首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From the crystals of trans aquabis(N,N-dimethylglycinato-κNO)copper(II) dihydrate (compound 1, space group P212121) novel crystal structure of trans aquabis(N,N-dimethylglycinato-κNO)copper(II) (compound 2, space group Pbca) was obtained and analysed by X-ray diffraction. In the crystal structure 1, the O-H?O hydrogen bonds form three-dimensional network. In the crystal structure 2, two-dimensional layers stacking to each other are formed, with non-polar N,N-dimethyl groups placed on the opposite sides of the layers, and with the polar part in the middle forming CO?O-H and C-H?O hydrogen bonds. Different hydrogen bonding patterns in 1 and 2 do not pronouncedly affect molecular geometry of the title compound. Molecular mechanics force field suited for studying the properties of bis(amino acidato)copper(II) complexes in the solid state can follow the differences between the experimental molecular structures in the two diverse crystalline surroundings. To make possible direct comparison between crystal lattices, the force field was applied to predict unit cell packing of supposed anhydrous bis(N,N-dimethylglycinato)copper(II) in space group Pbca. Relative intermolecular energies of hypothetic anhydrous crystal and simulated 1 and 2 crystals are discussed. On the basis of experimental and theoretical results we conclude that the main effect of two water molecules of crystallisation in 1 is to stabilise the crystal packing via hydrogen bonding, whilst similar pyramidal copper(II) coordination geometry in 1 and 2 is due to axially coordinated water molecule and its intermolecular interactions.  相似文献   

2.
The unusual 18e seven-coordinate Mo(II) complex [Mo(NO)(H2NO-κ2N,O)(TpMe2)I] (1; [TpMe2] is hydrotris(3,5-dimethylpyrazol-1-yl)borate) has been synthesised and characterised by IR, 1H NMR and ESI-MS spectroscopies and by a single crystal X-ray diffraction study. The complex has a distorted pentagonal bipyramid structure with equatorial κ2-NH2O ligand (dN-O = 1.387 Å, dMo-N and dMo-O equal 2.049 and 2.092 Å, respectively). In the solid state 1 exists as a dimer (the point group Ci) due to the formation of two NH?O hydrogen bonds (dN-H?O = 2.064 Å) between the adjacent NH2O ligands, whilst in solution at/or above RT it resolves itself giving a monomer, which readily isomerises to more thermodynamically stable diastereoisomer.  相似文献   

3.
The new ligand N,N-(2-methyl-2-(2-pyridyl)propan-1,3-diyl)bis(tetramethylguanidine) (L) and its four-coordinate, distorted square-planar copper(II) complex [CuLCl2] (1) were synthesized and structurally characterized. Similarly, bis(μ-OH)dicopper(II,II) complex [Cu2L2(OH)2](OTf)2 (2) was synthesized and structurally characterized. The pyridyl group in L does not coordinate in either 1 or 2. New examples of μ-η2:η2-disulfido dicopper(II,II) complexes were synthesized by treating a copper(I) complex of either L or L′ [L′ = 2′,2′-(propane-1,3-diyl)bis(1,1,3,3-tetramethylguanidine)] with elemental sulfur. [Cu2L2(S2)](PF6)2 (3) and [Cu2(S2)](PF6)2 (4) were both structurally characterized, and both structures have two copper(II) ions bridged by a disulfido ligand in a μ-η2:η2-manner. The ligands L and L′ coordinate in a bidentate fashion (like 1 and 2, the pyridyl ring does not coordinate in 3), and the geometry around the copper ions in 3 and 4 is distorted square planar. The metrical parameters of 3 and 4 were found to be similar to other μ-η2:η2-disulfido dicopper(II,II) complexes, and the Cu-S and Cu···Cu distances are among the shortest reported for this class of copper disulfide dimers.  相似文献   

4.
Synthesis of a series of cationic “wrap-around” complexes, η3-, η2- (CH2-CH-CHR-CH2-CH2-CHCHX) Pd(II)L+ (R = H, CH3; X = H, Cl, CO2Me; L = PPh3, P(C4H4N)3), is described. These chelate complexes were prepared by exposure of π-allyl chloride dimers, (η3-(CH2-CX-CH2)PdCl)2, to either 1,3-butadiene or isoprene to yield π-allyl chloride dimers of the type (η3-CH2CHCRCH2CH2CH = CH(X)PdCl)2 which result from insertion of the diene into each π-allyl unit. Abstraction of chloride with either AgSbF6 or NaB(ArF)4 in the presence of L gives the cationic wrap-around complexes in high yields. Single crystal X-ray diffraction studies of 8a (R = -CH3, X = -Cl, L = PPh3) and 9a (R = -H, X = -Cl, L = PPh3) show that Pd(II) adopts essentially a square planar geometry and the chelate arm occupies a syn orientation with respect to the allyl unit. Exposure of these wrap-around complexes to nitriles of differing basicities displaces the chelated alkene to varying extents and allows assessment of the relative strengths of chelation as a function of substituents, X and R. Initial rapid displacement of the chelated alkene yields a syn-π-allyl isomer which equilibrates with the anti-π-allyl isomer which cannot close to form a chelate. Treatment of 8b with 1,3-butadiene gives not polybutadiene but 2-chloro-4-methyl-1,E-4,6-heptatriene and 2-chloro-4-methyl-1,Z-4,6-heptatriene. Formation of these trienes is first-order in butadiene. This reaction serves as a model for chain-transfer in the polymerization of butadiene.  相似文献   

