共查询到20条相似文献,搜索用时 15 毫秒
1.
Debabrata Chatterjee 《Inorganica chimica acta》2008,361(8):2177-2182
[RuIV(tpy)(pic)(O)]+ (1) was synthesized by chemical oxidation of the corresponding aqua-complex [RuII(tpy)(pic)(H2O)]+ (2) and characterized by analytical, spectroscopic (UV-vis and IR) and magnetic moment studies. Complex 1 effected epoxidation of styrene and substituted styrenes, cis- and trans-stilbenes and cyclohexene, in CH3CN at room temperature. Epoxides were found to be the major product for styrenes and stilbenes, whereas, the oxidation of cyclohexene yielded allylic oxidation product. Detailed kinetic studies were performed under pseudo-first order conditions of excess alkene concentrations. A working mechanism in agreement with the rate and activation parameters is presented, and the results are discussed in reference to the data reported for the alkene oxidation by relevant RuIVO system in CH3CN. 相似文献
2.
Cobalt involvement in chemical and metallobiological processes entails largely unknown reactivity pathways with a variety of ligands. Such ligands include phosphonate and carboxylate-containing metal ion binders. In an attempt to investigate the nature and properties of species arising from aqueous interactions between Co(II) and N,N-bis(phosphonomethyl)-glycine (H5NTA2P), reactions between the two led to an assembly of species in (NH4)4[Co(H2O)6][(H2O)2Co(HNTA2P)Co(NH3)2(H2O)3]2[Co(NTA2P)(H2O)2]2 · 10H2O · 1.36CH3CH2OH (1) at pH ∼ 5.5. The analytical, spectroscopic and X-ray data on 1 reveal mononuclear and dinuclear complexes of Co(II) surrounded by oxygens, belonging to terminal carboxylates, phosphonates and bound water molecules, and nitrogen atoms from coordinated ammonia and HxNTA2Pq− (x = 1, q = 4; x = 0, q = 5) ligands. Worth noting is the variable protonation state of the bound diphosphonate ligand and its ability to bridge two Co(II) centers with ostensibly differing coordination spheres. The assembly of three Co(II) species of variable nuclearity and composition attests to the importance of pH-specific conditions, under which “capturing” of more than one species can be achieved for a given Co(II):H5NTA2P stoichiometry in the presence of ammonia. Collectively, 1 provides a rare glimpse of a “slice” of the aqueous speciation of the binary Co(II)-H5NTA2P system, while its lattice composition projects key structural features in Co(II)-carboxyphosphonate materials. 相似文献
3.
Two low-spin Fe(III) dicyano-dicarboxamido complexes have been prepared from N,N′-bis(8-quinolyl)malonamide derivatives. Crystal structures show that the four nitrogen donors available to complex the metal are arranged in the equatorial plane with the two cyanides trans to each other in the axial positions when the malonyl moiety is disubstituted. In contrast, the unsubstituted malonyl results in only three nitrogens in the equatorial plane with the fourth in an apical position and the two cyanides occupying cis sites, one equatorial and the other axial. NMR analyses show that the solid state structure of both complexes is retained in solution. Both types of configurational complexes catalyze cyclic olefin oxidations with H2O2 but only the cis-dicyano complex catalyzes stilbene oxidation with formation of epoxides, diols and benzaldehyde. 相似文献
4.
Xing-Qiang Lü Li Zhang Chun-Long Chen Cheng-Yong Su Bei-Sheng Kang 《Inorganica chimica acta》2005,358(6):1771-1776
Two 1D organic-inorganic coordination polymers, [Cd(3-pmpmd)(CH3CN)2(H2O)2]n · 2n(ClO4)2 (1) and [Zn(3-pmpmd)1.5(H2O)2]n · 2n(ClO4)2 · nCH3CN (2), were obtained from M(ClO4)2 (M = Cd, Zn) and the semi-flexible 3,3′-N-donor bis-pyridyl ligand 3-pmpmd: 1 has an 1D zigzag framework with 3-pmpmd in the ZT-mode (anti, trans-) conformation, while 2 has an 1D rod and loop network with 3-pmpmd in both ZT- and ZC-mode (anti, cis-) conformations. Results showed that the metal ions could influence the coordination mode of a semi-flexible bis-pyridyl ligand. 相似文献
5.
