共查询到7条相似文献,搜索用时 0 毫秒
1.
Two novel paramagnetic octahedral chromium(IV) complexes with dianionic tridentate SNO donor ligands containing extended π-system have been synthesized while only a paramagnetic octahedral chromium(III) complex is obtained when a related dianionic tridentate ONO donor ligand is used under similar conditions. These bischelate complexes [Cr(abtsal)2] (1) (abtsalH2 is the Schiff base of o-aminobenzenethiol and salicylaldehyde), [Cr(4-PhTSCsal)2] · H2O (2) (4-PhTSCsalH2 is the Schiff base of 4-phenylthiosemicarbazide and salicylaldehyde) and K[Cr(sap)2] · H2O (3) (sapH2 is the tridentate Schiff base of salicylaldehyde and o-aminophenol) are characterized by elemental analyses, magnetic moment measurements, IR, UV-Vis and EPR spectroscopic studies. Compound 3 has been structurally characterized by X-ray crystallography. Measured room temperature (RT) magnetic moment values are 2.98 BM for 1 and 2.83 BM for 2 indicating a d2 system with a triplet ground state in both the cases. On the other hand, the magnetic moment value for 3 is found to be 3.74 BM at RT and is consistent with the presence of three unpaired electrons for a d3 Cr(III) ion. The magnetic moment values rule out the large spin-orbit coupling which is substantiated by the presence of RT EPR signals. Compounds 1 and 2 exhibit very similar powder EPR spectra at RT and LNT, which show the allowed transition ΔMs = ±1 (g = 2.004 for both 1 and 2) as well as the “forbidden” half-field transition (ΔMs = ±2) at g = 4.105 for 1 and g = 4.318 for 2, respectively. The X-band LNT frozen glass EPR spectrum of 1 in DMF shows the presence of zero-field split rhombic symmetry character, and results in the parameters g ≅ 2.0, D = 740 G, and E = 260 G. It suggests that the intensity of ΔMs = ±2 forbidden transition is large due to the large D value. The X-band frozen glass EPR spectrum of compound 3 in DMF is found to be very similar to that reported for trans-[Cr(py)4F2]+ in DMF-H2O-MeOH glass. The large difference (∼700 mV) in the reduction potential for the two octahedral complexes 1 (−1.40 V) and 3 (−0.70 V) is attributed to the difference in their metal ion oxidation states. 相似文献
2.
Manas Sutradhar Tannistha Roy Barman Michael G.B. Drew 《Inorganica chimica acta》2010,363(13):3376-117
The present work reports the chemistry of a few oxidovanadium(IV) and (V) complexes of the ONS chelating ligand S-benzyl-β-N-(2-hydroxyphenylethylidine) dithiocarbazate (H2L). Major objective of this work is to arrive at some general conclusions about the influence of binding environment generated by the replacement of an O-donor center by a S-donor point in a ligand (of a similar arrangement of the other O- and N-donor points) on the redox behavior and on the structural features of comparable [VO(OEt)(ONS)] and [VO(OEt)(ONO)] complexes. Synthesis, characterization by various physicochemical techniques (UV-Vis, IR, EPR and elemental analysis), exploration of electrochemical activity of the oxidovanadium(V) complex [VVO(OEt)L] (1), the mixed ligand complex [VVO(N-O)L] (3) (where N-O is the mono anion of 8-hydroxyquinoline) and a binuclear complex [VVO(OEt)L]2(μ-4,4′-bipy) (2) are reported. Similar studies on of mixed ligand oxidovanadium(IV) complexes of the formula [VVO(N-N)L] (4,5) (where N-N = 2,2′-bipy and o-phen) are also presented here. The [VVO(OEt)L] complex is pentacoordinated and distorted square pyramidal, while the [VIV(N-N)L] complexes are hexacoordinated and octahedral. Structural features of the complex 1 were compared with the corresponding aspects of the previously reported analogous complex [VVO(OEt)(ONO)] (1′). 相似文献
3.
