首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ficus, with about 755 species, diverse habits and complicated co‐evolutionary history with fig wasps, is a notoriously difficult group in taxonomy. DNA barcoding is expected to bring light to the identification of Ficus but needs evaluation of candidate loci. Based on five plastid loci (rbcL, matK, trnH‐psbA, psbK‐psbI, atpF‐atpH) and a nuclear locus [internal transcribed spacer (ITS)], we calculated genetic distances and DNA barcoding gaps individually and in combination and constructed phylogenetic trees to test their ability to distinguish the species of the genus. A total of 228 samples representing 63 putative species in Ficus (Moraceae) of China were included in this study. The results demonstrated that ITS has the most variable sites, greater intra‐ and inter‐specific divergences, the highest species discrimination rate (72%) and higher primer universality among the single loci. It is followed by psbK‐psbI and trnH‐psbA with moderate variation and considerably lower species discrimination rates (about 19%), whereas matK, rbcL and atpF‐atpH could not effectively separate the species. Among the possible combinations of loci, ITS + trnH‐psbA performed best but only marginally improved species resolution over ITS alone (75% vs. 72%). Therefore, we recommend using ITS as a single DNA barcoding locus in Ficus.  相似文献   

2.
Orchidaceae is one of the largest families of flowering plants. Many species of orchid are endangered, and all species are included in Conventions on International Trade of Endangered Species of Fauna and Flora (CITES) I and II, but it is very difficult to identify orchid species, even those with fertile parts. The genus Holcoglossum (Orchidaceae: Aeridinae) has long been problematic in taxonomy. It consists of both long-evolved and radiated species and is an excellent case to use for testing DNA barcodes for Orchidaceae. We investigated the power of a subset of proposed plant barcoding loci [rbcL, matK, atpF-atpH, psbK-psbI, trnH-psbA and internal transcribed spacer (ITS)] to discriminate between species in this genus. Our results showed that all these DNA regions, except psbK-psbI and atpF-atpH, can be amplified easily from Holcoglossum and sequenced with established primers. The DNA regions matK and ITS had the highest variability. Among the six loci, matK resolved eight of the 12 Holcoglossum species and had the highest discriminatory ability. However, the combination of matK and ITS showed a greater ability to identify species than matK alone. Single or combined DNA markers discriminated between Holcoglossum species distributed in tropical areas effectively, but had less ability to identify radiated species from the temperate Hengduan Mountains of China. In the study, matK proved to be a useful DNA barcode for the genus Holcoglossum; however, complementary DNA regions are still required to accelerate the investigation and preservation of radiated species of orchid.  相似文献   

3.
The rapid conversion of Southeast Asian lowland rainforests into monocultures calls for the development of rapid methods for species identification to support ecological research and sustainable land‐use management. Here, we investigated the utilization of DNA barcodes for identifying flowering plants from Sumatra, Indonesia. A total of 1,207 matK barcodes (441 species) and 2,376 rbcL barcodes (750 species) were successfully generated. The barcode effectiveness is assessed using four approaches: (a) comparison between morphological and molecular identification results, (b) best‐close match analysis with TaxonDNA, (c) barcoding gap analysis, and (d) formation of monophyletic groups. Results show that rbcL has a much higher level of sequence recoverability than matK (95% and 66%). The comparison between morphological and molecular identifications revealed that matK and rbcL worked best assigning a plant specimen to the genus level. Estimates of identification success using best‐close match analysis showed that >70% of the investigated species were correctly identified when using single barcode. The use of two‐loci barcodes was able to increase the identification success up to 80%. The barcoding gap analysis revealed that neither matK nor rbcL succeeded to create a clear gap between the intraspecific and interspecific divergences. However, these two barcodes were able to discriminate at least 70% of the species from each other. Fifteen genera and twenty‐one species were found to be nonmonophyletic with both markers. The two‐loci barcodes were sufficient to reconstruct evolutionary relationships among the plant taxa in the study area that are congruent with the broadly accepted APG III phylogeny.  相似文献   

