首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, the bio-based production of 1,5-diaminopentane (cadaverine), an important building block for bio-polyamides, was extended to hemicellulose a non-food raw material. For this purpose, the metabolism of 1,5-diaminopentane-producing Corynebacterium glutamicum was engineered to the use of the C(5) sugar xylose. This was realized by heterologous expression of the xylA and xylB genes from Escherichia coli, mediating the conversion of xylose into xylulose 5-phosphate (an intermediate of the pentose phosphate pathway), in a defined diaminopentane-producing C. glutamicum strain, recently obtained by systems metabolic engineering. The created mutant, C. glutamicum DAP-Xyl1, exhibited efficient production of the diamine from xylose and from mixtures of xylose and glucose. Subsequently, the novel strain was tested on industrially relevant hemicellulose fractions, mainly containing xylose and glucose as carbon source. A two-step process was developed, comprising (i) enzymatic hydrolysis of hemicellulose from dried oat spelts, and (ii) biotechnological 1,5-diaminopentane production from the obtained hydrolysates with the novel C. glutamicum strain. This now opens a future avenue towards bio-based 1,5-diaminopentane and bio-polyamides thereof from non-food raw materials.  相似文献   

2.
In Bacteria, the pathways of polyamine biosynthesis start with the amino acids l-lysine, l-ornithine, l-arginine, or l-aspartic acid. Some of these polyamines are of special interest due to their use in the production of engineering plastics (e.g., polyamides) or as curing agents in polymer applications. At present, the polyamines for industrial use are mainly synthesized on chemical routes. However, since a commercial market for polyamines as well as an industry for the fermentative production of amino acid exist, and since bacterial strains overproducing the polyamine precursors l-lysine, l-ornithine, and l-arginine are known, it was envisioned to engineer these amino acid-producing strains for polyamine production. Only recently, researchers have investigated the potential of amino acid-producing strains of Corynebacterium glutamicum and Escherichia coli for polyamine production. This mini-review illustrates the current knowledge of polyamine metabolism in Bacteria, including anabolism, catabolism, uptake, and excretion. The recent advances in engineering the industrial model bacteria C. glutamicum and E. coli for efficient production of the most promising polyamines, putrescine (1,4-diaminobutane), and cadaverine (1,5-diaminopentane), are discussed in more detail.  相似文献   

3.
Microbial production of chemicals and materials from renewable carbon sources is becoming increasingly important to help establish sustainable chemical industry. In this paper, we review current status of metabolic engineering for the bio-based production of linear and saturated dicarboxylic acids and diamines, important platform chemicals used in various industrial applications, especially as monomers for polymer synthesis. Strategies for the bio-based production of various dicarboxylic acids having different carbon numbers including malonic acid (C3), succinic acid (C4), glutaric acid (C5), adipic acid (C6), pimelic acid (C7), suberic acid (C8), azelaic acid (C9), sebacic acid (C10), undecanedioic acid (C11), dodecanedioic acid (C12), brassylic acid (C13), tetradecanedioic acid (C14), and pentadecanedioic acid (C15) are reviewed. Also, strategies for the bio-based production of diamines of different carbon numbers including 1,3-diaminopropane (C3), putrescine (1,4-diaminobutane; C4), cadaverine (1,5-diaminopentane; C5), 1,6-diaminohexane (C6), 1,8-diaminoctane (C8), 1,10-diaminodecane (C10), 1,12-diaminododecane (C12), and 1,14-diaminotetradecane (C14) are revisited. Finally, future challenges are discussed towards more efficient production and commercialization of bio-based dicarboxylic acids and diamines.  相似文献   

4.
1. The rate of oxidative deamination of 1,5-diaminopentane by pea-seedling extracts, which contain diamine oxidase [diamine-oxygen oxidoreductase (deaminating), EC 1.4.3.6], was increased by adding pyridoxal or pyridoxal phosphate. 2. Evidence was obtained that pyridoxal does not activate the apoenzyme of diamine oxidase, but prevents the inactivation of the enzyme. 3. This inactivation only occurred when 1,5-diaminopentane was the substrate and depended on a second thermolabile factor in the extract besides the diamine oxidase. 4. Purified diamine oxidase, when catalysing the oxidation of 1,5-diaminopentane, was rapidly inactivated in the presence of peroxidase. 5. The inactivation was prevented not only by pyridoxal and pyridoxal phosphate but also by several unrelated compounds including alpha-oxoglutarate, catechol and o-aminobenzaldehyde. 6. It is suggested that peroxidase catalyses the further oxidation of the product of the oxidative deamination of 1,5-diaminopentane to a compound that inactivates diamine oxidase. 7. The results diminish the relevance of previous evidence that plant diamine oxidase contains pyridoxal phosphate.  相似文献   