Krajcinović BB Kaluderović GN Steinborn D Schmidt H Wagner C Zizak Z Juranić ZD Trifunović SR Sabo TJ 《Journal of inorganic biochemistry》2008,102(4):892-900
Syntheses of two novel ligand precursors O,O'-diisopropyl- (1a) and O,O'-diisobutyl-(S,S)-ethylenediamine-N,N'-di-2-propanoate dihydrochloride monohydrate (1b) and the corresponding dichloroplatinum(II) (2a and 2b) and tetrachloroplatinum(IV) complexes (3a and 3b) are described here. The substances were characterized by IR, (1)H and (13)C spectroscopy and elemental analysis. Crystal structures were determined for 1a and the corresponding platinum(IV) complex, 3a. In vitro antiproliferative activity was determined against tumor cell lines: human adenocarcinoma HeLa, human myelogenous leukemia K562, human malignant melanoma Fem-x, rested and stimulated normal immunocompetent cells (human peripheral blood mononuclear PBMC cells) using KBR test (Kenacid Blue Dye binding test). The IC(50)(microM) values for the most active compound 3a were: 30.48+/-2.54; 12.26+/-2.60; 13.68+/-3.22; 80.18+/-24.07 and 71.30+/-21.70, respectively. 相似文献
4.
Yolanda Pérez Isabel Sierra Mariano Fajardo Isabel del Hierro 《Inorganica chimica acta》2007,360(2):607-618
In view of the wide applicability and versatility of titanium based Lewis acids in selective organic synthesis including asymmetric synthesis, we have synthesized a family of mono and polyatomic titanium derivatives. The polymetallic complexes prepared are bridged by pyridimine, quinone and triazine based ligands. The synthesis of [{Ti(O-i-Pr)3(Oddbf)}2] (1), [Ti(O-i-Pr)2(Oddbf)2] (2), [{Ti(O-i-Pr)2(Oddbf)(OMent)}2] (3) (ddbfO = 2,3-dihydro-2,2-dimethyl-benzofuranoxo; MentO = (1R,2S,5R)-(−)-menthoxo), [{Ti(O-i-Pr)3(OMenpy)}2] (4), [Ti(O-i-Pr)2(OMenpy)2] (5) (MenpyO = (1S,2S,5R)-(−)-menthoxo-pyridine); [{(Ti(OR)3)2L}n] (RO = isopropoxo, (1R,2S,5R)-(−)-menthoxo) (6-11) and [{(Ti(O-i-Pr)3)3L}n] (12) was accomplished from a Lewis acid such as Ti(O-i-Pr)4, [{Ti(O-i-Pr)3(OMent)}2] or [Ti(OMent)4] and chelating ligands (ddbfOH = 2,3-dihydro-2,2-dimethyl-benzofuranol; MenpyOH = (1R,2S,5R)-(−)-5-methyl-2-isopropyl-1-(2′-pyridinyl)cyclohexan-1-ol; LH2 = 4,6-dihydroxy-2,5-diphenyl-pyrimidine, 2,4-dihydroxy-5,6-dimethyl-pyrimidine, 5,8-dihydroxy-1,4-napthoquinone, 2,5-dihydroxy-1,4-benzoquinone and LH3 = cyanuric acid) that provide a rigid framework for the metal centre. The molecular structure of 5 has been determined by single crystal X-ray diffraction studies. 相似文献
5.
Hai-Yan Zhao Yong-Heng Xing Zhang-Peng Li Mao-Fa Ge Shu-Yun Niu 《Inorganica chimica acta》2009,362(11):4110-4118
A series of oxo-vanadium(IV) complexes: Tp∗VO(pzH∗)(CH3COO) (1), Tp∗VO(pzH∗)(CCl3COO) (2), Tp∗VO(pzH∗)(C6H5COO) (3), Tp∗VO(pzH∗)(m-NO2-C6H4COO)·CH3CN (4) and [Tp∗VO(pzH∗)(H2O)]+[m-NO2-C6H4-SO3]−·CH3OH (5) (Tp∗ = hydrotris(3,5-dimethylpyrazolyl)borate; pzH∗ = 3,5-dimethylpyrazole) are synthesized in methanol solution under physiological conditions. They are characterized by elemental analysis, IR, UV-Vis and X-ray crystallography. Structural analyses show that the vanadium atoms in complexes 1-5 are all in a distorted-octahedral environment with the N4O2 donor set, and intra- or inter-hydrogen bonding linkages have been also observed in each complex. Bromination reaction activity of the complexes has been evaluated by the method with phenol red as organic substrate in the presence of H2O2, Br− and phosphate buffer, indicating that they can be considered as potential functional model vanadium-dependent haloperoxidases. In addition, thermal analysis and quantum chemistry calculations were also performed and discussed in detail. 相似文献
6.
