首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 558 毫秒
1.
The two Ni2+ ions in the urease active site are delivered by the metallochaperone UreE, whose metal binding properties are central to the assembly of this metallocenter. Isothermal titration calorimetry (ITC) has been used to quantify the stoichiometry, affinity, and thermodynamics of Ni2+, Cu2+, and Zn2+ binding to the well-studied C-terminal truncated H144*UreE from Klebsiella aerogenes, Ni2+ binding to the wild-type K. aerogenes UreE protein, and Ni2+ and Zn2+ binding to the wild-type UreE protein from Bacillus pasteurii. The stoichiometries and affinities obtained by ITC are in good agreement with previous equilibrium dialysis results, after differences in pH and buffer competition are considered, but the concentration of H144*UreE was found to have a significant effect on metal binding stoichiometry. While two metal ions bind to the H144*UreE dimer at concentrations <10 microM, three Ni2+ or Cu2+ ions bind to 25 microM dimeric protein with ITC data indicating sequential formation of Ni/Cu(H144*UreE)4 and then (Ni/Cu)2(H144*UreE)4, or Ni/Cu(H144*UreE)2, followed by the binding of four additional metal ions per tetramer, or two per dimer. The thermodynamics indicate that the latter two metal ions bind at sites corresponding to the two binding sites observed at lower protein concentrations. Ni2+ binding to UreE from K. aerogenes is an enthalpically favored process but an entropically driven process for the B. pasteurii protein, indicating chemically different Ni2+ coordination to the two proteins. A relatively small negative value of DeltaCp is associated with Ni2+ and Cu2+ binding to H144*UreE at low protein concentrations, consistent with binding to surface sites and small changes in the protein structure.  相似文献   

2.
The thermodynamics of metals ions binding to proteins and other biological molecules can be measured with isothermal titration calorimetry (ITC), which quantifies the binding enthalpy (ΔH°) and generates a binding isotherm. A fit of the isotherm provides the binding constant (K), thereby allowing the free energy (ΔG°) and ultimately the entropy (ΔS°) of binding to be determined. The temperature dependence of ΔH° can then provide the change in heat capacity (ΔC p°) upon binding. However, ITC measurements of metal binding can be compromised by undesired reactions (e.g., precipitation, hydrolysis, and redox), and generally involve competing equilibria with the buffer and protons, which contribute to the experimental values (K ITC, ΔH ITC). Guidelines and factors that need to be considered for ITC measurements involving metal ions are outlined. A general analysis of the experimental ITC values that accounts for the contributions of metal–buffer speciation and proton competition and provides condition-independent thermodynamic values (K, ΔH°) for metal binding is developed and validated.  相似文献   

3.
Aluminum is a known neurotoxic agent and its neurotoxic effects may be due to its binding to DNA. However, the mechanism for the interaction of aluminum ions with DNA is not well understood. Here, we report the application of isothermal titration calorimetry (ITC), fluorescence spectroscopy, and UV spectroscopy to investigate the thermodynamics of the binding of aluminum ions to calf thymus DNA (CT DNA) under various pH and temperature conditions. The binding reaction is driven entirely by a large favorable entropy increase but with an unfavorable enthalpy increase in the pH range of 3.5-5.5 and at all temperatures examined. Aluminum ions show a strong and pH-dependent binding affinity to CT DNA, and a large positive molar heat capacity change for the binding, 1.57 kcal mol(-1) K(-1), demonstrates the burial of the polar surface of CT DNA upon groove binding. The fluorescence of ethidium bromide bound to CT DNA is quenched by aluminum ions in a dynamic way. Both Stern-Volmer quenching constant and the binding constant increase with the increase of the pH values, reaching a maximum at pH 4.5, and decline with further increasing the pH to 5.5. At pH 6.0 and 7.0, aluminum ions precipitate CT DNA completely and no binding of aluminum ions to CT DNA is observed by ITC. Combining the results from these three methods, we conclude that aluminum ions bind to CT DNA with high affinity through groove binding under aluminum toxicity pH conditions and precipitate CT DNA under physiological conditions.  相似文献   