5.
Confronted with the gradual and inescapable exhaustion of the earth’s fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now.  相似文献   

6.
7.
Confronted with inescapable exhaustion of the earth’s fossil energy resources, the bio-based process to produce industrial chemicals is receiving significant interest. Biotechnological production of four-carbon 1,4-dicarboxylic acids (C4 diacids) from renewable plant biomass is a promising and attractive alternative to conventional chemistry routes. Although the C4 diacids pathway is well characterized and microorganisms able to convert biomass to these acids have been isolated and described, much still has to be done to make this process economically feasible. Metabolically engineered Escherichia coli has been developed as a biocatalyst to provide new processes for the biosynthesis of many valuable chemicals. However, E. coli does not naturally produce C4 diacids in large quantities. Rational strain development by metabolic engineering based on efficient genetic tools and detailed knowledge of metabolic pathways are crucial to successful production of these compounds. This review summarizes recent efforts and experiences devoted to metabolic engineering of the industrial model bacteria E. coli that led to efficient recombinant biocatalysts for the production of C4 diacids, including succinate, fumarate, malate, oxaloacetate, and aspartate, as well as the key limitations and challenges. Continued advancements in metabolic engineering will help to improve the titers, yields, and productivities of the C4 diacids discussed here.  相似文献   

8.
Microbial production of 1,5-diaminopentane (DAP) from renewable feedstock is a promising and sustainable approach for the production of polyamides. In this study, we constructed a β-glucosidase (BGL)-secreting Corynebacterium glutamicum and successfully used this strain to produce DAP from cellobiose and glucose. First, C. glutamicum was metabolically engineered to produce l -lysine (a direct precursor of DAP), followed by the coexpression of l -lysine decarboxylase and BGL derived from Escherichia coli and Thermobifida fusca YX (Tfu0937), respectively. This new engineered C. glutamicum strain produced 27 g/L of DAP from cellobiose in CGXII minimal medium using fed-batch cultivation. The yield of DAP was 0.43 g/g glucose (1 g of cellobiose corresponds to 1.1 g of glucose), which is the highest yield reported to date. These results demonstrate the feasibility of DAP production from cellobiose or cellooligosaccharides using an engineered C. glutamicum strain.  相似文献   

9.
Summary Several strains of the enterobacterial groupErwinia herbicola (Enterobacter agglomerans) were screened for siderophore production. After 3 days of growth in a low-iron medium, all strains studied produced hydroxamate siderophores. The retention values of the main siderophore during thin-layer chromatography on silica gel plates and on HPLC reversed-phase columns were identical with those of an authentic sample of ferrioxamine E (norcardamine). Gas-chromatographic analysis of the HI hydrolyzate yielded succinic acid and 1,5-diaminopentane in equimolar amounts; fast-atom-bombardment (FAB) mass spectroscopy showed a molecular mass of 653 Da. Iron from55Fe-labelled ferrioxamine E was well taken up by iron-starved cells ofE. herbicola (K m=0.1 M,V max=8 pmol mg–1 min–1). However, besides ferrioxamine E (100%), several exogenous siderophores such as enterobactin (94.5%), ferric citrate (78.5%), coprogen (63.5%) and ferrichrome (17.5%) served as siderophores, suggesting the presence of multiple siderophore receptors in the outer membrane ofE. herbicola.  相似文献   

10.
11.
Growing environmental concern sparks renewed interest in the sustainable production of (bio)materials that can replace oil-derived goods. Polyhydroxyalkanoates (PHAs) are isotactic polymers that play a critical role in the central metabolism of producer bacteria, as they act as dynamic reservoirs of carbon and reducing equivalents. PHAs continue to attract industrial attention as a starting point toward renewable, biodegradable, biocompatible, and versatile thermoplastic and elastomeric materials. Pseudomonas species have been known for long as efficient biopolymer producers, especially for medium-chain-length PHAs. The surge of synthetic biology and metabolic engineering approaches in recent years offers the possibility of exploiting the untapped potential of Pseudomonas cell factories for the production of tailored PHAs. In this article, an overview of the metabolic and regulatory circuits that rule PHA accumulation in Pseudomonas putida is provided, and approaches leading to the biosynthesis of novel polymers (e.g., PHAs including nonbiological chemical elements in their structures) are discussed. The potential of novel PHAs to disrupt existing and future market segments is closer to realization than ever before. The review is concluded by pinpointing challenges that currently hinder the wide adoption of bio-based PHAs, and strategies toward programmable polymer biosynthesis from alternative substrates in engineered P. putida strains are proposed.  相似文献   

