首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Extracellular production of recombinant proteins in Escherichia coli has several advantages over cytoplasmic or periplasmic production. However, nonpathogenic laboratory strains of E. coli generally excrete only trace amounts of proteins into the culture medium under normal growth conditions. Here we report a systematic proteome-based approach for developing a system for high-level extracellular production of recombinant proteins in E. coli. First, we analyzed the extracellular proteome of an E. coli B strain, BL21(DE3), to identify naturally excreted proteins, assuming that these proteins may serve as potential fusion partners for the production of recombinant proteins in the medium. Next, overexpression and excretion studies were performed for the 20 selected fusion partners with molecular weights below 40 kDa. Twelve of them were found to allow fused proteins to excrete into the medium at considerable levels. The most efficient excreting fusion partner, OsmY, was used as a carrier protein to excrete heterologous proteins into the medium. E. coli alkaline phosphatase, Bacillus subtilis alpha-amylase, and human leptin used as model proteins could all be excreted into the medium at concentrations ranging from 5 to 64 mg/L during the flask cultivation. When only the signal peptide or the mature part of OsmY was used as a fusion partner, no such excretion was observed; this confirmed that these proteins were truly excreted rather than released by outer membrane leakage. The recombinant protein of interest could be recovered by cleaving off the fusion partner by enterokinase as demonstrated for alkaline phosphatase as an example. High cell density cultivation allowed production of these proteins to the levels of 250-700 mg/L in the culture medium, suggesting the good potential of this approach for the excretory production of recombinant proteins.  相似文献   

3.
Applied Microbiology and Biotechnology - As a common expression host, Escherichia coli has received more and more attention due to the recently developed secretory expression system, which offers...  相似文献   

4.
Chao YP  Fu H  Lo TE  Chen PT  Wang JJ 《Biotechnology progress》1999,15(6):1039-1045
The gene encoding D-hydantoinase from Agrobacterium radiobacter NRRL B11291 was successfully cloned by use of polymerase chain reaction. A positive clone was scored, and its nucleotide sequence was further analyzed. The analysis by deleting various lengths of nucleotides from the amino terminus of the open reading frame revealed the putative regions for promoter and RBS site. By highly expressing both D-hydantoinase and carbamoylase, recombinant Escherichia coli strains were able to convert DL-hydroxyphenyl hydantoin (DL-HPH) to D-p-hydroxyphenylglycine (D-HPG) with a conversion yield of 97%, accounting for productivity 5 times higher than that obtained by A. radiobacter NRRL B11291. Immobilizing the recombinant cells with kappa-carrageenan could also achieve a conversion of 93%, while A. radiobacter NRRL B11291 attained 20% within the same period of reaction time. These results illustrate the feasibility in employing recombinant E. coli to accomplish one-step conversion of DL-HPH to D-HPG. In the process of improving D-HPG production, D-hydantoinase activity was increased 2.57-fold but carbamoylase activity remained constant, which resulted in only a 30% increase in the reaction rate. It suggests that carbamoylase is the step setting the pace of the reaction. Since the reaction substrate is highly insoluble, achieving sufficient agitation appears to be an important issue in this heterogeneous system. This view is further supported by the study on repeated use of cells, which shows that to reach a conversion of more than 90% free cells can be recycled six times, whereas immobilized cells can be used only twice. In conclusion, the poor reusability of immobilized cells is due to the fouling on the gel surface.  相似文献   

5.
6.
7.
Recombinant E. coli strains expressing the Bacillus cereus ATCC 14579T resD and resE genes fused with the ubiquitin gene were constructed, and purification of the ResD and ResE proteins was performed. The approach used in the study allowed us to increase the protein yield of the electrophoretic homogeneous ResD and ResE proteins without denaturation steps up to 150 mg per gram of wet cell weight.  相似文献   