4.
Isothermal titration calorimetry is a widely used biophysical technique for studying the formation or dissociation of molecular complexes. Over the last 5 years, much work has been published on the interpretation of isothermal titration calorimetry (ITC) data for single binding and multiple binding sites. As over 80% of ITC papers are on macromolecules of biological origin, this interpretation is challenging. Some researchers have attempted to link the thermodynamics constants to events at the molecular level. This review highlights work carried out using binding sites characterized using x‐ray crystallography techniques that allow speculation about individual bond formation and the displacement of individual water molecules during ligand binding and link these events to the thermodynamic constants for binding. The review also considers research conducted with synthetic binding partners where specific binding events like anion‐π and π‐π interactions were studied. The revival of assays that enable both thermodynamic and kinetic information to be collected from ITC data is highlighted. Lastly, published criticism of ITC research from a physical chemistry perspective is appraised and practical advice provided for researchers unfamiliar with thermodynamics and its interpretation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Holdgate GA 《BioTechniques》2001,31(1):164-6, 168, 170 passim
Characterization of the thermodynamics of binding interactions is important in improving our understanding of bimolecular recognition and forms an essential part of the rational drug design process. Isothermal titration calorimetry (ITC) is rapidly becoming established as the method of choice for undertaking such studies. The power of ITC lies in its unique ability to measure binding reactions by the detection of the heat change during the binding interaction. Since heat changes occur during many physicochemical processes, ITC has a broad application, ranging from chemical and biochemical binding studies to more complex processes involving enthalpy changes, such as enzyme kinetics. Several features of ITC have facilitated its preferential use compared to other techniques that estimate affinity. It is a sensitive, rapid, and direct method with no requirement for chemical modification or immobilization. It is the only technique that directly measures enthalpy of binding and so eliminates the need for van't Hoff analysis, which can be time consuming and prone to uncertainty in parameter values. Although ITC has facilitated the measurement of the thermodynamics governing binding reactions, interpretation of these parameters in structural terms is still a major challenge.  相似文献   

6.
Spatholobus parviflorus seed lectin (SPL) is a heterotetrameric lectin, with two α and two β monomers. In the crystal structure of SPL α monomer, two residues at positions 240 and 241 are missing. This region was modeled based on the positional and sequence similarities. The role of metal ions in SPL structure was analyzed by 10 ns molecular dynamics simulation. MD simulations were performed in the presence and absence of metal ions to explain the loss of haemagglutinating property of the lectin due to demetallization. Demetallized structure was found to deviate drastically at the metal binding loop region. Affinity of different sugars like N-acetyl galactosamine (GalNAc), D-galactose and lactose towards the native and demetallized protein was calculated by molecular docking studies. It was found that the sugar binding site got severely distorted in demetallized lectin. Consequently, sugar binding ability of lectin might be decreasing in the demetallized condition. Isothermal titration calorimetric (ITC) analysis of the sugars in the presence of native and demetallized protein confirmed the in silico results. It was observed after molecular dynamics simulations, that significant structural deviations were not caused in the quaternary structure of demetallized lectin. It was confirmed that the structural changes modified the sugar binding ability, as well as sugar specificity of the present lectin. The role of metal ions in sugar binding is described based on the in silico studies and ITC analysis. A comprehensive analysis of the ITC data suggests that the sugar specificity of the metal bound lectin and the loss of sugar specificity due to metal chelation are not linear.
Figure
Role of metal ions in sugar binding of Spatholobus parviflorus seed lectin  相似文献   

7.
Isothermal titration calorimetry (ITC) is a fast, accurate and label‐free method for measuring the thermodynamics and binding affinities of molecular associations in solution. Because the method will measure any reaction that results in a heat change, it is applicable to many different fields of research from biomolecular science, to drug design and materials engineering, and can be used to measure binding events between essentially any type of biological or chemical ligand. ITC is the only method that can directly measure binding energetics including Gibbs free energy, enthalpy, entropy and heat capacity changes. Not only binding thermodynamics but also catalytic reactions, conformational rearrangements, changes in protonation and molecular dissociations can be readily quantified by performing only a small number of ITC experiments. In this review, we highlight some of the particularly interesting reports from 2008 employing ITC, with a particular focus on protein interactions with other proteins, nucleic acids, lipids and drugs. As is tradition in these reviews we have not attempted a comprehensive analysis of all 500 papers using ITC, but emphasize those reports that particularly captured our interest and that included more thorough discussions we consider exemplify the power of the technique and might serve to inspire other users. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
BackgroundITC is a powerful technique that can reliably assess the thermodynamic underpinnings of a wide range of binding events. When metal ions are involved, complications arise in evaluating the data due to unavoidable solution chemistry that includes metal speciation and a variety of linked equilibria.Scope of reviewThis paper identifies these concerns, provides recommendations to avoid common mistakes, and guides the reader through the mathematical treatment of ITC data to arrive at a set of thermodynamic state functions that describe identical chemical events and, ideally, are independent of solution conditions. Further, common metal chromophores used in biological metal sensing studies are proposed as a robust system to determine unknown solution competition.Major conclusionsMetal ions present several complications in ITC experiments. This review presents strategies to avoid these pitfalls and proposes and experimentally validates mathematical approaches to deconvolute complex equilibria that exist in these systems.General significanceThis review discusses the wide range of complications that exists in metal-based ITC experiments. It provides a starting point for scientists new to this field and articulates concerns that will help experienced researchers troubleshoot experiments. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.  相似文献   

