首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Syntheses and crystal structures of nickel(II) complexes containing teta (teta N,N′-bis(2-aminoethyl)ethane-1,2-diamine) as a tetradentate blocking ligand and cyanidometallic bridging complexes are described. The complexes [Ni(teta)(cis2-Ni(CN)4)] (1) and [{Ni(teta)}36-Co(CN)6)] (ClO4)3 (2) exhibit a 1D-polymeric structure whereas the heterometallic trinuclear complex [Ni(teta)(μ1-Ag(CN)2)2] (3) forms a unique network. The weak antiferromagnetic exchange was found in polymeric species 1 and 2 by analyzing the magnetic data with several models in which either only susceptibility was treated or simultaneous fitting of temperature and magnetic field dependences of the magnetization was applied using the finite-size closed ring approach. Moreover, an effect of the zero-field splitting phenomenon (ZFS) was considered for 2 by advanced modeling of magnetic properties for varying axial ZFS parameter/isotropic exchange (D/J) ratios.  相似文献   

2.
Nickel Superoxide Dismutase (NiSOD) and the A-cluster of Carbon Monoxide Dehydrogenase/Acetyl Coenzyme A Synthase (CODH/ACS) both feature active sites with Ni coordinated by thiolate and amide donors. It is likely that the particular set of donors is important in tuning the redox potential of the Ni center(s). We report herein an expansion of our efforts involving the use of 2,2′-dithiodibenzaldehyde (DTDB) as a synthon for metal-thiolate complexes to reactions with Ni complexes of N,N-dimethylethylenediamine (dmen). In the presence of coordinating counterions, these reactions result in monomeric square-planar complexes of the tridentate N2S donor ligand derived from the Schiff-base condensation of dmen and DTDB. In the absence of a coordinating counterion, we have isolated a Ni(II) complex with an asymmetric N2S2 donor set involving one amine and one imine N donor in addition to two thiolate donors. This latter complex is discussed with respect to its relevance to the active site of NiSOD.  相似文献   

3.
N,N-bis[4-(2-aminoethyl)morpholino]glyoxime (H2L) (Fig. 1), has been prepared in various yields using three different methods. The most efficient of these methods is the technique of microwave irradiation. The crystal structures of H2L, and of two nickel(II) complexes 1 and 2 have been determined by single crystal X-ray diffraction. Both nickel(II) complexes have a metal-ligand ratio of 1:2 in which the ligand coordinates through the two nitrogen atoms as do most vic-dioximes. The nickel(II) complexes are either hydrogen (1) or boron diphenyl bridged (2). Complex 1 was synthesized by reacting H2L with nickel(II) chloride in refluxing ethanol. Complex 2 was prepared at room temperature in an ethanol solution containing excess NaBPh4. Elemental analyses, NMR(1H, 13C), IR and mass data are also presented.  相似文献   

4.
《Inorganica chimica acta》2004,357(14):4165-4171
Cationic palladium(II) complexes [PdCl{PR2CH2C(But)NNC(But)CH2PR2}]Cl, where R = isopropyl, cyclohexyl or tert-butyl, were synthesized by the reactions of the corresponding diphosphinoazines with bis(acetonitrile)palladium(II) dichloride. When bis(benzonitrile)palladium(II) dichloride was used instead, in the molar ratio of 2:1 to the diphosphinoazine, a new complex was isolated with the isopropyl ligand showing a previously unknown (E,E) tetradentate coordination mode. Crystal and molecular structure was determined by X-ray diffraction. The solid complex was a racemate of two axially chiral enantiomers and the chirality was preserved in solution. Reactions of the cationic complexes with triethylamine gave complexes [PdCl{PR2CHC(But)NNC(But)CH2PR2}], containing deprotonated diphosphinoazines in ene-hydrazone unsymmetrical pincer-like configuration. The complexes represent several of the still rare examples of Pd(II) amido bis(phosphine) complexes with a chlorine atom covalently bonded trans to the amide nitrogen.  相似文献   