12.
C Chin  J C Warren 《Steroids》1973,22(3):373-378
Estriol 16-hemisuccinate has been synthesized and covalently attached to Sepharose through 1,5-diaminopentane. A crude preparation of estradiol-17β dehydrogenase from human placenta was adsorbed on the gel. After extensive washing, the enzyme was eluted by M hydroxylamine in 0.1 M potassium phosphate buffer (20–50% glycerol), pH 7, at room temperature. An apparently homogeneous enzyme with a specific activity of 7.2 U/mg (82% recovery) was obtained. It is stable for weeks in the eluting buffer. The hydroxylamine can be removed by passing the enzyme solution over a Sephadex G-100 column or by dialyzing it against 0.1 M potassium phosphate buffer containing 20% glycerol. This one-step process makes purification of the enzyme simple and easy.  相似文献   

13.
Arbuscular mycorrhizal fungi (AMF) are among the most ancient, widespread and functionally important symbioses on Earth that help feed the world. Yet, mass-production of clean (i.e. in vitro produced), safe and robust inoculum at affordable costs remains a critical challenge. Very recently, Luginbuehl et al. (2017) found that plants supply lipids to the symbiotic partner, thus ‘providing the AMF with a robust source of carbon for their metabolic needs’. Hence, engineering plants for enhanced delivery of lipids to AMF could represent an innovative avenue to produce a novel generation of high-quality and cost-effective bio-fortified AMF inoculants for application in agro-ecosystems.  相似文献   

14.
Adenosine, inosine and guanosine derivatives were prepared, modified at the C-8 atom with the aid of diamines (1,3-diaminopropane, 1,4-diaminobutane and 1,5-diaminopentane).  相似文献   

15.
An exposure of cultured Ehrlich ascites carcinoma cells to DL-α-difluoromethyl ornithine, an irreversible inhibitor of ornithine decarboxylase (EC 4.1.1.17), rapidly depleted the tumor cells of putrescine and spermidine. The decrease in the cellular concentrations of these two natural polyamines, however, was accompanied by a striking appearance of two new major amines: cadaverine and a compound tentatively identified as N-3-aminopropyl-1,5-diaminopentane (aminopropylcadaverine). When the cultures were grown in the presence of uniformly labeled [14C]lysine, tumor cells exposed to difluoromethyl ornithine converted lysine to cadaverine and aminopropyl cadaverine at strikingly enhanced rate. The difluoromethyl ornithine-induced accumulation and synthesis of cadaverine and aminopropylcadaverine were totally prevented by the presence of micromolar concentrations of spermidine (or spermine) in the culture media.  相似文献   

16.
Putrescine-N-methyltransferase (PMT; EC 2.1.1.53), the first enzyme in the biosynthetic pathway leading from putrescine to tropane and pyrrolidine alkaloids, has been purified about 700-fold from root cultures of Datura stramonium established following genetic transformation with Agrabacterium rhizogenes. The native enzyme had a molecular weight estimated by gel-permeation chromatography on Superose-6 of 40 kDa; sodium dodecyl sulphate-polyacrylamide gel electrophoresis of the peak fractions from Superose-6 chromatography revealed a band of 36 kDa molecular weight. Kinetic studies of the purified enzyme gave K m values for putrescine and S-adenosyl-l-methionine of 0.31 mM and 0.10 mM, respectively, and K i values for S-adenosyl-l-homocysteine and N-methylputrescine of 0.01 mM and 0.15 mM, respectively. The enzyme was active with some derivatives and analogous of putrescine, including 1,4-diamino-2-hydroxybutane and 1,4-diamino-trans-but-2-ene. Little activity was observed with 1,4-diamino-cis-but-2-ene and none with 1,3-diaminopropane or 1,5-diaminopentane (cadaverine), indicating a requirement for substrate activity of two amino groups in a trans conformation, separated by four carbon atoms. A large number of monoamines were inhibitors of the enzyme. Though not a substrate, cadaverine was a competitive inhibitor of the enzyme, with a K i of 0.04 mM; the significance of this in relation to the biosynthesis of cadaverine-derived alkaloids is discussed.Abbreviations PEG polyethylene glycol - PMT putrescine-N-methyltransferase - SAH S-adenosyl-l-homocysteine - SAM S-adenosyl-l-methionine - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis We are grateful to C.R. Waspe, M.G. Hilton and P.D.G. Wilson for assistance with the provision of roots from fermenters. We thank W. Martin and S.D. Barr, Chemistry Department, University of Glasgow, and T.A. Smith, Long Ashton Research Station, Bristol, for the supply of compounds not commercially available, as indicated in the text. For helpful discussion and comment, we are grateful to A.J. Parr, W.R. McLauchlan and P. Bachmann. H.D.B, thanks the Science and Engineering Research Council for a research studentship and the Agricultural and Food Research Council Institute of Food Research for additional support.  相似文献   