8.
Two genes coding for chloramphenicol acetyltransferase and human interferon gamma, respectively, were overexpressed constitutively in two different strains of Escherichia coli (E. coli LE392 and E. coli XL1). The N-terminal amino acid analysis of the purified proteins showed that: (a) the N-terminal methionine is processed more efficiently in E. coli LE392 rather than in E. coli XL1 cells; (b) the N-terminal methionine is removed better from the heterologous human interferon gamma in comparison with the homologous chloramphenicol acetyltransferase protein: and (c) there is no strong correlation between the efficiency of N-terminal procession and the yield of recombinant protein.  相似文献   

9.
Overexpression of recombinant proteins in Escherichia coli often leads to a severe growth retardation of the host cells. Using flow cytometry, we analyzed the temporal development of the cellular content of DNA, total protein, and the recombinant product (human superoxide dismutase) in different strains. In cells carrying plasmids utilizing the phage T7 promoter 10 (pET vectors), induction with IPTG leads to an increase in protein content and size, an increase and a wide spreading of DNA content distribution, and a termination of cell division. These effects occurred with pET plasmids with or without an insert, but not with another plasmid which utilizes the tac promoter.  相似文献   

10.
基于产琥珀酸重组大肠杆菌E.coli B0013-1050的琥珀酸合成途径,利用Red同源重组技术结合Xer/dif重组系统敲除富马酸酶基因fumB、fumC,苹果酸酶基因maeB,构建L-苹果酸合成途径,最终得到重组大肠杆菌E.coli2030,该菌株在15 L发酵罐中,产L-苹果酸12.5 g/L,葡萄糖-苹果酸转化率为52.1%,同时对发酵产物中主要杂酸丙酮酸和琥珀酸的生产原因进行了初步的探讨与分析。为进一步提高L-苹果酸的转化率,整合表达来源于黄曲霉的苹果酸脱氢酶基因,构建重组菌E.coli 2040,在15 L发酵罐中产L-苹果酸14 g/L,葡萄糖-苹果酸转化率提高到60.3%。  相似文献   

11.
Secretion of cytoplasmic expressed proteins into culture medium has significant commercial advantages in large-scale production of proteins. Our previous study demonstrated that the membrane permeability of Escherichia coli could be significantly improved when Thermobifida fusca cutinase, without a signal peptide, was expressed in cytoplasm. This study investigated the extracellular production of other recombinant proteins, including both secretory and cytosolic proteins, with co-expression of cutinase. When the secretory enzymes, xylanase and α-amylase, were co-expressed with cutinase, the culture period was shortened by half, and the productivity was 7.9 and 2.0-fold to that of their individual control without co-expression, respectively. When the normally cytosolic proteins, xylose isomerase and trehalose synthase, were co-expressed with cutinase, more than half of the target proteins were “secreted” into the culture medium. Moreover, by using β-galactosidase to detect membrane leakage, the improved secretion of the above model proteins was confirmed not to be due to cell lysis. The study provides a novel strategy for enhancing extracellular secretion of recombinant proteins in E. coli.  相似文献   

12.
During growth of high-cell-density cultures of Escherichia coli, overproduction of recombinant proteins often results in increased stress response, cell filamentation, and growth cessation. Filamentation of cells consequently lowers final achievable cell concentration and productivity of the target protein. Reported here is a methodology that should prove useful for the enhancement of cell growth and protein productivity by the suppression of cell filamentation. By the coexpression of the E. coli ftsA and ftsZ genes, which encode key proteins in cell division, growth of recombinant strains as well as production of human leptin and human insulin-like growth factor I was improved. Observation of cell morphology revealed that the coexpression of the ftsA and ftsZ genes successfully suppressed filamentation caused by the accumulation of recombinant proteins.  相似文献   

