-aminoacylated tRNAs infiltrate the protein synthesis machinery. Although the latter harmful possibility has not yet been firmly established, several cells were shown to possess a d-tyrosyl-tRNA deacylase, or DTD, that should help them counteract the accumulation of d-aminoacyl-tRNAs. This enzyme shows a broad specificity, being able to remove various d-aminoacyl moieties from the 3′-end of a tRNA (46, 11). Such a function makes the deacylase a member of the family of enzymes capable of editing in trans mis-aminoacylated tRNAs. This family includes several homologs of aminoacyl-tRNA synthetase editing domains (12), as well as peptidyl-tRNA hydrolase (13, 14).Two distinct deacylases have already been discovered. The first one, called DTD1, is predicted to occur in most bacteria and eukaryotes (see d-amino acids, including d-tyrosine (6). In fact, in an E. coli Δdtd strain grown in the presence of 2.4 mm d-tyrosine, as much as 40% of the cellular tRNATyr pool becomes esterified with d-tyrosine (10).

TABLE 1

Distribution of DTD1 and DTD2 homologs in various phylogenetic groupsHomologs of DTD1 and DTD2 were searched for using a genomic Blast analysis against complete genomes in the NCBI Database (www.ncbi.nlm.nih.gov). Values in the table are number of species. For instance, E. coli is counted only once in γ-proteobacteria despite the fact that several E. coli strains have been sequenced.
DTD1DTD2DTD1 + DTD2None
Bacteria
    Acidobacteria 2 0 0 0
    Actinobacteria 27 0 0 8
    Aquificae 1 0 0 0
    Bacteroidetes/Chlorobi 12 0 0 5
    Chlamydiae 1 0 0 6
    Chloroflexi 4 0 0 0
    Cyanobacteria 5 0 0 16
    Deinococcus/Thermus 4 0 0 0
    Firmicutes
        Bacillales 19 0 0 0
        Clostridia 19 0 0 0
        Lactobacillales 23 0 0 0
        Mollicutes 0 0 0 15
    Fusobacteria/Planctomycetes 2 0 0 0
    Proteobacteria
        α 6 0 0 55
        β 24 0 0 11
        γ 80 0 0 8
        δ 15 0 0 0
        ε 1 0 0 12
    Spirochaetes 0 0 0 7
    Thermotogae 5 0 0 0
Archaea
    Crenarchaeota 0 13 0 0
    Euryarchaeota 1 26 0 2
    Nanoarchaeota 0 0 0 1
Eukaryota
    Dictyosteliida 1 0 0 0
    Fungi/Metazoa
        Fungi 13 0 0 1
        Metazoa 19 0 0 0
    Kinetoplastida 3 0 0 0
    Viridiplantae 4 4 4 0
Open in a separate windowHomologs of dtd/DTD1 are not found in the available archaeal genomes except that of Methanosphaera stadtmanae. A search for deacylase activity in Sulfolobus solfataricus and Pyrococcus abyssi led to the detection of another enzyme (DTD2), completely different from the DTD1 protein (15). Importing dtd2 into E. coli functionally compensates for dtd deprivation. As shown in 16).Several cells contain neither dtd nor dtd2 homologs (d-tyrosyl-tRNA deacylase (DTD3). This protein, encoded by dtd3, behaves as a metalloenzyme. Sensitivity of the growth of Synechocystis to external d-tyrosine is strongly exacerbated by the disruption of dtd3. Moreover, expression of the Synechocystis DTD3 in a Δdtd E. coli strain, from a plasmid, restores the resistance of the bacterium to d-tyrosine. Finally, using the available genomes, we examined the occurrence of DTD3 in the living world. The prevalence of DTD3-like proteins is surprisingly high. It suggests that the defense of protein synthesis against d-amino acids is universal.  相似文献   

4.
Dynamic changes in cytosolic and nuclear Ca2+ concentration are reported to play a critical regulatory role in different aspects of skeletal muscle development and differentiation. Here we review our current knowledge of the spatial dynamics of Ca2+ signals generated during muscle development in mouse, rat, and Xenopus myocytes in culture, in the exposed myotome of dissected Xenopus embryos, and in intact normally developing zebrafish. It is becoming clear that subcellular domains, either membrane-bound or otherwise, may have their own Ca2+ signaling signatures. Thus, to understand the roles played by myogenic Ca2+ signaling, we must consider: (1) the triggers and targets within these signaling domains; (2) interdomain signaling, and (3) how these Ca2+ signals integrate with other signaling networks involved in myogenesis. Imaging techniques that are currently available to provide direct visualization of these Ca2+ signals are also described.The recognition of Ca2+ as a key regulator of muscle contraction dates back to Sydney Ringer''s seminal observations in the latter part of the 19th Century (Ringer 1883; Ringer 1886; Ringer and Buxton 1887; see reviews by Martonosi 2000; Szent-Györgyi 2004). More recently, evidence is steadily accumulating to support the proposition that Ca2+ also plays a necessary and essential role in regulating embryonic muscle development and differentiation (Flucher and Andrews 1993; Ferrari et al. 1996; Lorenzon et al. 1997; Ferrari and Spitzer 1998, 1999; Wu et al. 2000; Powell et al. 2001; Jaimovich and Carrasco 2002; Li et al. 2004; Brennan et al. 2005; Harris et al. 2005; Campbell et al. 2006; Terry et al. 2006; Fujita et al. 2007; and see reviews by Berchtold et al. 2000; Ferrari et al. 2006; Al-Shanti and Stewart 2009). What is currently lacking, however, is extensive direct visualization of the spatial dynamics of the Ca2+ signals generated by developing and differentiating muscle cells. This is especially so concerning in situ studies. The object of this article, therefore, is to review and report the current state of our understanding concerning the spatial nature of Ca2+ signaling during embryonic muscle development, especially from an in vivo perspective, and to suggest possible directions for future research. The focus of our article is embryonic skeletal muscle development because of this being an area of significant current interest. Several of the basic observations reported, however, may also be common to cardiac muscle development and in some cases to smooth muscle development. What the recent development of reliable imaging techniques has most certainly done, is to add an extra dimension of complexity to understanding the roles played by Ca2+ signaling in skeletal muscle development. For example, it is clear that membrane-bound subcellular compartments, such as the nucleus (Jaimovich and Carrasco 2002), may have endogenous Ca2+ signaling activities, as do specific cytoplasmic domains, such as the subsarcolemmal space (Campbell et al. 2006). How these Ca2+ signals interact with specific down-stream targets within their particular domain, and how they might serve to communicate information among domains, will most certainly be one of the future challenges in elucidating the Ca2+-mediated regulation of muscle development.Any methodology used to study the properties of biological molecules and how they interact during development should ideally provide spatial information, because researchers increasingly need to integrate data about the interactions that underlie a biological process (such as differentiation) with information regarding the precise location within cells or an embryo where these interactions take place. Current Ca2+ imaging techniques are beginning to provide us with this spatial information, and are thus opening up exciting new avenues of investigation in our quest to understand the signaling pathways that regulate muscle development (
AnimalIntact animals/Cells in cultureCa2+ reporterReporter Loading ProtocolReference
Rat1° cultures prepared from hind limb muscle of neonatal rat pupsFluo 3-AMCells incubated in 5.4 µM reporter for 30 min at 25°C.Jaimovich et al. 2000
MouseMyotubes grown from C2C12 subclone of the C2 mouse muscle cell lineFluo 3-AMIncubated in 5 µM reporter plus 0.1% pluronic F-127 for 1 h at r.t.Flucher and Andrews 1993
Myotubes isolated from the intercostal muscles of E18 wild-type and RyR type 3-null mice.Fluo 3-AMCells incubated with 4 µM for 30 min at r.t.Conklin et al. 1999b
Myotubes in culture prepared from newborn mice.Fluo 3-AMCells incubated in 10 µM for 20 min.Shirokova et al. 1999
1° cultures prepared from hind limb muscle from newborn mice.Fluo 3-AMCells incubated in 5.4 µM reporter for 30 min at 25°C.Powell et al. 2001
Embryonic day 18 (E18) isolated diaphragm muscle fibersFluo 4-AMIncubated in 10 µM reporter for 30 min.Chun et al. 2003
ChickMyotubes prepared from leg or breast of 11-day chick embryosFluo 3-AMIncubated in 5 µM reporter plus 0.1% pluronic F-127 for 1 h at r.t.Flucher and Andrews 1993
Myoblasts isolated from thigh muscle of E12 embryos.Fluo 3-AM1 mM stock was diluted 1:200 with 0.2% pluronic F-127. Cells were incubated for 60 min at r.t. in the dark.Tabata et al. 2006
XenopusExposed myotome in dissected embryoFluo-3 AMIncubated dissected tissue in 10 µM reporter for 30–60 min.Ferrari and Spitzer 1999
1° myocyte cultures prepared from stage 15 Xenopus embryos.Fluo-4 AMCells incubated in 2 µM reporter plus 0.01% pluronic F-127 for 60 min.Campbell et al. 2006
ZebrafishIntact animalsCalcium green-1 dextran (10S)Reporter at 20 mM was injected into a single blastomere between the 32- and 128-cell stage.Zimprich et al. 1998
Intact animalsOregon Green 488 BAPTA dextranSingle blastomeres from 32-cell stage embryos injected with reporter (i.c. 100 µM) and tetramethylrhodamine dextran (i.c. 40 µM).Ashworth et al. 2001
Intact animalsOregon Green 488 BAPTA dextranMicroinjected with rhodamine dextran to give an intracellular concentration of ∼40 µM.Ashworth 2004
Intact animalsAequorinaEmbryos injected with 700 pg aeq-mRNA at the 1-cell stage and then incubated with 50 µM f-coelenterazine from the 64-cell stage.Cheung et al. 2006
Intact animalsAequorinTransgenic fish that express apoaequorin in the skeletal muscles were incubated with 50 µM f-coelenterazine from the 8-cell stage.Cheung et al. 2010
Open in a separate windowaExpression of aequorin was ubiquitous but it was suggested that the Ca2+ signals visualized in the trunk at the approximately 8–20-somite stage and at ∼47 hpf might play a role in muscle development.  相似文献   