5.
The polymeric [PdCl(dithiocarbamate)]n complexes, in which the ligand ion is dimethyldithiocarbamate (DMDT), pyrrolidine dithiocarbamate (PyDT, (CH2)4NCS2) and sarcosine ethyl ester dithiocarbamate (ESDT, EtO2CCH2N(CH3)CS2), have been reacted with chelating diamines, like ethylenediamine (en) or 1,3-diaminopropane (dap) and long chain diamines, like 1,4-diaminobutane (dab) or 1,7-diaminoheptane (dah). The reaction products depend on either diamine chain length or molar ratio. By operating at PdCl(dithiocarbamate)/diamine molar ratio 1:1 chelating diamines yielded the ionic [Pd(dithiocarbamate)(diamine)]Cl species (diamine = en or dap), whereas with long chain diamines species of the type [Pd(dithiocarbamate)(diamine)]nCln (diamine = dab or dah) were obtained, in which each Pd(dithiocarbamate)+ unit binds to the NH2 group of two different molecules, in a network of bridging diamines. At molar ratio 1:0.5, the long chain diamines yielded the binuclear [Pd2Cl2(dithiocarbamate)2(diamine)] complexes (diamine = dab or dah), whereas exchange reactions take place generally in the presence of en or dap. The reaction trend is described on the basis of IR and proton NMR spectra. The new dithiocarbamate complexes were preliminarily tested for their cytotoxicity on human cancer cells.  相似文献   

6.
Copper(II) ,-dicarboxylate complexes of general formulae, [Cu(O2C(CH2)nCO2)]·xH2O, [Cu(O2C(CH2)nCO2) (phen)2xH2O and [Cu(O2C(CH2)nCO2)(bipy)yxH2O (n=1–8; y=1, 2; phen = 1,10-phenanthroline; bipy = 2,2-bipyridine) were synthesised. These copper complexes, some related manganese(II) complexes and the metal-free ligands were screened in vitro for their ability to inhibit the growth of Candida albicans. Metal-free 1,10-phenanthroline and all of the copper(II) and manganese(II) phenanthroline complexes were potent growth inhibitors, with only one bipyridine complex, [Cu(O2C(CH2)CO2)(bipy)2]·2H2O, having moderate activity. The remaining substances were effectively inactive. Complexes which were active against C. albicans also proved effective against C. glabrata, C. tropicalis and C. kreusi with the manganese complexes retaining superior activity. For the phenanthroline complexes the active drug species is thought to be the dication [M(phen)2(H2O)n]2+ (M = Cu, Mn). Escherichia coli and Staphylococcus aureus were resistant to all of the metal complexes and also to metal-free 1,10-phenanthroline. Only the copper phenanthroline complexes showed intermediate activity against Pseudomonas aeruginosa.  相似文献   

7.
Saponification of the bis(carbamic acid ester) 1,3-C6H4(CMe2NHCO2Me)2 (1), made by the addition of methanol to commercial 1,3-C6H4(CMe2NCO)2, yielded the meta-phenylene-based bis(tertiary carbinamine) 1,3-C6H4(CMe2NH2)2 (2). Dinuclear [{(η4-1,5-C8H12)RhCl}2{μ-1,3-C6H4(CMe2NH2)2}] (3) resulted from the action of 2 on [{(η4-1,5-C8H12)Rh(μ-Cl)}2] in toluene. Combination of 2 with PdCl2 or K2[PdCl4] gave the dipalladium macrocycle trans,trans-[{μ-1,3-C6H4(CMe2NH2)2}2(PdCl2)2] (4) along with cyclometalated [{2,6-C6H3(CMe2NH2)2NC1N′}PdCl] (5). Substitution of PEt3 for the labile chlorido ligand of 5 afforded [{2,6-C6H3(CMe2NH2)2NC1, κN′}Pd(PEt3)]Cl (6). The crystal structures of the following compounds were determined: bis(carbamic acid ester) 1, ligand 2 as its bis(trifluoroacetate) salt [1,3-C6H4(CMe2NH3)2](O2CCF3)2, 2 · (HAcf)2, complexes 3 and 6, as well as 1,3-C6H4(CMe2OH)2 (the diol analogue of 2).  相似文献   