9.
Hammann C  Cooper A  Lilley DM 《Biochemistry》2001,40(5):1423-1429
The hammerhead ribozyme undergoes a well-defined two-stage conformational folding process, induced by the binding of magnesium ions. In this study, we have used isothermal titration calorimetry to analyze the thermodynamics of magnesium binding and magnesium ion-induced folding of the ribozyme. Binding to the natural sequence ribozyme is strongly exothermic and can be analyzed in terms of sequential interaction at two sites with association constants K(A) = 480 and 2840 M(-1). Sequence variants of the hammerhead RNA give very different isothermal titration curves. An A14G variant that cannot undergo ion-induced folding exhibits endothermic binding. By contrast, a deoxyribose G5 variant that can undergo only the first of the two folding transitions gives a complex titration curve. However, despite these differences the ITC data for all three species can be analyzed in terms of the sequential binding of magnesium ions at two sites. While the binding affinities are all in the region of 10(3) M(-1), corresponding to free energies of Delta G degrees = -3.5 to -4 kcal mol(-1), the enthalpic and entropic contributions show much greater variation. The ITC experiments are in good agreement with earlier conformational studies of the folding of the ion-induced folding of the hammerhead ribozyme.  相似文献   

10.
BackgroundCharacterizing the thermodynamic parameters behind metal-biomolecule interactions is fundamental to understanding the roles metal ions play in biology. Isothermal Titration Calorimetry (ITC) is a “gold-standard” for obtaining these data. However, in addition to metal-protein binding, additional equilibria such as metal-buffer interactions must be taken into consideration prior to making meaningful comparisons between metal-binding systems.MethodsIn this study, the thermodynamics of Ca2+ binding to three buffers (Bis-Tris, MES, and MOPS) were obtained from Ca2+-EDTA titrations using ITC. These data were used to extract buffer-independent parameters for Ca2+ binding to human cardiac troponin C (hcTnC), an EF-hand containing protein required for heart muscle contraction.ResultsThe number of protons released upon Ca2+ binding to the C– and N-domain of hcTnC were found to be 1.1 and 1.2, respectively. These values permitted determination of buffer-independent thermodynamic parameters of Ca2+-hcTnC binding, and the extracted data agreed well among the buffers tested. Both buffer and pH-adjusted parameters were determined for Ca2+ binding to the N-domain of hcTnC and revealed that Ca2+ binding under aqueous conditions and physiological ionic strength is both thermodynamically favorable and driven by entropy.ConclusionsTaken together, the consistency of these data between buffer systems and the similarity between theoretical and experimental proton release is indicative of the reliability of the method used and the importance of extracting metal-buffer interactions in these studies.General significanceThe experimental approach described herein is clearly applicable to other metal ions and other EF-hand protein systems.  相似文献   

11.
19 F NMR spectroscopy have been applied to evaluate metal ion binding by the representative PvuII endonuclease in the absence of substrate. In separate experiments, ITC data demonstrate that PvuII endonuclease binds 2.16 Mn(II) ions and 2.05 Ca(II) metal ions in each monomer active site with K d values of  ≈ 1 mM. While neither calorimetry nor protein NMR spectroscopy is directly sensitive to Mg(II) binding to the enzyme, Mn(II) competes with Mg(II) for common sites(s) on PvuII endonuclease. Substitution of the conserved active site carboxylate Glu68 with Ala resulted in a loss of affinity for both equivalents of both Ca(II) and Mn(II). Interestingly, the active site mutant D58A retained an affinity for Mn(II) with K d  ≈ 2 mM. Mn(II) paramagnetic broadening in 19F spectra of wild-type and mutant 3-fluorotyrosine PvuII endonucleases are consistent with ITC results. Chemical shift analysis of 3-fluorotyrosine mutant enzymes is consistent with a perturbed conformation for D58A. Therefore, free PvuII endonuclease binds metal ions, and metal ion binding can precede DNA binding. Further, while Glu68 is critical to metal ion binding, Asp58 does not appear to be critical to the binding of at least one metal ion and appears to also have a role in structure. These findings provide impetus for exploring the roles of multiple metal ions in the structure and function of this representative endonuclease. Received: 30 March 1999 / Accepted: 28 September 1999  相似文献   