5.
The synthesis, structural characterization, voltammetric experiments and antibacterial activity of [Ni(sulfisoxazole)(2)(H(2)O)(4)].2H(2)O and [Ni(sulfapyridine)(2)] were studied and compared with similar previously reported copper complexes. [Ni(sulfisoxazole)(2)(H(2)O)(4)].2H(2)O crystallized in a monoclinic system, space group C2/c where the nickel ion was in a slightly distorted octahedral environment, coordinated with two sulfisoxazole molecules through the heterocyclic nitrogen and four water molecules. [Ni(sulfapyridine)(2)] crystallized in a orthorhombic crystal system, space group Pnab. The nickel ion was in a distorted octahedral environment, coordinated by two aryl amine N from two sulfonamides acting as monodentate ligands and four N atoms (two sulfonamidic N and two heterocyclic N) from two different sulfonamide molecules acting as bidentate ligands. Differential pulse voltammograms were recorded showing irreversible peaks at 1040 and 1070 mV, respectively, attributed to Ni(II)/Ni(III) process. [Ni(sulfisoxazole)(2)(H(2)O)(4)].2H(2)O and [Ni(sulfapyridine)(2)] presented different antibacterial behavior against Staphylococcus aureus and Escherichia coli from the similar copper complexes and they were inactive against Mycobacterium tuberculosis.  相似文献   

6.
Addition of KTpPh2 to a solution of NiX2 (X = Cl, Br, NO3, OAc and acac) or NiBr(NO)(PPh3)2 in THF yields the structurally characterized series [NiCl(HpzPh2)TpPh2] (1) and [NiXTpPh2] (X = Br 2, NO 3, NO34, OAc 5 and acac 6) including the first example of a tris(pyrazolyl)borate nickel nitrosyl complex. IR spectroscopy confirms that all the TpPh2 ligands are κ3 coordinated and that the NO ligand in 3 is linearly bound. Electronic spectra are consistent with four- or five-coordinate species in solution. NMR spectroscopic studies indicate that the complexes are paramagnetic, with the exception of 3. This is confirmed by magnetic susceptibility studies, which suggest that complexes 1, 2 and 4-6 are paramagnetic with two unpaired electrons. X-ray crystallographic studies of 5 reveal a distorted trigonal bipyramidal nickel centre with a symmetrically coordinated acetate ligand.  相似文献   

7.
A new potentially tetradentate (N4) Schiff base ligand (L), 1,9,12,20-tetraazatetracyclo[18.2.2.02,7.014,19]tetracosa-2(7),3,5,8,12,14(19),15,17-octaene containing a piperazine moiety is described. Macrocyclic Schiff base complexes, [NiL](ClO4)2 (1) and [CuL](ClO4)2 (2) have been obtained from equimolar amounts of ligand (L) with nickel(II) and copper(II) metal ions. While the equilibrium reaction in the presence of cobalt(II) and zinc(II) metal ions with ligand L in a 1:1 molar ratio yielded the open-chain Schiff base complexes, [CoL′](ClO4)2 (3) and [ZnL′](ClO4)2 (4) containing two terminal primary amino groups. The ligand L′ is 1,4-bis(2-(2-aminoethyliminomethyl)phenyl)piperazine. The crystal structures of (1) and (4) have been also determined by X-ray diffraction. It was shown that the Ni(II) is coordinated to the ligand L by two nitrogen atoms of piperazine group and two nitrogen atoms of the imine groups, in a slightly distorted square-planar geometry. Also single crystal X-ray analysis of (4) confirmed a distorted octahedral arrangement in the vicinity of Zn atom with N6 donor set. The spectroscopic characterization of all complexes is consistent with their crystal structures.  相似文献   

8.
A novel one-dimensional heterometallic complex, {Cd2[NiL]2(SCN)4(H2O)}n (1), has been synthesized and characterized by single-crystal X-ray analysis, where L is dianion of 2,3-dioxo-5,6,13,14-dibenzo-9,10-cyclohexyl-7,12-bis(ethoxycarbonyl)-1,4,8,11-tetraazacyclotetradeca-7,11-diene. The most striking feature of 1 is that in the structure there is one type of S-S bond (1.823(13) Å) formed by two thiocyanate groups which has not been reported to our knowledge. The DNA cleavage activity of 1 in the presence of H2O2 was compared with those of nickel(II) ion, cadmium(II) ion and corresponding mononuclear precursor NiL (2). The DNA cleavage kinetics was studied and the corresponding activation parameters of 1 were obtained.  相似文献   