4.
Distinguishing yam species based on morphological traits is extremely difficult and unreliable, posing a challenge to breeders and genebank curators. Development of a molecular assay based on DNA barcoding can facilitate rapid and accurate identification of important Dioscorea species. To develop a DNA barcoding system forDioscorea species identification, the rbcL and matK loci (in unison and in combination), the non-coding intergenic spacer trnH-psbA of the chloroplast genome, and the nuclear ITS regions were investigated using criteria for developing candidate DNA barcodes. All DNA barcoding sequences were assessed for ease of PCR amplification, sequence quality and species discriminatory power. Amongst the markers investigated, the matK locus performed well in terms of species identification (63.2%), in addition to detecting high interspecific variation with mean divergence of 0.0196 (SD=0.0209). The combination of the two coding regions (rbcL + matK) was determined to be the optimal (76.2%) DNA barcoding approach as 16 out of 21 species could be defined. While the rbcL exhibited good PCR amplification efficiency and sequence quality, its species discriminatory power was relatively poor with 47.6% identification. Similarly, the trnH-psbA region had a weak discrimination efficiency of only 36.8%. While the development of more robust DNA barcoding systems is an ongoing challenge, our results indicate that therbcL + matK combination can be utilized as multi-locus DNA barcode regions for Dioscorea species identification.  相似文献   

5.
Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non‐invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnHpsbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH‐psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics.  相似文献   

6.
The island of Madagascar is a key hot spot for the genus Euphorbia, with at least 170 native species, almost all endemic. Threatened by habitat loss and illegal collection of wild plants, nearly all Malagasy Euphorbia are listed in CITES Appendices I and II. The absence of a reliable taxonomic revision makes it particularly difficult to identify these plants, even when fertile, and thereby compromises the application of CITES regulations. DNA barcoding, which can facilitate species‐level identification irrespective of developmental stage and the presence of flowers or fruits, may be a promising tool for monitoring and controlling trade involving threatened species. In this study, we test the potential value of barcoding on 41 Euphorbia species representative of the genus in Madagascar, using the two widely adopted core barcode markers (matK and rbcL), along with two additional DNA regions, nuclear internal transcribed spacer (ITS) and the chloroplastic intergenic spacer psbA‐trnH. For each marker and for selected marker combinations, inter‐ and intraspecific distance estimates and species discrimination rates are calculated. Results using just the ‘official’ barcoding markers yield overlapping inter‐ and intraspecific ranges and species discrimination rates below 60%. When ITS is used, whether alone or in combination with the core markers, species discrimination increases to nearly 100%, whereas the addition of psbA‐trnH produces less satisfactory results. This study, the first ever to test barcoding on the large, commercially important genus Euphorbia shows that this method could be developed into a powerful identification tool and thereby contribute to more effective application of CITES regulations.  相似文献   

7.
Small portions of the barcode region – mini‐barcodes – may be used in place of full‐length barcodes to overcome DNA degradation for samples with poor DNA preservation. 591,491,286 rbcL mini‐barcode primer combinations were electronically evaluated for PCR universality, and two novel highly universal sets of priming sites were identified. Novel and published rbcL mini‐barcode primers were evaluated for PCR amplification [determined with a validated electronic simulation (n = 2765) and empirically (n = 188)], Sanger sequence quality [determined empirically (n = 188)], and taxonomic discrimination [determined empirically (n = 30 472)]. PCR amplification for all mini‐barcodes, as estimated by validated electronic simulation, was successful for 90.2–99.8% of species. Overall Sanger sequence quality for mini‐barcodes was very low – the best mini‐barcode tested produced sequences of adequate quality (B20 ≥ 0.5) for 74.5% of samples. The majority of mini‐barcodes provide correct identifications of families in excess of 70.1% of the time. Discriminatory power noticeably decreased at lower taxonomic levels. At the species level, the discriminatory power of the best mini‐barcode was less than 38.2%. For samples believed to contain DNA from only one species, an investigator should attempt to sequence, in decreasing order of utility and probability of success, mini‐barcodes F (rbcL1/rbcLB), D (F52/R193) and K (F517/R604). For samples believed to contain DNA from more than one species, an investigator should amplify and sequence mini‐barcode D (F52/R193).  相似文献   