12.
Survey of the year 2009: applications of isothermal titration calorimetry   总被引:1,自引:0,他引:1  
Isothermal titration calorimetry (ITC) is now an established and invaluable method for determining the thermodynamic constants, association constant and stoichiometry of molecular interactions in aqueous solutions. The technique has become widely used by biochemists to study protein interaction with other proteins, small molecules, metal ions, lipids, nucleic acids and carbohydrates; and nucleic acid interaction with small molecules. The drug discovery industry has utilized this approach to measure protein (or nucleic acid) interaction with drug candidates. ITC has been used to screen candidates, guide the design of potential drugs and validate the modelling used in structure-based drug design. Emerging disciplines including nanotechnology and drug delivery could benefit greatly from ITC in enhancing their understanding and control of nano-particle assembly, and drug binding and controlled release.  相似文献   

13.
Isothermal titration calorimetry (ITC) was used to measure the binding affinity and thermodynamics of a cocaine-binding aptamer as a function of pH and NaCl concentration. Tightest binding was achieved at a pH value of 7.4 and under conditions of no added NaCl. These data indicate that ionic interactions occur in the ligand binding mechanism. ITC was also used to measure the binding thermodynamics of a variety of sequence variants of the cocaine-binding aptamer that analyzed which regions and nucleotides of the aptamer are important for maintaining high-affinity binding. Individually, each of the three stems can be shortened, resulting in a reduced binding affinity. If all three stems are shortened, no binding occurs. If all three of the stems in the aptamer are lengthened by five base pairs ligand affinity increases. Changes in nucleotide identity at the three-way junction all decrease the affinity of the aptamer to cocaine. The greatest decrease in affinity results from changes that disrupt the GA base pairs and the identity of T19.  相似文献   

14.
Biochemical characterization of exoribonuclease encoded by SARS coronavirus   总被引:1,自引:0,他引:1  
The nsp14 protein is an exoribonuclease that is encoded by severe acute respiratory syndrome coronavirus (SARS-CoV). We have cloned and expressed the nsp14 protein in Escherichia coli, and characterized the nature and the role(s) of the metal ions in the reaction chemistry. The purified recombinant nsp14 protein digested a 5'-labeled RNA molecule, but failed to digest the RNA substrate that is modified with fluorescein group at the 3'-hydroxyl group, suggesting a 3'-to-5' exoribonuclease activity. The exoribonuclease activity requires Mg2+ as a cofactor. Isothermal titration calorimetry (ITC) analysis indicated a two-metal binding mode for divalent cations by nsp14. Endogenous tryptophan fluorescence and circular dichroism (CD) spectra measurements showed that there was a structural change of nsp14 when binding with metal ions. We propose that the conformational change induced by metal ions may be a prerequisite for catalytic activity by correctly positioning the side chains of the residues located in the active site of the enzyme.  相似文献   

15.
The carbohydrate binding specificities of the galectin family of animal lectins has been the source of intense recent investigations. Isothermal titration microcalorimetry (ITC) provides direct determination of the thermodynamics of binding of carbohydrates to lectins, and has provided important insights into the fine carbohydrate binding specificities of a wide number of plant and animal lectins. Recent ITC studies have been performed with galectin-1, galectin-3 and galectin-7 and their interactions with sialylated and non-sialylated carbohydrates. The results show important differences in the specificities of these three galectins toward poly-N-acetyllactosamine epitopes found on the surface of cells.  相似文献   

16.
BackgroundNanomaterials (NMs) are often exposed to a broad range of biomolecules of different abundances. Biomolecule sorption driven by various interfacial forces determines the surface structure and composition of NMs, subsequently governs their functionality and the reactivity of the adsorbed biomolecules. Isothermal titration calorimetry (ITC) is a nondestructive technique that quantifies thermodynamic parameters through in-situ measurement of the heat absorption or release associated with an interaction.Scope of reviewThis review highlights the recent applications of ITC in understanding the thermodynamics of interactions between various nanoparticles (NPs) and biomolecules. Different aspects of a typical ITC experiment that are crucial for obtaining accurate and meaningful data, as well as the strengths, weaknesses, and challenges of ITC applications to NP research were discussed.Major conclusionsITC reveals the driving forces behind biomolecule–NP interactions and the effects of the physicochemical properties of both NPs and biomolecules by quantifying the crucial thermodynamics parameters (e.g., binding stoichiometry, ΔH, ΔS, and ΔG). Complimentary techniques would strengthen the interpretation of ITC results for a more holistic understanding of biomolecule–NP interactions.General significanceThe thermodynamic information revealed by ITC and its complimentary characterizations is important for understanding biomolecule–NP interactions that are fundamental to the biomedical and environmental applications of NMs and their toxicological effects. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.  相似文献   