Residue Ser151 of cardiac troponin I (cTnI) is known to be phosphorylated by p21-activated kinase 3 (PAK3). It has been found that PAK3-mediated phosphorylation of cTnI induces an increase in the sensitivity of myofilament to Ca2+, but the detailed mechanism is unknown. We investigated how the structural and kinetic effects mediated by pseudo-phosphorylation of cTnI (S151E) modulates Ca2+-induced activation of cardiac thin filaments. Using steady-state, time-resolved Förster resonance energy transfer (FRET) and stopped-flow kinetic measurements, we monitored Ca2+-induced changes in cTnI-cTnC interactions. Measurements were done using reconstituted thin filaments, which contained the pseudo-phosphorylated cTnI(S151E). We hypothesized that the thin filament regulation is modulated by altered cTnC-cTnI interactions due to charge modification caused by the phosphorylation of Ser151 in cTnI. Our results showed that the pseudo-phosphorylation of cTnI (S151E) sensitizes structural changes to Ca2+ by shortening the intersite distances between cTnC and cTnI. Furthermore, kinetic rates of Ca2+ dissociation-induced structural change in the regulatory region of cTnI were reduced significantly by cTnI (S151E). The aforementioned effects of pseudo-phosphorylation of cTnI were similar to those of strong crossbridges on structural changes in cTnI. Our results provide novel information on how cardiac thin filament regulation is modulated by PAK3 phosphorylation of cTnI. 相似文献
6.
The present paper describes a new species Lithobius (Monotarsobius) monoforaminissp. n. (Lithobiomorpha: Lithobiidae) recently discovered from Shaanxi and Shanxi provinces, Central China. Morphologically it resembles Lithobius (Monotarsobius) minimus Farzalieva, 2006 from Eastern Kazakhstan, but could be well distinguished from the latter having only one pore on the coxae of legs 12-15 and different plectrotaxy, and by lacking a wart on the male tibia 15. A key to the Chinese Lithobius (Monotarsobius) species is presented. 相似文献
7.
PTP inhibitor IV protects JNK kinase activity by inhibiting dual-specificity phosphatase 14 (DUSP14)
Jae Eun Park Byoung Chul Park Mina Song Do Hee Lee Jae Hoon Kim 《Biochemical and biophysical research communications》2009,387(4):795-4440
Protein phosphorylation plays critical roles in the regulation of protein activity and cell signaling. The level of protein phosphorylation is controlled by protein kinases and protein tyrosine phosphatases (PTPs). Disturbance of the equilibrium between protein kinase and PTP activities results in abnormal protein phosphorylation, which has been linked to the etiology of several diseases, including cancer. In this study, we screened protein tyrosine phosphatases (PTPs) by in vitro phosphatase assays to identify PTPs that are inhibited by bis (4-trifluoromethyl-sulfonamidophenyl, TFMS)-1,4-diisopropylbenzene (PTP inhibitor IV). PTP inhibitor IV inhibited DUSP14 phosphatase activity. Kinetic studies with PTP inhibitor IV and DUSP14 revealed a competitive inhibition, suggesting that PTP inhibitor IV binds to the catalytic site of DUSP14. PTP inhibitor IV effectively and specifically inhibited DUSP14-mediated dephosphorylation of JNK, a member of the mitogen-activated protein kinase (MAPK) family. 相似文献
8.
Colantonio P Leboffe L Bolli A Marino M Ascenzi P Luisi G 《Biochemical and biophysical research communications》2008,377(3):757-762
Caspase-3 is responsible for the cleavage of several proteins including the nuclear enzyme poly(ADP-ribose) polymerase (PARP). Designed on the cleavage site of PARP, Ac-Asp-Glu-Val-Asp-H has been reported as a highly specific inhibitor. To overcome the susceptibility to proteolysis, the intrinsic instability, and the scarce membrane permeability of tetra-peptidyl aldehydes, di- and tri-peptidyl caspase-3 inhibitors have been synthesized. Here, the synthesis and the inhibition properties of peptidyl aldehydes Z-tLeu-Asp-H, Z-tLeu-Val-Asp-H, and Z-Val-tLeu-Asp-H are reported. Z-tLeu-Asp-H, Z-tLeu-Val-Asp-H, and Z-Val-tLeu-Asp-H inhibit competitively human caspase-3 activity in vitro with = 3.6 nM, 18.2 nM, and 109 nM, respectively (pH 7.4 and 25 °C). Moreover, Z-tLeu-Asp-H impairs apoptosis in human DLD-1 colon adenocarcinoma cells without affecting caspase-8. Therefore, Ac-Asp-Glu-Val-Asp-H can be truncated to Z-tLeu-Asp-H retaining nanomolar inhibitory activity in vitro and displaying action in whole cells, these properties reflect the unprecedented introduction of the bulky and lipophilic tLeu residue at the P2 position. 相似文献
9.