8.
The genus Corydalis is recognized as one of the most taxonomically challenging plant taxa. It is mainly distributed in the Himalaya–Hengduan Mountains, a global biodiversity hotspot. To date, no effective solution for species discrimination and taxonomic assignment in Corydalis has been developed. In this study, five nuclear and chloroplast DNA regions, ITS, ITS2, matK, rbcL, and psbA‐trnH, were preliminarily assessed based on their ability to discriminate Corydalis to eliminate inefficient regions, and the three regions showing good performance (ITS, ITS2 and matK) were then evaluated in 131 samples representing 28 species of 11 sections of four subgenera in Corydalis using three analytical methods (NJ, ML, MP tree; K2P‐distance and BLAST). The results showed that the various approaches exhibit different species identification power and that BLAST shows the best performance among the tested approaches. A comparison of different barcodes indicated that among the single barcodes, ITS (65.2%) exhibited the highest identification success rate and that the combination of ITS + matK (69.6%) provided the highest species resolution among all single barcodes and their combinations. Three Pharmacopoeia‐recorded medicinal plants and their materia medica were identified successfully based on the ITS and ITS2 regions. In the phylogenetic analysis, the sections Thalictrifoliae, Sophorocapnos, Racemosae, Aulacostigma, and Corydalis formed well‐supported separate lineages. We thus hypothesize that the five sections should be classified as an independent subgenus and that the genus should be divided into three subgenera. In this study, DNA barcoding provided relatively high species discrimination power, indicating that it can be used for species discrimination in this taxonomically complicated genus and as a potential tool for the authentication of materia medica belonging to Corydalis.  相似文献   

9.
10.
We evaluated the utility of the core barcode regions (matK and rbcL) and the plastid intergenic spacer trnH‐psbA to distinguish between Thymus spp. This is a taxonomically complex group that has been investigated so far mainly using morphological approaches. Thirty‐six samples representing nine different morphospecies were collected and used for molecular analysis. The three markers showed clear amplification and sequencing. However, the genetic variation and the resulting haplotype networks showed that only Thymus capitatus forms a well‐defined ‘barcoding gap’ compared with the other taxa. The identification problems observed in the other Thymus spp. may be related to reduced gene flow among populations, resulting in high intraspecific and low interspecific genetic variation. This situation does not permit the definition of species‐specific barcodes. A second hypothesis suggests that morphological traits used for the delimitation of Thymus spp. do not reflect real biological and molecular species boundaries. If this is the case, the taxonomy of Thymus should be revised through extensive sampling and analyses with different tools (i.e. molecular variability, morphology, geographical distribution, etc.) to define the natural units at the species level. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013 , 171 , 687–699.  相似文献   

11.
DNA barcoding was used in the identification of 89 commercially important freshwater and marine fish species found in Turkish ichthyofauna. A total of 1765 DNA barcodes using a 654‐bp‐long fragment of the mitochondrial cytochrome c oxidase subunit I gene were generated for 89 commercially important freshwater and marine fish species found in Turkish ichthyofauna. These species belong to 70 genera, 40 families and 19 orders from class Actinopterygii, and all were associated with a distinct DNA barcode. Nine and 12 of the COI barcode clusters represent the first species records submitted to the BOLD and GenBank databases, respectively. All COI barcodes (except sequences of first species records) were matched with reference sequences of expected species, according to morphological identification. Average nucleotide frequencies of the data set were calculated as T = 29.7%, C = 28.2%, A = 23.6% and G = 18.6%. Average pairwise genetic distance among individuals were estimated as 0.32%, 9.62%, 17,90% and 22.40% for conspecific, congeneric, confamilial and within order, respectively. Kimura 2‐parameter genetic distance values were found to increase with taxonomic level. For most of the species analysed in our data set, there is a barcoding gap, and an overlap in the barcoding gap exists for only two genera. Neighbour‐joining trees were drawn based on DNA barcodes and all the specimens clustered in agreement with their taxonomic classification at species level. Results of this study supported DNA barcoding as an efficient molecular tool for a better monitoring, conservation and management of fisheries.  相似文献   