13.
Various host–vector combinations were tested to maximize the extracellular production of recombinant asparaginase in Escherichia coli. Expression of recombinant asparaginase fused to pelB leader sequence under the inducible T7lac promoter in BLR (DE3) host cells resulted in optimum extracellular production in shake-flasks. Fed-batch studies were carried out using this recombinant strain and an exponential feeding strategy was used to maintain a specific growth rate of 0.3 h–1. To check the effect of the time of induction on expression, cultures were induced with 1 mM isopropyl--D-thiogalactopyranoside at varying cell optical densities (OD600: 33, 60, 90, 135). Although the specific product formation rates declined with increasing OD of induction, a maximum volumetric activity of 8.7×105 units l–1, corresponding to 5.24 g l–1 of recombinant asparaginase, was obtained when induction was done at an OD600 of 90. The recombinant protein was purified directly from the culture medium, using a rapid two-step purification strategy, which resulted in a recovery of 70% and a specific activity of 80% of that of the native enzyme.  相似文献   

14.
Escherichia coli recombinant strains bearing the thr operon have been previously selected for threonine production and phenotypically classified according to antibiotic resistance properties (Nudel et al. 1987).Further analysis of those strains permitted the isolation and restriction mapping of two different plasmids of 13 kb and 18.6 kb. The smaller one, which expressed tetracycline resistance gave better results on threonine accumulation but it was rather unstable when grown without antibiotic pressure. Therefore, other hosts were transformed with those plasmids to improve stability.A threonine-auxotrophic strain was a better host for plasmid maintenance and expression of thr operon. Host influence in plasmid-mediated threonine production was studied in terms of specific yields (the ratios of threonine accumulated to biomass values) and of plasmid maintenance (percent of AprTcr clones after cultivation in non selective media).We also determined that semisynthetic media of defined composition were better than rich media for threonine expression, due to feed-back controls exerted by undesired catabolites accumulated in complex media.  相似文献   

15.
 Established expression vectors exploiting regulated promoters such as the lac or tac promoters have economic and technical limitations when used for the industrial production of recombinant proteins. Consequently, alternative expression systems are being developed that can be more readily manipulated while maintaining high yields of protein. Several suitable expression vectors have been described for use in Escherichia coli that are based on promoters the activity of which is under metabolic control. This article discusses the advantages and disadvantages of a cross-section of these expression systems, how they compare with established systems and how they can be applied to the industrial-scale production of recombinant proteins. Received: 17 November 1995/Received revision: 9 February 1996/Accepted: 4 March 1996  相似文献   

16.
A general method for obtaining high-level production of low molecular weight proteins in Escherichia coli is described. This method is based on the use of a novel Met-Xaa-protein construction which is formed by insertion of a single amino acid residue (preferably Arginine or Lysine) between the N-terminal methionine and the protein of interest. The utility of this method is illustrated by examples for achieving high-level production of human insulin-like growth factor-1, human proinsulin, and their analogs. Furthermore, highly produced insulin-like growth factor-1 derivatives and human proinsulin analogs are converted to their natural sequences by removal of dipeptides with cathepsin C.  相似文献   

17.
Abstract The bacterial species Escherichia coli has proven to be a powerful tool in the molecular analysis of polyhydroxyalkanoate (PHA) biosynthesis. In addition, E. coli holds promise as a source for economical PHA production. Using this microorganism, clones have been developed in our laboratory which direct the synthesis of poly-β-hydroxybutyrate (PHB) to levels as high as 95% of the cell dry weight. These clones have been further enhanced by the addition of a genetically mediated lysis system that allows the PHB granules to be released gently and efficiently. This paper describes these developments, as well as the use of an E. coli strain to produce the copolymer poly-(3-hydroxybutyrate- co -3-hydroxyvalerate (PHB- co -3-).  相似文献   