5.
The promise and perils of Antarctic fishes     
Kristin M O'Brien  Elizabeth L Crockett 《EMBO reports》2013,14(1):17-24
  相似文献   

6.
Recognising ignorance in decision-making. Strategies for a more sustainable agriculture     
Rivera-Ferre MG  Ortega-Cerdà M 《EMBO reports》2011,12(5):393-397
  相似文献   

7.
Identical 371-Base-Pair Deletion Mutations in the LAT Genes of Herpes Simplex Virus Type 1 McKrae and 17syn+ Result in Different In Vivo Reactivation Phenotypes          下载免费PDF全文
Jeannette M. Loutsch  Guey-Chuen Perng  James M. Hill  Xiaodong Zheng  Mary E. Marquart  Timothy M. Block  Homayon Ghiasi  Anthony B. Nesburn    Steven L. Wechsler 《Journal of virology》1999,73(1):767-771
  相似文献   

8.
Effect of Oxygen on Translation and Posttranslational Steps in Expression of Photosynthesis Genes in Rhodobacter capsulatus   总被引:2,自引:0,他引:2       下载免费PDF全文
Markus Hebermehl  Gabriele Klug 《Journal of bacteriology》1998,180(15):3983-3987
  相似文献   

9.
How good is research really?: Measuring the citation impact of publications with percentiles increases correct assessments and fair comparisons     
Lutz Bornmann  Werner Marx 《EMBO reports》2013,14(3):226-230
  相似文献   

10.
Enhancing the Activity of a Protein by Stereospecific Unfolding: CONFORMATIONAL LIFE CYCLE OF INSULIN AND ITS EVOLUTIONARY ORIGINS*S??     
Qing-xin Hua  Bin Xu  Kun Huang  Shi-Quan Hu  Satoe Nakagawa  Wenhua Jia  Shuhua Wang  Jonathan Whittaker  Panayotis G. Katsoyannis    Michael A. Weiss 《The Journal of biological chemistry》2009,284(21):14586-14596
A central tenet of molecular biology holds that the function of a protein is mediated by its structure. An inactive ground-state conformation may nonetheless be enjoined by the interplay of competing biological constraints. A model is provided by insulin, well characterized at atomic resolution by x-ray crystallography. Here, we demonstrate that the activity of the hormone is enhanced by stereospecific unfolding of a conserved structural element. A bifunctional β-strand mediates both self-assembly (within β-cell storage vesicles) and receptor binding (in the bloodstream). This strand is anchored by an invariant side chain (PheB24); its substitution by Ala leads to an unstable but native-like analog of low activity. Substitution by d-Ala is equally destabilizing, and yet the protein diastereomer exhibits enhanced activity with segmental unfolding of the β-strand. Corresponding photoactivable derivatives (containing l- or d-para-azido-Phe) cross-link to the insulin receptor with higher d-specific efficiency. Aberrant exposure of hydrophobic surfaces in the analogs is associated with accelerated fibrillation, a form of aggregation-coupled misfolding associated with cellular toxicity. Conservation of PheB24, enforced by its dual role in native self-assembly and induced fit, thus highlights the implicit role of misfolding as an evolutionary constraint. Whereas classical crystal structures of insulin depict its storage form, signaling requires engagement of a detachable arm at an extended receptor interface. Because this active conformation resembles an amyloidogenic intermediate, we envisage that induced fit and self-assembly represent complementary molecular adaptations to potential proteotoxicity. The cryptic threat of misfolding poses a universal constraint in the evolution of polypeptide sequences.How insulin binds to the insulin receptor (IR)2 is not well understood despite decades of investigation. The hormone is a globular protein containing two chains, A (21 residues) and B (30 residues) (Fig. 1A). In pancreatic β-cells, insulin is stored as Zn2+-stabilized hexamers (Fig. 1B), which form microcrystal-line arrays within specialized secretory granules (1). The hexamers dissociate upon secretion into the portal circulation, enabling the hormone to function as a zinc-free monomer. The monomer is proposed to undergo a change in conformation upon receptor binding (2). In this study, we investigated a site of conformational change in the B-chain (PheB24) (arrow in Fig. 1A). In classical crystal structures, this invariant aromatic side chain (tawny in Fig. 1B) anchors an antiparallel β-sheet at the dimer interface (blue in Fig. 1C). Total chemical synthesis is exploited to enable comparison of corresponding d- and l-amino acid substitutions at this site, an approach designated “chiral mutagenesis” (3-5). In the accompanying article, the consequences of this conformational change are investigated by photomapping of the receptor-binding surface (6). Together, these studies redefine the interrelation of structure and activity in a protein central to the hormonal control of metabolism.Open in a separate windowFIGURE 1.Sequence and structure of insulin. A, sequences of the B-chain (upper) and A-chain (lower) with disulfide bridges as indicated. The arrow indicates invariant PheB24. The B24-B28 β-strand is highlighted in blue. B, crystal structure of the T6 zinc insulin hexamer (Protein Data Bank code 4INS): ribbon model (left) and space-filling model (right). The B24-B28 β-strand is shown in blue, and the side chain of PheB24 is highlighted in tawny. The B-chain is otherwise dark gray; the A-chain, light gray; and zinc ions, magenta. Also shown at the left are the side chains of HisB10 at the axial zinc-binding sites. C, cylinder model of the insulin dimer showing the B24-B26 antiparallel β-sheet (blue) anchored by the B24 side chain (tawny circle). The A- and B-chains are shown in light and dark gray, respectively. The protomer at the left is shown in the R-state, in which the central α-helix of the B-chain is elongated (B3-B19 in the frayed Rf protomer of T3Rf3 hexamers and B1-B19 in the R protomer of R6 hexamers). The three types of zinc insulin hexamers share similar B24-B26 antiparallel β-sheets as conserved dimerization elements.The structure of an insulin monomer in solution resembles a crystallographic protomer (Fig. 2A) (7-9). The A-chain contains an N-terminal α-helix, non-canonical turn, and second helix; the B-chain contains an N-terminal segment, central α-helix, and C-terminal β-strand. The β-strand is maintained in an isolated monomer wherein the side chain of PheB24 (tawny in Fig. 2A), packing against the central α-helix of the B-chain, provides a “plug” to seal a crevice in the hydrophobic core (Fig. 2B). Anomalies encountered in previous studies of insulin analogs suggest that PheB24 functions as a conformational switch (4, 7, 10-14). Whereas l-amino acid substitutions at B24 generally impair activity (even by such similar residues as l-Tyr) (15), a seeming paradox is posed by the enhanced activities of nonstandard analogs containing d-amino acids (10-12).