17.
The inhibition effect of metal ions on beta amylase activity was studied. The inhibitor-binding constant (Ki) was determined by spectrophotometric and isothermal titration calorimetric (ITC) methods. The binding of calcium, magnesium and zinc ion as inhibitors at the active site of barley beta amylase was studied at pH = 4.8 (sodium acetate 16 mM) and T = 300K. The Ki and enthalpy of binding for calcium (13.4, 13.1 mM and -14.3 kJ/mol), magnesium (18.6, 17.8mM and -17.7 kJ/mol) and zinc (17.5, 17.7 mM and -20.0 kJ/mol) were found by spectrophotometric and ITC methods respectively.  相似文献   

18.
The carbohydrate binding specificities of the galectin family of animal lectins has been the source of intense recent investigations. Isothermal titration microcalorimetry (ITC) provides direct determination of the thermodynamics of binding of carbohydrates to lectins, and has provided important insights into the fine carbohydrate binding specificities of a wide number of plant and animal lectins. Recent ITC studies have been performed with galectin-1, galectin-3 and galectin-7 and their interactions with sialylated and non-sialylated carbohydrates. The results show important differences in the specificities of these three galectins toward poly-N-acetyllactosamine epitopes found on the surface of cells. Published in 2004.  相似文献   

19.
The ability to construct molecular motifs with predictable properties in aqueous solution requires an extensive knowledge of the relationships between structure and energetics. The design of metal binding motifs is currently an area of intense interest in the bioorganic community. To date synthetic motifs designed to bind metal ions lack the remarkable affinities observed in biological systems. To better understand the structural basis of metal ion affinity, we report here the thermodynamics of binding of divalent zinc ions to wild-type and mutant carbonic anhydrases and the interpretation of these parameters in terms of structure. Mutations were made both to the direct His ligand at position 94 and to indirect, or second-shell, ligands Gln-92, Glu-117, and Thr-199. The thermodynamics of ligand binding by several mutant proteins is complicated by the development of a second zinc binding site on mutation; such effects must be considered carefully in the interpretation of thermodynamic data. In all instances modification of the protein produces a complex series of changes in both the enthalpy and entropy of ligand binding. In most cases these effects are most readily rationalized in terms of ligand and protein desolvation, rather than in terms of changes in the direct interactions of ligand and protein. Alteration of second-shell ligands, thought to function primarily by orienting the direct ligands, produces profoundly different effects on the enthalpy of binding, depending on the nature of the residue. These results suggest a range of activities for these ligands, contributing both enthalpic and entropic effects to the overall thermodynamics of binding. Together, our results demonstrate the importance of understanding relationships between structure and hydration in the construction of novel ligands and biological polymers.  相似文献   

20.
The preceding paper [Dam, T. K., Roy, R., Pagé, D., and Brewer, C. F. (2002) Biochemistry 41, 1351-1358] demonstrated that Hill plots of isothermal titration microcalorimetry (ITC) data for the binding of di-, tri-, and tetravalent carbohydrate analogues possessing terminal 3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside residues to the lectin concanavalin A (ConA) show increasing negative cooperativity upon binding of the analogues to the lectin. The present study demonstrates "reverse" ITC experiments in which the lectin is titrated into solutions of di- and trivalent analogues. The results provide direct determinations of the thermodynamics of binding of ConA to the individual epitopes of the two multivalent analogues. The n values (number of binding sites per carbohydrate molecule) derived from reverse ITC demonstrate two functional binding epitopes on both the di- and trivalent analogues, confirming previous "normal" ITC results with the two carbohydrates [Dam, T. K., Roy, R., Das, S. K., Oscarson, S., and Brewer, C. F. (2000) J. Biol. Chem. 275, 14223-14230]. The reverse ITC measurements show an 18-fold greater microscopic affinity constant of ConA for the first epitope of the divalent analogue versus its second epitope and a 53-fold greater microscopic affinity constant of ConA binding to the first epitope of the trivalent analogue versus its second epitope. The data also demonstrate that the microscopic enthalpies of binding of the two epitopes on the di- and trivalent analogues are essentially the same and that differences in the microscopic K(a) values of the epitopes are due to their different microscopic entropies of binding values. These findings are consistent with the increasing negative Hill coefficients of these analogues binding to ConA in the previous paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号