8.
Solid tumors are often hypoxic and consequently the pH in the tumoral tissue is decreasing with increasing tumor size (pH 5.5-7.4 in solid tumors versus pH 7.4 in normal tissues). This marked difference in pH value is a problem for weak base organic drugs and could advantageously be used for the introduction of pH sensitive anticancer platinum drugs. Synthesis and structure determination of (SP-4-2)-bis(2-aminoethanolato-κ2N,O)platinum(II), its binding behavior to 5-GMP and its cytotoxicity against cisplatin sensitive cell lines under standard pH screening conditions (pH 7.4) as well as in acidified cell culture medium (pH 6.0) mimicking the conditions in a number of solid tumors is presented. There is evidence that this concept in anticancer platinum therapy, namely administration of rather unreactive drugs and activation under acidic pH conditions, can be realized.  相似文献   

9.
Reaction of Cu(NO3)2 · 3H2O, N,N,N′,N′-tetramethyl-ethylenediamine (L) and sodium dicyanamide (Nadca) in aqueous medium yields a complex the {[Cu2L2(μ-1,5-dca)2(dca)2]}n complex, 1. Single crystal X-ray analysis reveals that complex 1 has a 1D infinite chain structure in which copper(II) ions are bridged by single dicyanamide anions in an end-to-end fashion. The coordination environment around copper(II) is distorted square pyramidal. Two among the four coordination sites of the basal plane are occupied by the nitrogen atoms of the diamine and two remaining sites are occupied by the terminal nitrogen atom of a bridging and of a monodentate dca anions. The fifth coordination site (apical) is occupied by a nitrogen atom from a bridging dca anion of an adjacent CuL(dca)2 moiety, yielding the [Cu2L2(μ-1,5-dca)2(dca)2] dinuclear unit. Dimeric units are connected to each other by single μ-1,5-dicyanamido group to form infinite 1D chains which propagate parallel to the crystallographic c-axis. The variable temperature magnetic susceptibility measurements evidenced weakly antiferromagnetic interactions (J = −0.26 cm−1) in {[Cu2L2(μ-1,5-dca)2(dca)2]}n, 1.  相似文献   

10.
11.
The platinum(II) complexes of the formula [Pt(DCHEDA)X2], where DCHEDA is N,N′-dicyclohexylethylenediamine and X is CL, Br, I, 0.5C2O42− (oxalate), 0.5C3H2O42− (malonate), 0.5C9H4O62− (4-carboxyphthalate), 0.5S2O32− or 0.5SO42−, have been synthesized and characterized by UVVis, IR, and 1H NMR spectral techniques. All the above complexes are non-electrolytes in DMF/H2O, except the sulphate complex which becomes a 1:1 electrolyte after incubation for 24 h at 28 °C. The halide complexes were also studied by X-ray photoelectron spectroscopy and these data suggest that there is π-bonding from platinum to halide in these complexes. The oxalate, malonate and sulphate bind in their complexes as bidentate ligands to platinum through two oxygen atoms whereas the thiosulphate in its complex binds as a bidentate ligand to platinum through one oxygen atom and one sulphur atom.  相似文献   

12.
The complexes [Cu(samen)Cu(L)] and [Cu(samen)Ni(L)2] (Lbpy, phen) have been synthesized by the reaction of sodium N,N′-ethylenedisalicylamidatocuprate(II) pentahydrate (Na2- [Cu(samen)]·5H2O), a divalent metal ion, and 2,2′- dipyridyl or 1,10-phenanthroline. Cryomagnetic data for the CuCu complexes did not fit the Bleaney- Bowers equation; but the data did fit a modified Bleaney-Bowers equation
with a large negative J and a significant negative θ, suggesting that a considerable magnetic interaction operates between essentially planar [Cu(samen)Cu(L)] molecules. The magnetisms of the CuNi complexes were well interpreted in terms of the susceptibility equation based on the Heisenberg model. An antiferromagnetic spin-exchange interaction (J= −13∼−14 cm−1) was suggested between the metal ions.  相似文献   