9.
The template reaction between salicylaldehyde S-methyl-isothiosemicarbazone and 2-formylpyridine in presence of nickel(II) or copper(II) salts yields two new coordination compounds with general formula [NiL1]2(1) and [CuL2]2(2) (L1 = the dianionic (N1-salicylidene)(N4-(hydroxy(pyridin-2-yl)methyl) S-methyl-isothiosemicarbazide) ligand and L2 = the doubly deprotonated (N1-salicylidene)(N4-(picolinoyl) S-methyl-isothiosemicarbazide) ligand). In the complex 1, the formed L1 ligand appears as result of an addition reaction of the precursors, while for 2 a redox mechanism is implicated in the formation of L2. Despite the fact that the initial organic precursors are the same, the resulting ligands obtained in the template reaction are different. In 1, the Ni(II) metal ion adopts a square-planar geometry and the [NiL1] units are forming dimerized chains through weak Ni···Ni interactions (3.336 and 3.632 Å). In 2, the Cu(II) metal ions adopt a square-pyramidal geometry and form dinuclear species through weak Cu···O (phenoxo) interactions. The magnetic susceptibility measurements of the complexes reveal the diamagnetic nature of 1 as expected for a square planar Ni(II) complex and a paramagnetic behavior for 2 with weak intra-dimer antiferromagnetic interaction (J/kB = −2.1(1) K).  相似文献   

10.
Starting from the heterotopic multidentate ligand 1,2-phenylenebis(thio)diacetic acid (1), cis-rac-[PdCl2{1,2-(HOOCCH2S)2C6H42S,S′}] (2), cis-rac-[Rh{1,2-(HOOCCH2S)2C6H42S,S′}(cod)]BF4 (3) and cis-rac-[Ni{1,2-(OOCCH2S)2C6H44O,OS,S′}{cis-(C3H4N2)}2] (4) were prepared and characterised by X-ray diffraction and conventional spectroscopic techniques. Compounds 1-4 show extensive hydrogen-bonded networks (XH?O, X = O, N) in the solid state.  相似文献   

11.
A potential tetradentate indolecarboxamide ligand, H4L3 is synthesized and investigated for its coordination abilities towards Ni(II) and Cu(II) ions. Two H4L3 ligands in their tetra-deprotonated form [L3]4−, were found to coordinate two metal centers resulting in the formation of [Ni2(L3)2]4− (5) and [Cu2(L3)2]4− (6) complexes. The crystal structure of 6 displays the formation of a dinuclear structure where two fully deprotonated ligands, [L3]4− hold two copper(II) ions together. Even more interesting is the fact that both deprotonated ligands, [L3]4− coordinate the copper ions in an identical and symmetrical fashion. The Na+ cations present in the complex 6 stitch together the dinuclear units resulting in the formation of a coordination chain polymer. Four sodium ions connect two dinuclear units via interacting with the Oamide groups. Further, Na+ cations were found to coordinate several DMF molecules; some of them are terminal and a few are bridging in nature. The solution state structure (determined by the NMR spectral analysis) of the diamagnetic complex 5 also supported the fact that two deprotonated ligands, coordinate two nickel ions in an identical and symmetrical fashion. Absorption spectral studies reveal that the solid-state square-planar geometry is retained in solution and both complexes do not show any tendency to coordinate potential axial ligands. The variable-temperature magnetic measurements and EPR spectra indicate spin-spin exchange between two copper centers in complex 6. The electrochemical results for both complexes show three irreversible oxidative responses that correspond to the oxidation of first and second metal ion followed by the ligand oxidation, respectively.  相似文献   

12.
Bis[1,2-bis(4-methylphenyl)ethanedione dioximato]nickel(II), [Ni{(C1)2dpg}2] (1), was found to exhibit shift in diffuse reflectance spectra from the corresponding non-methyl species. Characterization by X-ray crystal structural analysis on 1 and bis[1,2-bis(4-n-hexylphenyl)ethanedione dioximato]nickel(II), [Ni{(C6)2dpg}2] (2), revealed the presence of the edge-to-face aromatic interactions caused by the electron-donating effect of the methyl and hexyl groups. The Ni(dpg)2 units of complex 2 stack (staggered by 90°) at alternate intervals of 3.151 Å and 3.253 Å. Thus, the shift in the d-p transition of 2 was found to contain 43% of the effect of the edge-to-face aromatic interaction, together with 57% of the reported fastener effect.  相似文献   