12.
To elucidate potential ecological and evolutionary processes associated with the assembly of plant communities, there is now widespread use of estimates of phylogenetic diversity that are based on a variety of DNA barcode regions and phylogenetic construction methods. However, relatively few studies consider how estimates of phylogenetic diversity may be influenced by single DNA barcodes incorporated into a sequence matrix (conservative regions vs. hypervariable regions) and the use of a backbone family‐level phylogeny. Here, we use general linear mixed‐effects models to examine the influence of different combinations of core DNA barcodes (rbcL, matK, ITS, and ITS2) and phylogeny construction methods on a series of estimates of community phylogenetic diversity for two subtropical forest plots in Guangdong, southern China. We ask: (a) What are the relative influences of single DNA barcodes on estimates phylogenetic diversity metrics? and (b) What is the effect of using a backbone family‐level phylogeny to estimate topology‐based phylogenetic diversity metrics? The combination of more than one barcode (i.e., rbcL + matK + ITS) and the use of a backbone family‐level phylogeny provided the most parsimonious explanation of variation in estimates of phylogenetic diversity. The use of a backbone family‐level phylogeny showed a stronger effect on phylogenetic diversity metrics that are based on tree topology compared to those that are based on branch lengths. In addition, the variation in the estimates of phylogenetic diversity that was explained by the top‐rank models ranged from 0.1% to 31% and was dependent on the type of phylogenetic community structure metric. Our study underscores the importance of incorporating a multilocus DNA barcode and the use of a backbone family‐level phylogeny to infer phylogenetic diversity, where the type of DNA barcode employed and the phylogenetic construction method used can serve as a significant source of variation in estimates of phylogenetic community structure.  相似文献   

13.
Although two plastid regions have been adopted as the standard markers for plant DNA barcoding, their limited resolution has provoked the consideration of other gene regions, especially in taxonomically diverse genera. The genus Gossypium (cotton) includes eight diploid genome groups (A–G, and K) and five allotetraploid species which are difficult to discriminate morphologically. In this study, we tested the effectiveness of three widely used markers (matK, rbcL, and ITS2) in the discrimination of 20 diploid and five tetraploid species of cotton. Sequences were analysed locus‐wise and in combinations to determine the most effective strategy for species identification. Sequence recovery was high, ranging from 92% to 100% with mean pairwise interspecific distance highest for ITS2 (3.68%) and lowest for rbcL (0.43%). At a 0.5% threshold, the combination of matK+ITS2 produced the greatest number of species clusters. Based on ‘best match’ analysis, the combination of matK+ITS2 was best, while based on ‘all species barcodes’ analysis, ITS2 gave the highest percentage of correct species identifications (98.93%). The combination of sequences for all three markers produced the best resolved tree. The disparity index test based on matK+rbcL+ITS2 was significant (< 0.05) for a higher number of species pairs than the individual gene sequences. Although all three barcodes separated the species with respect to their genome type, no single combination of barcodes could differentiate all the Gossypium species, and tetraploid species were particularly difficult.  相似文献   

14.
Vegetation surveys have a long tradition in ecological studies, but several limitations in the morphological identification of species have been recognized. The objective of this study was to evaluate the effectiveness of DNA barcoding in plant species identification to save field technicians time and resources. Vegetation surveys were performed in four plots of semi‐dry grassland in the Italian subalpine region of Lombardy. Two identification approaches were employed: a conventional morphological identification and a molecular multi‐marker DNA barcoding method. Results showed that morphological identification of 49 species collected from the study area (five field inspections) required a substantial amount of time to complete relative to the molecular method. The same 49 samples were analysed using the following DNA multi‐marker barcodes: rbcL, matK and trnHpsbA. rbcL showed 100% amplification success with standard primers, but low interspecific genetic variability. matK demonstrated some amplification problems with standard primers; however, consistent genetic diversity was observed. Finally, the trnHpsbA spacer region exhibited reliable amplification success and the highest molecular variability. In a comparison with publicly available databases, trnHpsbA and matK returned the highest proportion of identified samples, whereas rbcL returned several misidentifications. The DNA barcoding approach is a powerful tool in vegetation surveys and may significantly reduce the time and cost spent for species identification. However, to effectively apply DNA barcoding in vegetation surveys, exhaustive local or regional molecular databases must be defined. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169 , 518–529.  相似文献   