17.
Almost 90% of our energy comes from fossil fuels, which are both limited and polluting, hence the need to find alternative sources. Biofuels can provide a sustainable and renewable source of energy for the future. Recent significant advances in genetic engineering and fermentation technology have made microbial bio-based production of chemicals from renewable resources more viable. Clostridium species are considered as promising micro-organisms for the production of a wide range of chemicals for industrial use. However, a number of scientific challenges still need to be overcome to facilitate an economically viable production system. These include the use of cheap non-food-based substrates, a better understanding of the metabolic processes involved, improvement of strains through genetic engineering and innovation in process technology. This paper reviews recent developments in these areas, advancing the use of Clostridium within an industrial context especially for the production of biofuels.  相似文献   

18.
Differential inhibition of mammalian aminopropyltransferase activities   总被引:3,自引:0,他引:3  
Rat ventral prostate spermine synthetase was inhibited by 5′-methylthioadenosine and by S-adenosylhomocysteine at concentrations which did not inhibit spermidine synthetase from the same tissue. S-Adenosylethionine inhibited both enzymes to an equal extent. These aminopropyltransferases were also inhibited by diamines not normally present in mammalian cells. All the α,ω-diamines with 3 to 12 C atoms had inhibitory activity, but 1,3-diaminopropane and 1,5-diaminopentane were most active. Spermine synthetase was more sensitive than spermidine synthetase to the effects of these diamines. These results suggest that the relative rates of spermidine and spermine formation in,vivo might be affected by the intracellular concentration of nucleosides such as S-adenosylhomocysteine. They also raise the possibility that these rates of synthesis could be selectively affected by administration of one or the other of these inhibitors.  相似文献   

19.
1,5-Pentanediol (1,5-PDO) is a high value-added chemical which is widely used as a monomer in the polymer industry. There are no natural organisms that could directly produce 1,5-PDO from renewable carbon sources. In this study, we report metabolic engineering of Escherichia coli for high-level production of 1,5-PDO from glucose via a cadaverine-derived pathway. In the newly proposed pathway, cadaverine can be converted to 1,5-PDO via 5-hydroxyvalerate (5-HV) by introducing only one heterologous enzyme in E. coli. Different endogenous genes of E. coli were screened and heterologous carboxylic acid reductase genes were tested to build a functional pathway. Compared to the previously reported pathways, the engineered cadaverine-based pathway has a higher theoretical yield (0.70 mol/mol glucose) and higher catalytic efficiency. By further combining strategies of pathway engineering and process engineering, we constructed an engineered E. coli strain that could produce 2.62 g/L 1,5-PDO in shake-flask and 9.25 g/L 1,5-PDO with a yield of 0.28 mol/mol glucose in fed-batch fermentation. The proposed new pathway and engineering strategies reported here should be useful for developing biological routes to produce 1,5-PDO for real application.  相似文献   

20.
Optimized production of bio-based fuels and chemicals from microbial cell factories is a central goal of systems metabolic engineering. To achieve this goal, a new computational method of using flux balance analysis with flux ratios (FBrAtio) was further developed in this research and applied to five case studies to evaluate and design metabolic engineering strategies. The approach was implemented using publicly available genome-scale metabolic flux models. Synthetic pathways were added to these models along with flux ratio constraints by FBrAtio to achieve increased (i) cellulose production from Arabidopsis thaliana; (ii) isobutanol production from Saccharomyces cerevisiae; (iii) acetone production from Synechocystis sp. PCC6803; (iv) H2 production from Escherichia coli MG1655; and (v) isopropanol, butanol, and ethanol (IBE) production from engineered Clostridium acetobutylicum. The FBrAtio approach was applied to each case to simulate a metabolic engineering strategy already implemented experimentally, and flux ratios were continually adjusted to find (i) the end-limit of increased production using the existing strategy, (ii) new potential strategies to increase production, and (iii) the impact of these metabolic engineering strategies on product yield and culture growth. The FBrAtio approach has the potential to design “fine-tuned” metabolic engineering strategies in silico that can be implemented directly with available genomic tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号