TABLE 1

Previous studies of insulin analogs
AnalogAffinityaAssaybRef.
%
d-PheB24-insulin 180 Lymphocytes 10
l-AlaB24-insulin 1 Hepatocytes 68
l-AlaB24-insulin 3 Lymphocytes 69
d-PheB24-insulin 140 ± 9 Hepatocytes 11
l-AlaB24-insulin 1.0 ± 0.1 Hepatocytes 11
d-AlaB24-insulin 150 ± 9 Hepatocytes 11
GlyB24-insulin 78 ± 11 Hepatocytes 11
DKP-insulin 200c CHO cells 12
d-PheB24-DKP-insulin 180 CHO cells 12
l-AlaB24-DKP-insulin 7 CHO cells 12
GlyB24-DKP-insulin 50 CHO cells 12
Open in a separate windowaAffinities are given relative to wild-type insulin (100%).bLymphocytes are human, and hepatocytes are rat; CHO designates Chinese hamster ovary.cStandard deviations are not provided in this reference.Open in a separate windowFIGURE 2.Role of PheB24 in an insulin monomer. A, shown is a cylinder model of insulin as a T-state protomer. The C-terminal B-chain β-strand is shown in blue, and the PheB24 side chain is shown in tawny. The black portion of the N-terminal A-chain α-helix (labeled buried) indicates a hidden receptor-binding surface (IleA2 and ValA3). B, the schematic representation of insulin highlights the proposed role of the PheB24 side chain as a plug that inserts into a crevice at the edge of the hydrophobic core. C and D, whereas substitution of PheB24 by l-Ala (C) would only partially fill the B24-related crevice, its substitution by d-Ala (D) would be associated with a marked packing defect. An alternative conformation, designated the R-state, is observed in zinc insulin hexamers at high ionic strength (74) and upon binding of small cyclic alcohols (75) but has not been observed in an insulin monomer.Why do d-amino acid substitutions at B24 enhance the activity of insulin? In this study, we describe the structure and function of insulin analogs containing l-Ala or d-Ala at B24 (Fig. 2, C and D). Our studies were conducted within an engineered monomer (DKP-insulin, an insulin analog containing three substitutions in the B-chain: AspB10, LysB28, and ProB29) to circumvent effects of self-assembly (16). Whereas the inactive l-analog retains a native-like structure, the active d-analog exhibits segmental unfolding of the B-chain. Studies of corresponding analogs containing either l- or d-photoactivable probes (l-para-azido-PheB24 or d-para-azido-PheB24 (l- or d-PapB24), obtained from photostable para-amino-Phe (Pmp) precursors (17)) demonstrate specific cross-linking to the IR. Although photo-contacts map in each case to the N-terminal domain of the receptor α-subunit (the L1 β-helix), higher cross-linking efficiency is achieved by the d-probe. Together, this and the following study (6) provide evidence that insulin deploys a detachable arm that inserts between domains of the IR.Induced fit of insulin illuminates by its scope general principles at the intersection of protein structure and cell biology. Protein evolution is enjoined by multiple layers of biological selection. The pathway of insulin biosynthesis, for example, successively requires (a) specific disulfide pairing (in the endoplasmic reticulum), (b) subcellular targeting and prohormone processing (in the trans-Golgi network), (c) zinc-mediated protein assembly and microcrystallization (in secretory granules), and (d) exocytosis and rapid disassembly of insulin hexamers (in the portal circulation), in turn enabling binding of the monomeric hormone to target tissues (1). Each step imposes structural constraints, which may be at odds. This study demonstrates that stereospecific pre-detachment of a receptor-binding arm enhances biological activity but impairs disulfide pairing and renders the hormone susceptible to aggregation-coupled misfolding (18). Whereas the classical globular structure of insulin and its self-assembly prevent proteotoxicity (3, 19), partial unfolding enables receptor engagement. We envisage that a choreography of conformational change has evolved as an adaptative response to the universal threat of toxic protein misfolding.  相似文献   

11.
Mutations of POLR3A encoding a catalytic subunit of RNA polymerase Pol III cause a recessive hypomyelinating leukodystrophy     
Bernard G  Chouery E  Putorti ML  Tétreault M  Takanohashi A  Carosso G  Clément I  Boespflug-Tanguy O  Rodriguez D  Delague V  Abou Ghoch J  Jalkh N  Dorboz I  Fribourg S  Teichmann M  Megarbane A  Schiffmann R  Vanderver A  Brais B 《American journal of human genetics》2011,(3):652-423
  相似文献   