15.
Identification of rodents is very difficult mainly due to high similarities in morphology and controversial taxonomy. In this study, mitochondrial cytochrome oxidase subunit I (COI) was used as DNA barcode to identify the Murinae and Arvicolinae species distributed in China and to facilitate the systematics studies of Rodentia. In total, 242 sequences (31 species, 11 genera) from Murinae and 130 sequences (23 species, 6 genera) from Arvicolinae were investigated, of which 90 individuals were novel. Genetic distance, threshold method, tree‐based method, online BLAST and BLOG were employed to analyse the data sets. There was no obvious barcode gap. The average K2P distance within species and genera was 2.10% and 12.61% in Murinae, and 2.86% and 11.80% in Arvicolinae, respectively. The optimal threshold was 5.62% for Murinae and 3.34% for Arvicolinae. All phylogenetic trees exhibited similar topology and could distinguish 90.32% of surveyed species in Murinae and 82.60% in Arvicolinae with high support values. BLAST analyses yielded similar results with identification success rates of 92.15% and 93.85% for Murinae and Arvicolinae, respectively. BLOG successfully authenticated 100% of detected species except Leopoldamys edwardsi based on the latest taxonomic revision. Our results support the species status of recently recognized Micromys erythrotis, Eothenomys tarquinius and E. hintoni and confirm the important roles of comprehensive taxonomy and accurate morphological identification in DNA barcoding studies. We believe that, when proper analytic methods are applied or combined, DNA barcoding could serve as an accurate and effective species identification approach for Murinae and Arvicolinae based on a proper taxonomic framework.  相似文献   

16.
Colombia is the country with the largest number of bird species worldwide, yet its avifauna is seriously threatened by habitat degradation and poaching. We built a DNA barcode library of nearly half of the bird species listed in the CITES appendices for Colombia, thereby constructing a species identification reference that will help in global efforts for controlling illegal species trade. We obtained the COI barcode sequence of 151 species based on 281 samples, representing 46% of CITES bird species registered for Colombia. The species analysed belong to nine families, where Trochilidae and Psittacidae are the most abundant ones. We sequenced for the first time the DNA barcode of 47 species, mainly hummingbirds endemic of the Northern Andes region. We found a correct match between morphological and genetic identification for 86–92% of the species analysed, depending on the cluster analysis performed (BIN, ABGD and TaxonDNA). Additionally, we identified eleven cases of high intraspecific divergence based on K2P genetic distances (up to 14.61%) that could reflect cryptic diversity. In these cases, the specimens were collected in geographically distant sites such as different mountain systems, opposite flanks of the mountain or different elevations. Likewise, we found two cases of possible hybridization and incomplete lineage sorting. This survey constitutes the first attempt to build the DNA barcode library of endangered bird species in Colombia establishing as a reference for management programs of illegal species trade, and providing major insights of phylogeographic structure that can guide future taxonomic research.  相似文献   

17.
DNA barcoding methods use a single locus (usually the mitochondrial COI gene) to assign unidentified specimens to known species in a library based on a genetic distance threshold that distinguishes between‐species divergence from within‐species diversity. Recently developed species delimitation methods based on the multispecies coalescent (MSC) model offer an alternative approach to individual assignment using either single‐locus or multiloci sequence data. Here, we use simulations to demonstrate three features of an MSC method implemented in the program bpp . First, we show that with one locus, MSC can accurately assign individuals to species without the need for arbitrarily determined distance thresholds (as required for barcoding methods). We provide an example in which no single threshold or barcoding gap exists that can be used to assign all specimens without incurring high error rates. Second, we show that bpp can identify cryptic species that may be misidentified as a single species within the library, potentially improving the accuracy of barcoding libraries. Third, we show that taxon rarity does not present any particular problems for species assignments using bpp and that accurate assignments can be achieved even when only one or a few loci are available. Thus, concerns that have been raised that MSC methods may have problems analysing rare taxa (singletons) are unfounded. Currently, barcoding methods enjoy a huge computational advantage over MSC methods and may be the only approach feasible for massively large data sets, but MSC methods may offer a more stringent test for species that are tentatively assigned by barcoding.  相似文献   