Ali Akbar Khandar Christine Cardin John McGrady Seyed Amir Zarei 《Inorganica chimica acta》2010,363(14):4080-4087
A series of hexadentate ligands, H2Lm (m = 1−4), [1H-pyrrol-2-ylmethylene]{2-[2-(2-{[1H-pyrrol-2-ylmethylene]amino}phenoxy)ethoxy]phenyl}amine (H2L1), [1H-pyrrol-2-ylmethylene]{2-[4-(2-{[1H-pyrrol-2-ylmethylene]amino}phenoxy)butoxy]phenyl}amine (H2L2), [1H-pyrrol-2-ylmethylene][2-({2-[(2-{[1H-pyrrol-2-ylmethylene]amino}phenyl)thio]ethyl}thio)phenyl]amine (H2L3) and [1H-pyrrol-2-ylmethylene][2-({4-[(2-{[1H-pyrrol-2-lmethylene]amino}phenyl)thio]butyl}thio) phenyl]amine (H2L4) were prepared by condensation reaction of pyrrol-2-carboxaldehyde with {2-[2-(2-aminophenoxy)ethoxy]phenyl}amine, {2-[4-(2-aminophenoxy)butoxy]phenyl}amine, [2-({2-[(2-aminophenyl)thio]ethyl}thio)phenyl]amine and [2-({4-[(2-aminophenyl)thio]butyl}thio)phenyl]amine respectively. Reaction of these ligands with nickel(II) and copper(II) acetate gave complexes of the form MLm (m = 1−4), and the synthesized ligands and their complexes have been characterized by a variety of physico-chemical techniques. The solid and solution states investigations show that the complexes are neutral. The molecular structures of NiL3 and CuL2, which have been determined by single crystal X-ray diffraction, indicate that the NiL3 complex has a distorted octahedral coordination environment around the metal while the CuL2 complex has a seesaw coordination geometry. DFT calculations were used to analyse the electronic structure and simulation of the electronic absorption spectrum of the CuL2 complex using TDDFT gives results that are consistent with the measured spectroscopic behavior of the complex. Cyclic voltammetry indicates that all copper complexes are electrochemically inactive but the nickel complexes with softer thioethers are more easily oxidized than their oxygen analogs. 相似文献
7.
Christiane Fernandes Josane A. Lessa Milton M. Kanashiro Adailton J. Bortoluzzi Marcelo H. Herbst 《Inorganica chimica acta》2006,359(10):3167-3176
We present here the synthesis, crystal structure, electrochemical behavior, spectroscopic properties (FT-IR, UV-Vis and EPR), nuclease and in vitro antitumor activities against human myeloid leukemia cell line of the mononuclear copper complex [Cu(HPClNOL)(Cl)]Cl · MeOH (1). The reaction of the tetradentate ligand HPClNOL [1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol] and 1 equiv. of [Cu(OH2)6](Cl)2, in methanol, resulted in 1, which crystallizes as blue monoclinic crystals. The complex is pentacoordinated with a distorted square-pyramidal geometry. The activity of complex 1 toward plasmid DNA and THP-1 carcinogenic cells was investigated. Complex 1 promotes the cleavage of supercoiled DNA (pBlueScript KS+ DNA) to nicked circular and linear DNA forms. In addition to the three typical KS+ DNA forms, the cleavage resulted in a fourth band, which was visualized above of the nicked circular form. The results reveal that the cleavage mechanism is radical-independent. Furthermore, complex 1 is able to promote cell death of THP-1 cells by apoptosis, as confirmed by fluorescent microscopy, cell morphology and DNA degradation. 相似文献