12.
HrpW of Erwinia amylovora,a New Harpin That Contains a Domain Homologous to Pectate Lyases of a Distinct Class     
Jihyun F. Kim  Steven V. Beer 《Journal of bacteriology》1998,180(19):5203-5210
Harpins, such as HrpN of Erwinia amylovora, are extracellular glycine-rich proteins that elicit the hypersensitive reaction (HR). We identified hrpW of E. amylovora, which encodes a protein similar to known harpins in that it is acidic, rich in glycine and serine, and lacks cysteine. A putative HrpL-dependent promoter was identified upstream of hrpW, and Western blot analysis of hrpL mutants indicated that the production of HrpW is regulated by hrpL. HrpW is secreted via the Hrp (type III) pathway based on analysis of wild-type strains and hrp secretion mutants. When infiltrated into plants, HrpW induced rapid tissue collapse, which required active plant metabolism. The HR-eliciting activity was heat stable and protease sensitive. Thus, we concluded that HrpW is a new harpin. HrpW of E. amylovora consists of two domains connected by a Pro and Ser-rich sequence. A fragment containing the N-terminal domain was sufficient to elicit the HR. Although no pectate lyase activity was detected, the C-terminal region of HrpW is homologous to pectate lyases of a unique class, suggesting that HrpW may be targeted to the plant cell wall. Southern analysis indicated that hrpW is conserved among several Erwinia species, and hrpW, provided in trans, enhanced the HR-inducing ability of a hrpN mutant. However, HrpW did not increase the virulence of a hrpN mutant in host tissue, and hrpW mutants retained the wild-type ability to elicit the HR in nonhosts and to cause disease in hosts.Most gram-negative plant-pathogenic bacteria contain clusters of genes termed hrp that are required for elicitation of a rapid localized defense response called the hypersensitive reaction (HR) in incompatible plants and that are required for pathogenicity in susceptible plants (1). Proteins encoded by hrp genes are involved in the regulation of the expression of other hrp genes and in a specialized secretion process called the Hrp or type III pathway (9). Harpins, a major class of proteins that travel the pathway (including HrpN of Erwinia species, HrpZ of Pseudomonas syringae, and PopA of Ralstonia solanacearum), elicit the HR when infiltrated into the apoplast of leaf tissue (reference 1 and references therein). They are heat stable, rich in Gly and/or Ser, lack Cys, and differ in their primary sequences. In Erwinia amylovora, mutation of hrpN results in substantially reduced Hrp phenotype (4, 6, 45).E. amylovora causes the devastating fire-blight disease on many rosaceous plants, such as apple, pear, and cotoneaster. Cosmids pCPP430 and pCPP450, which harbor the hrp gene cluster of E. amylovora Ea321, enable Escherichia coli to elicit the HR in tobacco (7). The region of pCPP430 essential for the Hrp phenotype encodes two-component regulatory proteins, a ς54 enhancer-binding protein, a sigma factor, secretory proteins, and the HrpN harpin (11, 27, 4245). In contrast, the locus next to hrp genes, designated dsp, contains pathogenicity genes, and P. syringae pv. glycinea containing the E. amylovora dsp locus causes the HR rather than disease in soybean plants (10). This locus encodes a Hrp-secreted protein and a probable chaperone of the secreted protein (8, 10, 17).Additional HR elicitors in E. amylovora have been suspected based on the HR-variable phenotype of E. amylovora hrpN mutants (references 4 and 6; see also Table Table1).1). We report here the identification and characterization of a novel harpin of E. amylovora, HrpW, the C-terminal domain of which surprisingly is homologous to fungal pectate lyases (PLs). We show that HrpW, the production of which is controlled by hrpL, is delivered by the E. amylovora Hrp pathway. HrpW elicits the HR in plants, and the HR necrosis is not due to the potential PL activity of HrpW. Finally, we provide evidence that HrpW is not required for the HR and pathogenicity, although when overexpressed it enhances the HR-eliciting activity of a hrpN mutant. Preliminary reports on E. amylovora HrpW have been made (28, 29), and, while this article was under revision, a paper describing HrpW from E. amylovora CFBP1430 (16) appeared.

TABLE 1

HR induction and virulence of E. amylovora Ea321 and mutant derivativesa
Strain of E. amylovoraGenotypeHR rating of tobacco leafb (A/B/C)Disease rating of immature pear fruit treated withc:
No. of bacteriad (CFU/pear half)
5 × 107 CFU/ml (A/B/C)5 × 106 CFU/ml (A/B/C)5 × 105 CFU/ml (A/B/C)
Ea321RphrpN+hrpW+0/0/6 a0/0/10 e0/0/10 i0/0/10 m1.4 × 1011 ± 9.2 × 1010
Ea321-K49hrpL6/0/0 b10/0/0 h10/0/0 lNT1.3 × 108 ± 4.2 × 107
Ea321-T5hrpN2/4/0 b4/6/0 g5/5/0 kl8/2/0 n9.9 × 108 ± 1.2 × 109
Ea321-T5(pCPP1084)hrpN (hrpN+)0/2/4 a0/7/3 f1/6/3 j4/6/0 n7.7 × 109 ± 6.2 × 109
Ea321-G204hrpW0/0/6 a0/0/10 e0/0/10 i0/0/10 m1.3 × 1011 ± 1.1 × 1011
Ea321-T5/G204hrpNhrpW5/1/0 b7/3/0 gh6/4/0 kl8/2/0 n1.4 × 108 ± 6.9 × 107
Ea321-T5/G204(pCPP1012)hrpNhrpW (hrpN+hrpW+)3/3/0 b3/7/0 g2/8/0 jk3/7/0 n4.6 × 108 ± 5.7 × 107
Ea321-T5/G204(pCPP1233)hrpNhrpW (hrpW+)5/1/0 b5/5/0 gh6/4/0 kl8/2/0 n2.4 × 108 ± 2.8 × 108
Open in a separate windowaValues in HR and disease columns indicate the number of leaf panels or pear fruits that were given the rating A, B, or C (defined below). Ratings followed by the same letter within columns do not differ significantly at P = 0.05. bApproximately 100 μl of the bacterial suspensions (ca. 5 × 107 CFU/ml) was infiltrated into each panel of tobacco leaves, and the results were recorded after incubating 3 days at room temperature. A, no HR; B, spotty and sometimes coalescing HR; C, complete HR over the infiltrated area. cPear fruits were cut in half longitudinally, wells approx. 7 mm deep were made in the middle of each pear half using a cork borer (4-mm diameter), and 100 μl of the bacterial suspension (5 × 107, 5 × 106, or 5 × 105 CFU/ml) was put into each. Pear halves were incubated at 28°C for 10 days before the readings were made. A, no ooze, no necrosis; B, clear or cloudy ooze droplets and/or partial necrosis, especially around the well; C, copious ooze and necrosis of the whole pear half. NT, not tested. dBacterial populations were estimated 7 days after inoculation with ca. 5 × 107 CFU/well of each pear half. Two average-looking pear halves from each treatment were chosen for population assay. Each sample was counted twice by diluting with 5 mM KPO4 buffer and spotting 10-μl aliquots on duplicates of Luria agar plates with appropriate antibiotics.   相似文献   