18.
海藻糖是相容性溶质的一种,因其具有多种生物学功能,在食品、化妆品、药品以及器官移植等方面均有很广泛应用。然而近几年生产海藻糖主要集中在使用酶催化的方法,虽然这种方法的转化效率高,但是却存在着副产物的问题,难以得到高纯度的海藻糖产品,严重制约了海藻糖的应用。本文通过基因工程技术在大肠杆菌Escherichia coli中构建了海藻糖高效合成新途径,通过全细胞催化合成海藻糖。利用PCR技术在哈氏噬纤维菌Cytophaga hutchinsonii中克隆获得海藻糖双功能合成酶基因(tpsp),采用E.coli pTac-HisA高效表达载体,实现海藻糖双功能合成酶基因(tpsp)高效表达,利用高效表达菌株进行全细胞催化,将葡萄糖高效转化为海藻糖。结果表明C.hutchinsonii海藻糖合成酶基因(tpsp)在E.coli中成功实现表达,该酶能够在胞内将葡萄糖高效转化为海藻糖,并将其转运到胞外,实现海藻糖的高效率合成,海藻糖的产量提高到1.2 g/L,相对转化率为21%。当将此高产菌株在发酵罐中进行转化时,海藻糖的产量达到13.3 g/L,葡萄糖的相对转化率达到48.6%。采用C.hutchinsonii海藻糖合成酶基因高效表达并且应用于海藻糖全细胞合成催化在国内外尚属首次报道,海藻糖的转化率及产率都已达到文献报道最高水平,本研究为开拓海藻糖生产新技术奠定了基础。  相似文献   

19.
Hemicellulose hydrolysates of agricultural residues often contain mixtures of hexose and pentose sugars. Ethanologenic Escherichia coli that have been previously investigated preferentially ferment hexose sugars. In some cases, xylose fermentation was slow or incomplete. The purpose of this study was to develop improved ethanologenic E. coli strains for the fermentation of pentoses in sugar mixtures. Using fosfomycin as a selective agent, glucose-negative mutants of E. coli KO11 (containing chromosomally integrated genes encoding the ethanol pathway from Zymomonas mobilis) were isolated that were unable to ferment sugars transported by the phosphoenolpyruvate-dependent phosphotransferase system. These strains (SL31 and SL142) retained the ability to ferment sugars with independent transport systems such as arabinose and xylose and were used to ferment pentose sugars to ethanol selectively in the presence of high concentrations of glucose. Additional fosfomycin-resistant mutants were isolated that were superior to strain KO11 for ethanol production from hexose and pentose sugars. These hyperproductive strains (SL28 and SL40) retained the ability to metabolize all sugars tested, completed fermentations more rapidly, and achieved higher ethanol yields than the parent. Both SL28 and SL40 produced 60 gl–1 ethanol from 120 gl–1 xylose in 60 h, 20% more ethanol than KO11 under identical conditions. Further studies illustrated the feasibility of sequential fermentation. A mixture of hexose and pentose sugars was fermented with near theoretical yield by SL40 in the first step followed by a second fermentation in which yeast and glucose were added. Such a two-step approach can combine the attributes of ethanologenic E. coli for pentoses with the high ethanol tolerance of conventional yeasts in a single vessel.  相似文献   

20.
A novel fed-batch approach for the production of L-phenylalanine (L-Phe) with recombinant E. coli is presented concerning the on-line control of the key fermentation parameters glucose and tyrosine. Two different production strains possessing either the tyrosine feedback resistant aroF(fbr) (encoding tyrosine feedback resistant DAHP-synthase (3-desoxy-D-arabino-heptusonate-7-phosphate)) or the wild-type aroF(wt) were used as model systems to elucidate the necessity of finding an individual process optimum for each genotype. With the aid of tyrosine control, wild-type aroF(wt) could be used for L-Phe production achieving higher final L-Phe titers (34 g/L) than the aroF(fbr) strain (28 g/L) and providing higher DAHP-synthase activities. With on-line glucose control, an optimum glucose concentration of 5 g/L could be identified that allowed a sufficient carbon supply for L-Phe production while at the same time an overflow metabolism leading to acetate by-product formation was avoided. The process approach is suitable for other production strains not only in lab-scale but also in pilot-scale bioreactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号