Felipe Samuel Pessoto Natalia Mayumi Inada Maria de Fátima Nepomuceno Ana Célia Ruggiero Anibal E. Vercesi 《Chemico-biological interactions》2009,181(3):400-408
In this paper, we present a study about the influence of the porphyrin metal center and meso ligands on the biological effects of meso-tetrakis porphyrins. Different from the cationic meso-tetrakis 4-N-methyl pyridinium (Mn(III)TMPyP), the anionic Mn(III) meso-tetrakis (para-sulfonatophenyl) porphyrin (Mn(III)TPPS4) exhibited no protector effect against Fe(citrate)-induced lipid oxidation. Mn(III)TPPS4 did not protect mitochondria against endogenous hydrogen peroxide and only delayed the swelling caused by tert-BuOOH and Ca2+. Fe(III)TPPS4 exacerbated the effect of the tert-BuOOH, and both porphyrins did not significantly affect Fe(II)citrate-induced swelling. Consistently, Fe(III)TPPS4 predominantly promotes the homolytic cleavage of peroxides and exhibits catalytic efficiency ten-fold higher than Mn(III)TPPS4. For Mn(III)TPPS4, the microenvironment of rat liver mitochondria favors the heterolytic cleavage of peroxides and increases the catalytic efficiency of the manganese porphyrin due to the availability of axial ligands for the metal center and reducing agents such as glutathione (GSH) and proteins necessary for Compound II (oxomanganese IV) recycling to the initial Mn(III) form. The use of thiol reducing agents for the recycling of Mn(III)TPPS4 leads to GSH depletion and protein oxidation and consequent damages in the organelle. 相似文献
10.
The kinetics of Pd(II)-catalysed and Hg(II)-co-catalysed oxidation of D-glucose (Glc) and D-fructose (Fru) by N-bromoacetamide (NBA) in the presence of perchloric acid using mercury(II) acetate as a scavenger for Br- ions have been studied. The results show first-order kinetics with respect to NBA at low concentrations, tending to zero order at high concentrations. First-order kinetics with respect to Pd(II) and inverse fractional order in Cl- ions throughout their variation have also been noted. The observed direct proportionality between the first-order rate constant (k1) and the reducing sugar concentration shows departure from the straight line only at very higher concentration of sugar. Addition of acetamide (NHA) decreases the first-order rate constant while the oxidation rate is not influenced by the change in the ionic strength (mu) of the medium. Variation of [Hg(OAc)2] shows a positive effect on the rate of reaction. The observed negative effect in H+ at lower concentrations tends to an insignificant effect at its higher concentrations. The first-order rate constant decreases with an increase in the dielectric constant of the medium. The various activation parameters have also been evaluated. The products of the reactions were identified as arabinonic acid and formic acid for both the hexoses. A plausible mechanism involving HOBr as the reactive oxidising species, Hg(II) as co-catalyst, and [PdCl3.S]-1 as the reactive Pd(II)-sugar complex in the rate-controlling step is proposed. 相似文献
11.
12.
Reverse gyrases are topoisomerases that catalyze ATP-dependent positive supercoiling of circular covalently closed DNA. They consist of an N-terminal helicase-like domain, fused to a C-terminal topoisomerase I-like domain. Most of our knowledge on reverse gyrase-mediated positive DNA supercoiling is based on studies of archaeal enzymes. To identify general and individual properties of reverse gyrases, we set out to characterize the reverse gyrase from a hyperthermophilic eubacterium. Thermotoga maritima reverse gyrase relaxes negatively supercoiled DNA in the presence of ADP or the non-hydrolyzable ATP-analog ADPNP. Nucleotide binding is necessary, but not sufficient for the relaxation reaction. In the presence of ATP, positive supercoils are introduced at temperatures above 50 degrees C. However, ATP hydrolysis is stimulated by DNA already at 37 degrees C, suggesting that reverse gyrase is not frozen at this temperature, but capable of undergoing inter-domain communication. Positive supercoiling by reverse gyrase is strictly coupled to ATP hydrolysis. At the physiological temperature of 75 degrees C, reverse gyrase binds and hydrolyzes ATPgammaS. Surprisingly, ATPgammaS hydrolysis is stimulated by DNA, and efficiently promotes positive DNA supercoiling, demonstrating that inter-domain communication during positive supercoiling is fully functional with both ATP and ATPgammaS. These findings support a model for communication between helicase-like and topoisomerase domains in reverse gyrase, in which an ATP and DNA-induced closure of the cleft in the helicase-like domain initiates a cycle of conformational changes that leads to positive DNA supercoiling. 相似文献
13.