13.
Antimicrobial Activity of Simulated Solar Disinfection against Bacterial,Fungal, and Protozoan Pathogens and Its Enhancement by Riboflavin     
Wayne Heaselgrave  Simon Kilvington 《Applied and environmental microbiology》2010,76(17):6010-6012
Riboflavin significantly enhanced the efficacy of simulated solar disinfection (SODIS) at 150 watts per square meter (W m−2) against a variety of microorganisms, including Escherichia coli, Fusarium solani, Candida albicans, and Acanthamoeba polyphaga trophozoites (>3 to 4 log10 after 2 to 6 h; P < 0.001). With A. polyphaga cysts, the kill (3.5 log10 after 6 h) was obtained only in the presence of riboflavin and 250 W m−2 irradiance.Solar disinfection (SODIS) is an established and proven technique for the generation of safer drinking water (11). Water is collected into transparent plastic polyethylene terephthalate (PET) bottles and placed in direct sunlight for 6 to 8 h prior to consumption (14). The application of SODIS has been shown to be a simple and cost-effective method for reducing the incidence of gastrointestinal infection in communities where potable water is not available (2-4). Under laboratory conditions using simulated sunlight, SODIS has been shown to inactivate pathogenic bacteria, fungi, viruses, and protozoa (6, 12, 15). Although SODIS is not fully understood, it is believed to achieve microbial killing through a combination of DNA-damaging effects of ultraviolet (UV) radiation and thermal inactivation from solar heating (21).The combination of UVA radiation and riboflavin (vitamin B2) has recently been reported to have therapeutic application in the treatment of bacterial and fungal ocular pathogens (13, 17) and has also been proposed as a method for decontaminating donor blood products prior to transfusion (1). In the present study, we report that the addition of riboflavin significantly enhances the disinfectant efficacy of simulated SODIS against bacterial, fungal, and protozoan pathogens.Chemicals and media were obtained from Sigma (Dorset, United Kingdom), Oxoid (Basingstoke, United Kingdom), and BD (Oxford, United Kingdom). Pseudomonas aeruginosa (ATCC 9027), Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Candida albicans (ATCC 10231), and Fusarium solani (ATCC 36031) were obtained from ATCC (through LGC Standards, United Kingdom). Escherichia coli (JM101) was obtained in house, and the Legionella pneumophila strain used was a recent environmental isolate.B. subtilis spores were produced from culture on a previously published defined sporulation medium (19). L. pneumophila was grown on buffered charcoal-yeast extract agar (5). All other bacteria were cultured on tryptone soy agar, and C. albicans was cultured on Sabouraud dextrose agar as described previously (9). Fusarium solani was cultured on potato dextrose agar, and conidia were prepared as reported previously (7). Acanthamoeba polyphaga (Ros) was isolated from an unpublished keratitis case at Moorfields Eye Hospital, London, United Kingdom, in 1991. Trophozoites were maintained and cysts prepared as described previously (8, 18).Assays were conducted in transparent 12-well tissue culture microtiter plates with UV-transparent lids (Helena Biosciences, United Kingdom). Test organisms (1 × 106/ml) were suspended in 3 ml of one-quarter-strength Ringer''s solution or natural freshwater (as pretreated water from a reservoir in United Kingdom) with or without riboflavin (250 μM). The plates were exposed to simulated sunlight at an optical output irradiance of 150 watts per square meter (W m−2) delivered from an HPR125 W quartz mercury arc lamp (Philips, Guildford, United Kingdom). Optical irradiances were measured using a calibrated broadband optical power meter (Melles Griot, Netherlands). Test plates were maintained at 30°C by partial submersion in a water bath.At timed intervals for bacteria and fungi, the aliquots were plated out by using a WASP spiral plater and colonies subsequently counted by using a ProtoCOL automated colony counter (Don Whitley, West Yorkshire, United Kingdom). Acanthamoeba trophozoite and cyst viabilities were determined as described previously (6). Statistical analysis was performed using a one-way analysis of variance (ANOVA) of data from triplicate experiments via the InStat statistical software package (GraphPad, La Jolla, CA).The efficacies of simulated sunlight at an optical output irradiance of 150 W m−2 alone (SODIS) and in the presence of 250 μM riboflavin (SODIS-R) against the test organisms are shown in Table Table1.1. With the exception of B. subtilis spores and A. polyphaga cysts, SODIS-R resulted in a significant increase in microbial killing compared to SODIS alone (P < 0.001). In most instances, SODIS-R achieved total inactivation by 2 h, compared to 6 h for SODIS alone (Table (Table1).1). For F. solani, C. albicans, ands A. polyphaga trophozoites, only SODIS-R achieved a complete organism kill after 4 to 6 h (P < 0.001). All control experiments in which the experiments were protected from the light source showed no reduction in organism viability over the time course (results not shown).

TABLE 1.