18.
DNA barcoding aims to develop an efficient tool for species identification based on short and standardized DNA sequences. In this study, the DNA barcode paradigm was tested among the genera of the tribe Sisyrinchieae (Iridoideae). Sisyrinchium, with more than 77% of the species richness in the tribe, is a taxonomically complex genus. A total of 185 samples belonging to 98 species of Sisyrinchium, Olsynium, Orthrosanthus and Solenomelus were tested using matK, trnHpsbA and internal transcribed spacer (ITS). Candidate DNA barcodes were analysed either as single markers or in combination. Detection of a barcoding gap, similarity‐based methods and tree‐based analyses were used to assess the discrimination efficiency of DNA barcodes. The levels of species identification obtained from plastid barcodes were low and ranged from 17.35% to 20.41% for matK and 5.11% to 7.14% for trnH‐psbA. The ITS provided better results with 30.61–38.78% of species identified. The analyses of the combined data sets did not result in a significant improvement in the discrimination rate. Among the tree‐based methods, the best taxonomic resolution was obtained with Bayesian inference, particularly when the three data sets were combined. The study illustrates the difficulties for DNA barcoding to identify species in evolutionary complex lineages. Plastid markers are not recommended for barcoding Sisyrinchium due to the low discrimination power observed. ITS gave better results and may be used as a starting point for species identification.  相似文献   

19.
We present the findings of a DNA barcoding study of the UK tree flora, implemented as part of an innovative, research‐based science education programme called ‘Tree School’. The UK tree flora comprises native and introduced species, and is a taxonomically diverse study group for the exploration of the potential and limitations of DNA barcoding. The children participating in the project collected voucher specimens and generated DNA barcode sequences from trees and shrubs found in the grounds and surrounding woodlands of a residential field centre in Dorset, UK. We assessed the potential of rbcL and matK markers for amplification and DNA sequencing success and for species discrimination among the 67 tree and shrub species included in this study. Although we achieved 100% PCR amplification and sequencing success for rbcL and matK, mononucleotide repeats affected sequence quality in matK for some taxonomic groups (e.g. Rosaceae). Species discrimination success ranged from 65% to 71% using tree‐based methods to 86% using BLASTN. The occurrence of known hybrids (diploid and polyploid) and their progenitors on the study site reduced the overall species discrimination success for both loci. This study demonstrates that, even in a floristic context, rbcL and matK alone are insufficient for the discrimination of UK tree species, especially where taxonomically complex groups are present. From a science education perspective, DNA barcoding represents a compelling and accessible platform for the engagement of non‐experts in ongoing research, providing an opportunity for them to contribute authentic scientific data to an international research campaign.  相似文献   

20.
Since its introduction in 2003, DNA barcoding has proven to be a promising method for the identification of many taxa, including mosquitoes (Diptera: Culicidae). Many mosquito species are potential vectors of pathogens, and correct identification in all life stages is essential for effective mosquito monitoring and control. To use DNA barcoding for species identification, a reliable and comprehensive reference database of verified DNA sequences is required. Hence, DNA sequence diversity of mosquitoes in Belgium was assessed using a 658 bp fragment of the mitochondrial cytochrome oxidase I (COI) gene, and a reference data set was established. Most species appeared as well‐supported clusters. Intraspecific Kimura 2‐parameter (K2P) distances averaged 0.7%, and the maximum observed K2P distance was 6.2% for Aedes koreicus. A small overlap between intra‐ and interspecific K2P distances for congeneric sequences was observed. Overall, the identification success using best match and the best close match criteria were high, that is above 98%. No clear genetic division was found between the closely related species Aedes annulipes and Aedes cantans, which can be confused using morphological identification only. The members of the Anopheles maculipennis complex, that is Anopheles maculipennis s.s. and An. messeae, were weakly supported as monophyletic taxa. This study showed that DNA barcoding offers a reliable framework for mosquito species identification in Belgium except for some closely related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号