Adults and larvae of Leptotrachelus dorsalis (Fabricius), the Sugarcane Savior Beetle, live in association with grasses, the larvae in the appressed leaf axils. Both adult and larval Leptotrachelus dorsalis eat larvae of the Sugarcane Borer, Diatraea saccharalis (Fabricius), and perhaps other insects living in the confines of the leaf sheaths of that and other grass-like species. The geographic range of Leptotrachelus dorsalis extends from Kansas in the west to the Atlantic seaboard, north as far as Ontario, Canada and south to Cuba; it is an eastern species of North America and the Caribbean. Larval character attributes that are shared with a related ctenodactyline, Askalaphium depressum (Bates), provide a preliminary basis for characterization of the immatures of tribe Ctenodactylini. 相似文献
14.
A new Cu(II) complex of CuLCl(2) (here, L=N(1),N(8)-bis(1-methyl-4-nitropyrrole-2- carbonyl)triethylenetetramine) had been synthesized and characterized. The structure of the complex was investigated with density functional theory (DFT) calculations. DNA-binding of the Cu(II) complex and its effects on tumor cell viability were firstly studied. The interactions between the complex and calf thymus DNA had been investigated using UV spectra, fluorescent spectra, viscosity and CV (cyclic voltammetry). The cleavage reaction on plasmid DNA has been monitored by agarose gel electrophoresis. The experimental results show that the mode of binding of the complex to DNA is classical intercalation and the complex can cleave pBR322 DNA. The effects of the CuL on cell viability were tested using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) dye assay and the results indicate that the CuL had certain effect on cancer cells. 相似文献
15.
Spiechowicz M Zylicz A Bieganowski P Kuznicki J Filipek A 《Biochemical and biophysical research communications》2007,358(4):1148-1153
Here, two temperature sensitive promoters, P2 and P7, isolated from Bacillus subtilis, were characterized. The production of beta-galactosidase driven by these promoters was much higher at 45 degrees C than that at 37 degrees C both in Escherichia coli and B. subtilis and that the P2 promoter showed higher expression strength in B. subtilis at 45 degrees C. Thereby, an efficient temperature-inducible expression system was constructed by using P2 promoter in B. subtilis. Thus, we isolated and characterized a newly temperature inducible promoter and exploited it as a potential expression element in B. subtilis. 相似文献
16.
17.
S100A3, a member of the EF-hand-type Ca2+-binding S100 protein family, is unique in its exceptionally high cysteine content and Zn2+ affinity. We produced human S100A3 protein and its mutants in insect cells using a baculovirus expression system. The purified wild-type S100A3 and the pseudo-citrullinated form (R51A) were crystallized with ammonium sulfate in N,N-bis(2-hydroxyethyl)glycine buffer and, specifically for postrefolding treatment, with Ca2+/Zn2+ supplementation. We identified two previously undocumented disulfide bridges in the crystal structure of properly folded S100A3: one disulfide bridge is between Cys30 in the N-terminal pseudo-EF-hand and Cys68 in the C-terminal EF-hand (SS1), and another disulfide bridge attaches Cys99 in the C-terminal coil structure to Cys81 in helix IV (SS2). Mutational disruption of SS1 (C30A + C68A) abolished the Ca2+ binding property of S100A3 and retarded the citrullination of Arg51 by peptidylarginine deiminase type III (PAD3), while SS2 disruption inversely increased both Ca2+ affinity and PAD3 reactivity in vitro. Similar backbone structures of wild type, R51A, and C30A + C68A indicated that neither Arg51 conversion by PAD3 nor SS1 alters the overall dimer conformation. Comparative inspection of atomic coordinates refined to 2.15−1.40 Å resolution shows that SS1 renders the C-terminal classical Ca2+-binding loop flexible, which are essential for its Ca2+ binding properties, whereas SS2 structurally shelters Arg51 in the metal-free form. We propose a model of the tetrahedral coordination of a Zn2+ by (Cys)3His residues that is compatible with SS2 formation in S100A3. 相似文献
18.