Efficacies of simulated SODIS for 6 h alone and with 250 μM riboflavin (SODIS-R)
OrganismConditionaLog10 reduction in viability at indicated h of exposureb
1246
E. coliSODIS0.0 ± 0.00.2 ± 0.15.7 ± 0.05.7 ± 0.0
SODIS-R1.1 ± 0.05.7 ± 0.05.7 ± 0.05.7 ± 0.0
L. pneumophilaSODIS0.7 ± 0.21.3 ± 0.34.8 ± 0.24.8 ± 0.2
SODIS-R4.4 ± 0.04.4 ± 0.04.4 ± 0.04.4 ± 0.0
P. aeruginosaSODIS0.7 ± 0.01.8 ± 0.04.9 ± 0.04.9 ± 0.0
SODIS-R5.0 ± 0.05.0 ± 0.05.0 ± 0.05.0 ± 0.0
S. aureusSODIS0.0 ± 0.00.0 ± 0.06.2 ± 0.06.2 ± 0.0
SODIS-R0.2 ± 0.16.3 ± 0.06.3 ± 0.06.3 ± 0.0
C. albicansSODIS0.2 ± 0.00.4 ± 0.10.5 ± 0.11.0 ± 0.1
SODIS-R0.1 ± 0.00.7 ± 0.15.3 ± 0.05.3 ± 0.0
F. solani conidiaSODIS0.2 ± 0.10.3 ± 0.00.2 ± 0.00.7 ± 0.1
SODIS-R0.3 ± 0.10.8 ± 0.11.3 ± 0.14.4 ± 0.0
B. subtilis sporesSODIS0.3 ± 0.00.2 ± 0.00.0 ± 0.00.1 ± 0.0
SODIS-R0.1 ± 0.10.2 ± 0.10.3 ± 0.30.1 ± 0.0
SODIS (250 W m−2)0.1 ± 0.00.1 ± 0.10.1 ± 0.10.0 ± 0.0
SODIS-R (250 W m−2)0.0 ± 0.00.0 ± 0.00.2 ± 0.00.4 ± 0.0
SODIS (320 W m−2)0.1 ± 0.10.1 ± 0.00.0 ± 0.14.3 ± 0.0
SODIS-R (320 W m−2)0.1 ± 0.00.1 ± 0.10.9 ± 0.04.3 ± 0.0
A. polyphaga trophozoitesSODIS0.4 ± 0.20.6 ± 0.10.6 ± 0.20.4 ± 0.1
SODIS-R0.3 ± 0.11.3 ± 0.12.3 ± 0.43.1 ± 0.2
SODIS, naturalc0.3 ± 0.10.4 ± 0.10.5 ± 0.20.3 ± 0.2
SODIS-R, naturalc0.2 ± 0.11.0 ± 0.22.2 ± 0.32.9 ± 0.3
A. polyphaga cystsSODIS0.4 ± 0.10.1 ± 0.30.3 ± 0.10.4 ± 0.2
SODIS-R0.4 ± 0.20.3 ± 0.20.5 ± 0.10.8 ± 0.3
SODIS (250 W m−2)0.0 ± 0.10.2 ± 0.30.2 ± 0.10.1 ± 0.2
SODIS-R (250 W m−2)0.4 ± 0.20.3 ± 0.20.8 ± 0.13.5 ± 0.3
SODIS (250 W m−2), naturalc0.0 ± 0.30.2 ± 0.10.1 ± 0.10.2 ± 0.1
SODIS-R (250 W m−2), naturalc0.1 ± 0.10.2 ± 0.20.6 ± 0.13.4 ± 0.2
Open in a separate windowaConditions are at an intensity of 150 W m−2 unless otherwise indicated.bThe values reported are means ± standard errors of the means from triplicate experiments.cAdditional experiments for this condition were performed using natural freshwater.The highly resistant A. polyphaga cysts and B. subtilis spores were unaffected by SODIS or SODIS-R at an optical irradiance of 150 W m−2. However, a significant reduction in cyst viability was observed at 6 h when the optical irradiance was increased to 250 W m−2 for SODIS-R only (P < 0.001; Table Table1).1). For spores, a kill was obtained only at 320 W m−2 after 6-h exposure, and no difference between SODIS and SODIS-R was observed (Table (Table1).1). Previously, we reported a >2-log kill at 6 h for Acanthamoeba cysts by using SODIS at the higher optical irradiance of 850 W m−2, compared to the 0.1-log10 kill observed here using the lower intensity of 250 W m−2 or the 3.5-log10 kill with SODIS-R.Inactivation experiments performed with Acanthamoeba cysts and trophozoites suspended in natural freshwater gave results comparable to those obtained with Ringer''s solution (P > 0.05; Table Table1).1). However, it is acknowledged that the findings of this study are based on laboratory-grade water and freshwater and that differences in water quality through changes in turbidity, pH, and mineral composition may significantly affect the performance of SODIS (20). Accordingly, further studies are indicated to evaluate the enhanced efficacy of SODIS-R by using natural waters of varying composition in the areas where SODIS is to be employed.Previous studies with SODIS under laboratory conditions have employed lamps delivering an optical irradiance of 850 W m−2 to reflect typical natural sunlight conditions (6, 11, 12, 15, 16). Here, we used an optical irradiance of 150 to 320 W m−2 to obtain slower organism inactivation and, hence, determine the potential enhancing effect of riboflavin on SODIS.In conclusion, this study has shown that the addition of riboflavin significantly enhances the efficacy of simulated SODIS against a range of microorganisms. The precise mechanism by which photoactivated riboflavin enhances antimicrobial activity is unknown, but studies have indicated that the process may be due, in part, to the generation of singlet oxygen, H2O2, superoxide, and hydroxyl free radicals (10). Further studies are warranted to assess the potential benefits from riboflavin-enhanced SODIS in reducing the incidence of gastrointestinal infection in communities where potable water is not available.  相似文献   

14.
Proteomics of Saccharomyces cerevisiae Organelles     
Elena Wiederhold  Liesbeth M. Veenhoff  Bert Poolman    Dirk Jan Slotboom 《Molecular & cellular proteomics : MCP》2010,9(3):431-445
  相似文献   

15.
A Region in Bacillus subtilis ςH Required for Spo0A-Dependent Promoter Activity          下载免费PDF全文
Cindy M. Buckner  Charles P. Moran  Jr. 《Journal of bacteriology》1998,180(18):4987-4990
  相似文献   

16.
Intramolecular Regulation of MyoD Activation Domain Conformation and Function   总被引:3,自引:2,他引:1       下载免费PDF全文
Jing Huang  Hal Weintraub    Larry Kedes 《Molecular and cellular biology》1998,18(9):5478-5484
  相似文献   