13.
New complexes have been synthesized of scorpionate ligands with cyano substituents in the 4-positions of the pyrazoles and tert-butyl substituents in the 3-positions of the pyrazoles. Reaction of Co2+, Mn2+, and Ni(cyclam)2+ (cyclam = 1,4,8,11-tetraazacyclotetradecane) with Tpt-Bu,4CN in a 1:2 ratio produced new octahedral metal complexes of the form (Tpt-Bu,4CN)2ML4 (L= (H2O)4, (H2O)2(MeOH)2, or cyclam). Unlike the sandwich complexes previously isolated with TpPh,4CN, the crystal structures showed none of the pyrazole nitrogen atoms coordinated to the metal. Rather, the metal is coordinated to one CN nitrogen atom from each ligand, with two Tp anions coordinated trans to each other around the metal center. This leaves the Tp pyrazole nitrogen atoms open for another metal to coordinate, which could to lead to heterometallic complexes, new coordination polymers, as well as the framework for supramolecular complexes.  相似文献   

14.
Reaction of [Ru2(O2CMe)4]Cl and K2[Ni(CN)4] forms [Ru2(O2CMe)4]2[Ni(CN)4] with the targeted layered structure possessing Ru-NCNi linkages, albeit strained, with Ru-NC and Ni-CN angles in the range of 147-167°. The magnetic properties of [Ru2(O2CMe)4]2[Ni(CN)4] can be fit to a zero-field splitting model with D/kB = 95 K (66 cm−1).  相似文献   

15.
Treatment of the five-coordinate chlorodimethylsilyl complex, Os(SiMe2Cl)Cl(CO)(PPh3)2 with hydroxide readily produces Os(SiMe2OH)Cl(CO)(PPh3)2 (1). Complex 1 is deprotonated by tBuLi giving the silanolate complex, Os(SiMe2OLi)Cl(CO)(PPh3)2 (2), which reacts further with Me3SiCl or Me3SnCl to give Os(SiMe2OSiMe3)Cl(CO)(PPh3)2 (3) or Os(SiMe2OSnMe3)Cl(CO)(PPh3)2 (4), respectively. The structures of 3 and 4 have been determined by X-ray crystallography. Reaction between OsH(κ2-S2CNMe2)(CO)(PPh3)2 and HSiMe2Cl gives Os(SiMe2Cl)(κ2-S2CNMe2)(CO)(PPh3)2 (5). This six-coordinate chlorodimethylsilyl complex, is unreactive towards hydroxide at room temperature and at 60 °C forms Os[Si(OH)3](κ2-S2CNMe2)(CO)(PPh3)2 (7). Complex 5 is, however, smoothly converted to the hydroxy derivative, Os(SiMe2OH)(κ2-S2CNMe2)(CO)(PPh3)2 (6) upon chromatography on silica gel. Complex 6 is deprotonated by tBuLi giving the intermediate silanolate complex, Os(SiMe2OLi)(κ2-S2CNMe2)(CO)(PPh3)2, which reacts further with Me3SiCl to give Os(SiMe2OSiMe3)(κ2-S2CNMe2) (CO)(PPh3)2 (8). Crystal structure determinations for 5, 6, 7, and 8 have been obtained and structural comparisons of these related compounds are made.  相似文献   

16.
Three novel coordination complexes [Mn(tpha)(phen)]n (1); [Mn(na)2(H2O)2]n (2); {[Mn(phen)2(OH)Cl] · Cl · (OH) · (C9H11NO2) · 2H2O} (3) have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction (H2tpha = terephthalic acid, Hna = nicotinic acid, phen = 1,10-phenanthroline). The tpha groups in complex 1 bridge the Mn(II) ions to an infinite 3D framework. Complex 2 exhibits a 2D network structure in which the Mn(II) ions are linked by nicotinic groups. Complex 3 is connected to a 2D coordination supramolecule by hydrogen bonds. The results of surface photovoltage spectra (SPS) of complexes 1-3 indicate that they all exhibit positive surface photovoltage (SPV) responses in the range of 300-800 nm. However, the intensity, position and numbers of SPV responses are obviously different. The distinctions can be mainly attributed to their structures, valences and coordination environments of the manganese ions in the three complexes. Moreover the external field induced surface photovoltage spectra (FISPS) of the three complexes have been measured.  相似文献   