Asn331 in transmembrane segment 7 of the yeast Saccharomyces cerevisiae transporter Hxt2 has been identified as a single key residue for high-affinity glucose transport by comprehensive chimera approach. The glucose transporter GLUT1 of mammals belongs to the same major facilitator superfamily as Hxt2 and may therefore show a similar mechanism of substrate recognition. The functional role of Ile287 in human GLUT1, which corresponds to Asn331 in Hxt2, was studied by its replacement with each of the other 19 amino acids. The mutant transporters were individually expressed in a recently developed yeast expression system for GLUT1. Replacement of Ile287 generated transporters with various affinities for glucose that correlated well with those of the corresponding mutants of the yeast transporter. Residues exhibiting high affinity for glucose were medium-sized, non-aromatic, uncharged and irrelevant to hydrogen-bond capability, suggesting an important role of van der Waals interaction. Sensitivity to phloretin, a specific inhibitor for the presumed exofacial glucose binding site, was decreased in two mutants, whereas that to cytochalasin B, a specific inhibitor for the presumed endofacial glucose binding site, was unchanged in the mutants. These results suggest that Ile287 is a key residue for maintaining high glucose affinity in GLUT1 as revealed in Hxt2 and is located at or near the exofacial glucose binding site. 相似文献
19.
Molina-Jijón E Tapia E Zazueta C El Hafidi M Zatarain-Barrón ZL Hernández-Pando R Medina-Campos ON Zarco-Márquez G Torres I Pedraza-Chaverri J 《Free radical biology & medicine》2011,51(8):1543-1557
We report the role of mitochondria in the protective effects of curcumin, a well-known direct and indirect antioxidant, against the renal oxidant damage induced by the hexavalent chromium [Cr(VI)] compound potassium dichromate (K2Cr2O7) in rats. Curcumin was given daily by gavage using three different schemes: (1) complete treatment (100, 200, and 400 mg/kg bw 10 days before and 2 days after K2Cr2O7 injection), (2) pretreatment (400 mg/kg bw for 10 days before K2Cr2O7 injection), and (3) posttreatment (400 mg/kg bw 2 days after K2Cr2O7 injection). Rats were sacrificed 48 h later after a single K2Cr2O7 injection (15 mg/kg, sc) to evaluate renal and mitochondrial function and oxidant stress. Curcumin treatment (schemes 1 and 2) attenuated K2Cr2O7-induced renal dysfunction, histological damage, oxidant stress, and the decrease in antioxidant enzyme activity both in kidney tissue and in mitochondria. Curcumin pretreatment attenuated K2Cr2O7-induced mitochondrial dysfunction (alterations in oxygen consumption, ATP content, calcium retention, and mitochondrial membrane potential and decreased activity of complexes I, II, II-III, and V) but was unable to modify renal and mitochondrial Cr(VI) content or to chelate chromium. Curcumin posttreatment was unable to prevent K2Cr2O7-induced renal dysfunction. In further experiments performed in curcumin (400 mg/kg)-pretreated rats it was found that this antioxidant accumulated in kidney and activated Nrf2 at the time when K2Cr2O7 was injected, suggesting that both direct and indirect antioxidant effects are involved in the protective effects of curcumin. These findings suggest that the preservation of mitochondrial function plays a key role in the protective effects of curcumin pretreatment against K2Cr2O7-induced renal oxidant damage. 相似文献
20.
The key step of the "protonmotive Q-cycle" mechanism for cytochrome bc1 complex is the bifurcated oxidation of ubiquinol at the Qp site. ISP is reduced when its head domain is at the b-position and subsequent move to the c1 position, to reduce cytochrome c1, upon protein conformational changes caused by the electron transfer from cytochrome b(L) to b(H). Results of analyses of the inhibitory efficacy and the binding affinity, determined by isothermal titration calorimetry, of Pm and Pf, on different redox states of cytochrome bc1 complexes, confirm this speculation. Pm inhibitor has a higher affinity and better efficacy with the cytochrome b(H) reduced complex and Pf binds better and has a higher efficacy with the ISP reduced complex. 相似文献