17.
Variation in Adult Plant Phenotypes and Partitioning among Seed and Stem-Borne Roots across Brachypodium distachyon Accessions to Exploit in Breeding Cereals for Well-Watered and Drought Environments     
Vincent Chochois  John P. Vogel  Gregory J. Rebetzke  Michelle Watt 《Plant physiology》2015,168(3):953-967
Seedling roots enable plant establishment. Their small phenotypes are measured routinely. Adult root systems are relevant to yield and efficiency, but phenotyping is challenging. Root length exceeds the volume of most pots. Field studies measure partial adult root systems through coring or use seedling roots as adult surrogates. Here, we phenotyped 79 diverse lines of the small grass model Brachypodium distachyon to adults in 50-cm-long tubes of soil with irrigation; a subset of 16 lines was droughted. Variation was large (total biomass, ×8; total root length [TRL], ×10; and root mass ratio, ×6), repeatable, and attributable to genetic factors (heritabilities ranged from approximately 50% for root growth to 82% for partitioning phenotypes). Lines were dissected into seed-borne tissues (stem and primary seminal axile roots) and stem-borne tissues (tillers and coleoptile and leaf node axile roots) plus branch roots. All lines developed one seminal root that varied, with branch roots, from 31% to 90% of TRL in the well-watered condition. With drought, 100% of TRL was seminal, regardless of line because nodal roots were almost always inhibited in drying topsoil. Irrigation stimulated nodal roots depending on genotype. Shoot size and tillers correlated positively with roots with irrigation, but partitioning depended on genotype and was plastic with drought. Adult root systems of B. distachyon have genetic variation to exploit to increase cereal yields through genes associated with partitioning among roots and their responsiveness to irrigation. Whole-plant phenotypes could enhance gain for droughted environments because root and shoot traits are coselected.Adult plant root systems are relevant to the size and efficiency of seed yield. They supply water and nutrients for the plant to acquire biomass, which is positively correlated to the harvest index (allocation to seed grain), and the stages of flowering and grain development. Modeling in wheat (Triticum aestivum) suggested that an extra 10 mm of water absorbed by such adult root systems during grain filling resulted in an increase of approximately 500 kg grain ha−1 (Manschadi et al., 2006). This was 25% above the average annual yield of wheat in rain-fed environments of Australia. This number was remarkably close to experimental data obtained in the field in Australia (Kirkegaard et al., 2007). Together, these modeling and field experiments have shown that adult root systems are critical for water absorption and grain yield in cereals, such as wheat, emphasizing the importance of characterizing adult root systems to identify phenotypes for productivity improvements.Most root phenotypes, however, have been described for seedling roots. Seedling roots are essential for plant establishment, and hence, the plant’s potential to set seed. For technical reasons, seedlings are more often screened than adult plants because of the ease of handling smaller plants and the high throughput. Seedling-stage phenotyping may also improve overall reproducibility of results because often, growth media are soil free. Seedling soil-free root phenotyping conditions are well suited to dissecting fine and sensitive mechanisms, such as lateral root initiation (Casimiro et al., 2003; Péret et al., 2009a, 2009b). A number of genes underlying root processes have been identified or characterized using seedlings, notably with the dicotyledonous models Arabidopsis (Arabidopsis thaliana; Mouchel et al., 2004; Fitz Gerald et al., 2006; Yokawa et al., 2013) and Medicago truncatula (Laffont et al., 2010) and the cereals maize (Zea mays; Hochholdinger et al., 2001) and rice (Oryza sativa; Inukai et al., 2005; Kitomi et al., 2008).Extrapolation from seedling to adult root systems presents major questions (Hochholdinger and Zimmermann, 2008; Chochois et al., 2012; Rich and Watt, 2013). Are phenotypes in seedling roots present in adult roots given developmental events associated with aging? Is expression of phenotypes correlated in seedling and adult roots if time compounds effects of growth rates and growth conditions on roots? Watt et al. (2013) showed in wheat seedlings that root traits in the laboratory and field correlated positively but that neither correlated with adult root traits in the field. Factors between seedling and adult roots seemed to be differences in developmental stage and the time that growing roots experience the environment.Seedling and adult root differences may be larger in grasses than dicotyledons. Grass root systems have two developmental components: seed-borne (seminal) roots, of which a number emerge at germination and continue to grow and branch throughout the plant life, and stem-borne (nodal or adventitious) roots, which emerge from around the three-leaf stage and continue to emerge, grow, and branch throughout the plant life. Phenotypes and traits of adult root systems of grasses, which include the major cereal crops wheat, rice, and maize, are difficult to predict in seedling screens and ideally identified from adult root systems first (Gamuyao et al., 2012).Phenotyping of adult roots is possible in the field using trenches (Maeght et al., 2013) or coring (Wasson et al., 2014). A portion of the root system is captured with these methods. Alternatively, entire adult root systems can be contained within pots dug into the ground before sowing. These need to be large; field wheat roots, for example, can reach depths greater than 1.5 m depending on genotype and environment. This method prevents root-root interactions that occur under normal field sowing of a plant canopy and is also a compromise.A solution to the problem of phenotyping adult cereal root systems is a model for monocotyledon grasses: Brachypodium distachyon. B. distachyon is a small-stature grass with a small genome that is fully sequenced (Vogel et al., 2010). It has molecular tools equivalent to those available in Arabidopsis (Draper et al., 2001; Brkljacic et al., 2011; Mur et al., 2011). The root system of B. distachyon reference line Bd21 is more similar to wheat than other model and crop grasses (Watt et al., 2009). It has a seed-borne primary seminal root (PSR) that emerges from the embryo at seed germination and multiple stem-borne coleoptile node axile roots (CNRs) and leaf node axile roots (LNRs), also known as crown roots or adventitious roots, that emerge at about three leaves through to grain development. Branch roots emerge from all root types. There are no known anatomical differences between root types of wheat and B. distachyon (Watt et al., 2009). In a recent study, we report postflowering root growth in B. distachyon line Bd21-3, showing that this model can be used to answer questions relevant to the adult root systems of grasses (Chochois et al., 2012).In this study, we used B. distachyon to identify adult plant phenotypes related to the partitioning among seed-borne and stem-borne shoots and roots for the genetic improvement of well-watered and droughted cereals (Fig. 1; Krassovsky, 1926; Navara et al., 1994), nitrogen, phosphorus (Tennant, 1976; Brady et al., 1995), oxygen (Wiengweera and Greenway, 2004), soil hardness (Acuna et al., 2007), and microorganisms (Sivasithamparam et al., 1978). Of note is the study by Krassovsky (1926), which was the first, to our knowledge, to show differences in function related to water. Krassovsky (1926) showed that seminal roots of wheat absorbed almost 2 times the water as nodal roots per unit dry weight but that nodal roots absorbed a more diluted nutrient solution than seminal roots. Krassovsky (1926) also showed by removing seminal or nodal roots as they emerged that “seminal roots serve the main stem, while nodal roots serve the tillers” (Krassovsky, 1926). Volkmar (1997) showed, more recently, in wheat that nodal and seminal roots may sense and respond to drought differently. In millet (Pennisetum glaucum) and sorghum (Sorghum bicolor), Rostamza et al. (2013) found that millet was able to grow nodal roots in a dryer soil than sorghum, possibly because of shoot and root vigor.Open in a separate windowFigure 1.B. distachyon plant scanned at the fourth leaf stage, with the root and shoot phenotypes studied indicated. Supplemental Table S1.
PhenotypeAbbreviationUnitRange of Variation
All Experiments (79 Lines and 582 Plants)Experiment 6 (36 Lines)
Whole plant
TDWTDWMilligrams88.6–773.8 (×8.7)285.6–438 (×1.5)
Shoot
SDWSDWMilligrams56.4–442.5 (×7.8)78.2–442.5 (×5.7)
 No. of tillersTillerNCount2.8–20.3 (×7.4)10–20.3 (×2)
Total root system
TRLTRLCentimeters1,050–10,770 (×10.3)2,090–5,140 (×2.5)
RDWRDWMilligrams28.9–312.17 (×10.8)62.2–179.1 (×2.9)
RootpcRootpcPercentage (of TDW)20.5–60.6 (×3)20.5–44.3 (×2.2)
R/SR/SUnitless ratio0.26–1.54 (×6)0.26–0.80 (×3.1)
PSRs
 Length (including branch roots)PSRLCentimeters549.1–4,024.6 (×7.3)716–2,984 (×4.2)
PSRpcPSRpcPercentage (of TRL)14.9–94.1 (×6.3)31.3–72.3 (×2.3)
 No. of axile rootsPSRcountCount11
 Length of axile rootPSRsumCentimeters17.45–52 (×3)17.45–30.3 (×1.7)
 Branch rootsPSRbranchCentimeters · (centimeters of axile root)−119.9–109.3 (×5.5)29.3–104.3 (×3.6)
CNRs
 Length (including branch roots)CNRLCentimeters0–3,856.70–2,266.5
CNRpcCNRpcPercentage (of TRL)0–57.10–49.8
 No. of axile rootsCNRcountCount0–20–2
 Cumulated length of axile rootsCNRsumCentimeters0–113.90–47.87
 Branch rootsCNRbranchCentimeters · (centimeters of axile root)−10–77.80–77.8
LNRs
 Length (including branch roots)LNRLCentimeters99.5–5,806.5 (×58.5)216.1–2,532.4 (×11.7)
LNRpcLNRpcPercentage (of TRL)4.2–72.7 (×17.5)6–64.8 (×10.9)
LNRcountLNRcountCount2–22.2 (×11.1)3.3–15.3 (×4.6)
LNRsumLNRsumCentimeters25.9–485.548–232 (×4.8)
 Branch rootsLNRbranchCentimeters · (centimeters of axile root)−12.1–25.4 (×12.1)3.2–15.9 (×5)
Open in a separate windowThe third reason for dissecting the different root types in this study was that they seem to have independent genetic regulation through major genes. Genes affecting specifically nodal root growth have been identified in maize (Hetz et al., 1996; Hochholdinger and Feix, 1998) and rice (Inukai et al., 2001, 2005; Liu et al., 2005, 2009; Zhao et al., 2009; Coudert et al., 2010; Gamuyao et al., 2012). Here, we also dissect branch (lateral) development on the seminal or nodal roots. Genes specific to branch roots have been identified in Arabidopsis (Casimiro et al., 2003; Péret et al., 2009a), rice (Hao and Ichii, 1999; Wang et al., 2006; Zheng et al., 2013), and maize (Hochholdinger and Feix, 1998; Hochholdinger et al., 2001; Woll et al., 2005).This study explored the hypothesis that adult root systems of B. distachyon contain genotypic variation that can be exploited through phenotyping and genotyping to increase cereal yields. A selection of 79 wild lines of B. distachyon from various parts of the Middle East (Fig. 2 shows the geographic origins of the lines) was phenotyped. They were selected for maximum genotypic diversity from 187 diploid lines analyzed with 43 simple sequence repeat markers (Vogel et al., 2009). We phenotyped shoots and mature root systems concurrently because B. distachyon is small enough to complete its life cycle in relatively small pots of soil with minimal influence of pot size compared with crops, such as wheat. We further phenotyped a subset of this population under irrigation (well watered) and drought to assess genotype response to water supply. By conducting whole-plant studies, we aimed to identify phenotypes that described partitioning among shoot and root components and within seed-borne and stem-borne roots. Phenotypes that have the potential to be beneficial to shoot and root components may speed up genetic gain in future.Open in a separate windowFigure 2.B. distachyon lines phenotyped in this study and their geographical origin. Capital letters in parentheses indicate the country of origin: Turkey (T), Spain (S), and Iraq (I; Vogel et al., 2009). a, Adi3, Adi7, Adi10, Adi12, Adi13, and Adi15; b, Bd21 and Bd21-3 are the reference lines of this study. Bd21 was the first sequenced line (Vogel et al., 2010) and root system (described in detail in Watt et al., 2009), and Bd21-3 is the most easily transformed line (Vogel and Hill, 2008) and parent of a T-DNA mutant population (Bragg et al., 2012); c, Gaz1, Gaz4, and Gaz7; d, Kah1, Kah2, and Kah3. e, Koz1, Koz3, and Koz5; f, Tek1 and Tek6; g, exact GPS coordinates are unknown for lines Men2 (S), Mur2 (S), Bd2.3 (I), Bd3-1 (I), and Abr1 (T).  相似文献   