17.
The nickel(II) complexes of the compositions [Ni(hmidtc)(bpy)2]ClO4 (I), [Ni(hmidtc)(phen)2]ClO4 (II), [Ni(hmidtc)(phen)2]SCN (III), [Ni(hmidtc)(phen)2]PF6 (IV), [Ni(hmidtc)(phen)2]BPh4 (V), [Ni(hmidtc)(phen)2]AcO·2H2O (VI) and [Ni(hmidtc)(phen)2]Br·H2O (VII), involving a combination of one hexamethyleneimine-dithiocarbamate anion (hmidtc) and two bidentate N,N-donor ligands (2,2′-bipyridine (bpy) for I or 1,10-phenanthroline (phen) for II-VII), have been prepared. The compounds were characterized by elemental analysis, molar conductivity measurements, UV-Vis and IR spectroscopy, magnetochemical measurements and thermal analysis. A single-crystal X-ray analysis of the complex I revealed a distorted octahedral geometry with the nickel(II) ion coordinated by four nitrogen atoms (from two bidentate-coordinated bpy molecules) and two sulfur atoms (from one bidentate-coordinated hmidtc anion), together giving an NiN4S2 donor set.  相似文献   

18.
It has been established that small molecule model complexes have been useful in studying more complex biological systems of metalloproteins. Because many metalloproteins have active sites that contain multiple histidine residues bound to a metal center, a series of imidazole-containing scorpionate ligands and the associated Co and Ni complexes have been developed to investigate the bonding parameters of histidine containing active sites. The tris(2-imidazolyl) carbinol (2-TIC, 6) and tris[2-(N-methylimidazolyl)] carbinol (2-MeTIC, 7) complexes of Ni2+ and Co2+, namely [Co(2-MeTIC)2]Cl2 (8), [Co(2-MeTIC)2](NO3)2 (9), [Ni(2-MeTIC)2]Cl2 (10), [Ni(2-MeTIC)2](NO3)2 (11), [Co(2-TIC)2](NO3)2 (12), and [Ni(2-TIC)2](NO3)2 (13), have been prepared from the reaction of the appropriate ligand and appropriate metal salt in polar solvent. These complexes have been characterized by single crystal X-ray diffraction, spectroscopic techniques, and magnetic susceptibility. In each solid-state structure the metal center in the cation coordinates to three N atoms from two ligands and adopts a pseudo-octahedral coordination geometry. The X-ray characterization of tris[2-(N-methylimidazolyl)] carbinol is also reported.  相似文献   

19.
Two complexes of the formula [MH3L](ClO4)2 [M = Cu(II) (1), Ni(II) (2)] have been prepared by the reaction of M(ClO4)2 · 6H2O with the ligand (H3L) formed by the Schiff base condensation of tris(2-aminoethyl)amine (tren) with three molar equivalents of 4-methyl-5-imidazolecarboxaldehyde and structurally and magnetically characterized. The structures of 1 and 2 are isomorphous with each other and with the iron(II) complex of H3L which has been reported previously. The ligand, while potentially heptadentate, forms six coordinate complexes with both metal centers forming three M-Nimine and three M-Nimidazole bonds. The tren central N atom is at a nonbonded distance from M of 3.261 Å for 1 and 3.329 Å for 2. The neutral complex CuHL 3 was prepared by reaction of H3L with Cu(OCH3)2 and the ionic complex Na[NiL] 4 was prepared by deprotonation of 2 with aqueous sodium hydroxide. Magnetic measurements of 1-3 are consistent with the spin-only values expected for S = 1/2 (d9, Cu(II)) and S = 1 (d8, Ni (II)) systems.  相似文献   

20.
Nickel(II) complexes bearing a κ3SNS pincer ligand, 2,5-bis(benzylaminothiocarbonyl)pyrrolyl (L1) and a κ3SCS-pincer ligand, 2,6-bis(benzylaminothiocarbonyl)phenyl (L2), were synthesized, and their structures and electrochemical properties were elucidated. The crystal structures of [Ni(SNS)Br] (2) and [Ni(SCS)Br] (5) were determined by X-ray crystallography. The electrochemical and crystallographic data obtained from the complexes revealed that the κ3SCS ligand has a stronger electron-donating ability than the κ3SNS ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号