18.
Dominant Bacteria and Biomass in the Kuytun 51 Glacier     
Shu-Rong Xiang  Tian-Cui Shang  Yong Chen  Ze-Fan Jing  Tandong Yao 《Applied and environmental microbiology》2009,75(22):7287-7290
  相似文献   

19.
Transcriptional Regulation of the Capsular Polysaccharide Biosynthesis Locus of Streptococcus Pneumoniae: a Bioinformatic Analysis          下载免费PDF全文
Miriam Moscoso  Ernesto Garc��a 《DNA research》2009,16(3):177-186
  相似文献   

20.
Factors predicting coroners�� decisions to hold discretionary inquests     
Simon J. Walter  Lyndal Bugeja  Matthew J. Spittal  David M. Studdert 《CMAJ》2012,184(5):521-528

Background:

Coroners in Australia, Canada, New Zealand and other countries in the Commonwealth hold inquests into deaths in two situations. Mandatory inquests are held when statutory rules dictate they must be; discretionary inquests are held based on the decisions of individual coroners. Little is known as to how and why coroners select particular deaths for discretionary inquests.

Methods:

We analyzed the deaths investigated by Australian coroners for a period of seven and one-half years in five jurisdictions. We classified inquests as mandatory or discretionary. After excluding mandatory inquests, we used logistic regression analysis to identify the factors associated with coroners’ decisions to hold discretionary inquests.

Results:

Of 20 379 reported deaths due to external causes, 1252 (6.1%) proceeded to inquest. Of these inquests, 490 (39.1%) were mandatory and 696 (55.6%) were discretionary. In unadjusted analyses, the rates of discretionary inquests varied widely in terms of age of the decedent and cause of death. In adjusted analyses, the odds of discretionary inquests declined with the age of the decedent; the odds were highest for children (odds ratio [OR] 2.17, 95% confidence interval [CI] 1.54–3.06) and lowest for people aged 65 years and older (OR 0.38, 95% CI 0.28–0.51). Using poisoning as a reference cause of death, the odds of discretionary inquests were highest for fatal complications of medical care (OR 12.83, 95% CI 8.65–19.04) and lowest for suicides (OR 0.44, 95% CI 0.30–0.65).

Interpretation:

Deaths that coroners choose to take to inquest differ systematically from those they do not. Although this vetting process is invisible, it may influence the public’s understanding of safety risks, fatal injury and death.In Anglo-American legal systems, coroners operate as an inquisitorial branch of the judiciary, investigating the cause and circumstances of deaths reported to them.1,2 For most of the deaths investigated, coroners’ findings follow an administrative review of documentary evidence, including reports of postmortem examinations, police reports and witness statements.2 However, a small selection of cases proceed to an inquest — formal public hearings in which witnesses testify and parties connected to the death may retain lawyers. Many inquests draw public attention and coverage by media.3 They are arguably the most visible aspect of the work of coroners.For coroners in Australia, Canada, New Zealand and many other countries in the Commonwealth, inquests are held for two main reasons. Statutes governing coroners’ courts dictate that inquests must be held in certain specified circumstances (mandatory inquests). For cases that fall outside the mandatory criteria, coroners may choose to hold an inquest (discretionary inquests). A great deal of variation in the rates of inquests is evident between and within countries (1,46

Table 1:

Rates of coroners’ inquests in selected jurisdictions of Australia, the United Kingdom, New Zealand, the Republic of Ireland and Canada*
Jurisdiction and periodInquests per 1000 reported deaths, no.
Australia
 New South Wales 2000–200749
 Victoria 2000–200745
 Queensland 2001–200750
 Western Australia 2000–200742
United Kingdom
 England and Wales 2000–20074122
 Scotland 20015
 Northern Ireland 200154
New Zealand 2001286
Republic of Ireland 2001185
Canada
 Ontario 20014
 British Columbia 2002–20075,62
Open in a separate window*Unless otherwise stated, rates are adapted from data presented in the Luce report.1Rates in all Australian jurisdictions calculated directly from data in the National Coroners Information System.Procurators Fiscal perform an analogous role to coroners in Scotland; according to the Luce report, the deaths reported to and investigated by them are “comparable to the range handled in many coronial systems.”1The vetting process for determining which cases are subject to a discretionary inquest is invisible, but it may influence the public’s understanding of risks, fatal injuries and untimely death. As such, profiling which cases are selected for such inquests is valuable. Furthermore, because the investigations and recommendations generated by inquests are the centrepiece of the coroner’s role in preventing untimely deaths, the vetting process can shape their contribution to public health and safety.We examined the characteristics of discretionary inquests to determine whether these cases differed systematically from those resolved through administrative investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号