13.
A series of water soluble molybdenocene complexes of general formula [(η5-C5H5)2Mo(L)]Cl2 (L=6-mercaptopurine (2), 6-mercaptopurine ribose (3), 2-amino-6-mercaptopurine (4), 2-amino-6-mercaptopurine ribose (5)) have been prepared by reacting Cp2MoCl2 (1) with the corresponding thionucleobase/thionucleoside in a (2:1) THF/MeOH solvent mixture. The complexes have been characterized by spectroscopic methods (NMR, UV-Vis, IR and MS). 1H NMR spectroscopic data (DMSO-d6) on the complexes suggest a S-Mo-N(7) coordination by the thionucleobase/thionucleoside. In buffer solution NMR data suggest that the thionucleobase/thionucleoside remains coordinated to molybdenum probably through S(6) and assisted by either N(7) or N(1) atoms. Intermediate species such as [Cp2Mo(η1-L)(H2O)]2+/1+ where the L is acting as monodentate ligand are possible in solution. Electrochemical characterization has also been pursued by cyclic voltammetry in DMSO and buffer solution. In DMSO, the complexes including the molybdenocene dichloride exhibit reversible redox behavior. On the other hand, in buffer solution, the oxidation process is irreversible for all the species.  相似文献   

14.
The reaction of the bifunctional ligand 3-(1,8-naphthalimido)propanoate (LC2), which combines a 1,8-naphthalimide strong π···π stacking synthon and a carboxylate donor group, with Zn(O2CCH3)2(H2O)2 in methanol yields trimetallic Zn3(LC2)6(MeOH)4. The solid state structure has a central zinc(II) linked to two equivalent outer zinc(II) by both μ-κ1 and μ-κ2 carboxylate ligands. The two equivalent five-coordinate terminal zinc centers are also bonded to a third nonbridging κ2-carboxylate and to the oxygen atom of a methanol molecule. The central zinc(II) is six-coordinate with the four bridging carboxylate oxygen atoms forming a square planar arrangement and two trans oriented methanol molecules completing the coordination sphere. These trimers are organized into an extended structure exclusively by noncovalent interactions. Two types of strong π···π stacking interactions between sets of three stacked naphthalimide rings from three different trinuclear molecules organize the structure into two-dimensional thick sheets. The third dimension is organized by intermolecular hydrogen bonding interactions between the methanol molecules bonded to the terminal zinc(II) and the free oxygen of the μ-κ1-carboxylates from adjacent trimeric units. This interaction is supported by weak π···π stacking. Overall the structure is a highly organized supramolecular metal-organic framework (SMOF) solid.  相似文献   

15.
Deletion of the β-bulge trigger-loop results in both a switch in the preferred folding route, from the functional loop packing folding route to barrel closure, as well as conversion of the agonist activity of IL-1β into antagonist activity. Conversely, circular permutations of IL-1β conserve the functional folding route as well as the agonist activity. These two extremes in the folding-functional interplay beg the question of whether mutations in IL-1β would result in changes in the populations of heterogeneous folding routes and the signaling activity. A series of topologically equivalent water-mediated β-strand bridging interactions within the pseudosymmetric β-trefoil fold of IL-1β highlight the backbone water interactions that stabilize the secondary and tertiary structure of the protein. Additionally, conserved aromatic residues lining the central cavity appear to be essential for both stability and folding. Here, we probe these protein backbone-water molecule and side chain-side chain interactions and the role they play in the folding mechanism of this geometrically stressed molecule. We used folding simulations with structure-based models, as well as a series of folding kinetic experiments to examine the effects of the F42W core mutation on the folding landscape of IL-1β. This mutation alters water-mediated backbone interactions essential for maintaining the trefoil fold. Our results clearly indicate that this perturbation in the primary structure alters a structural water interaction and consequently modulates the population of folding routes accessed during folding and signaling activity.  相似文献   

16.
A series of water soluble compounds of general formula [{(η6-arene)Ru(HMP)Cl}], [η6-arene = η6-cymene (1), η6-HMB (2), η6-C6H6 (3); HMP = 5-hydroxy-2-(hydroxymethyl)-4-pyrone] have been prepared by the reaction of [{(η6-arene) RuCl2}2] with HMP. The complexes 1 and 2 react with NaN3 to give in excellent yield tetra-azido complexes [{(η6-arene)Ru(μN3)N3}2] (arene = cymene 4, HMB = 5) but similar reaction of complex 3 with NaN3 yielded di-azdo complex [{(η6-C6H6)Ru(μN3)Cl}2] (6). Reaction of [{(η6-arene)Ru(μN3)Cl}2] with HMP in the presence of NaOMe resulted in the formation of azido complex [{(η6-arene)Ru(HMP)N3}]. Mono and dinuclear complexes [{(η6-arene)Ru(HMP)(L1)}]+ and [{(η6-arene)Ru(HMP)}2(μL2)]2+ were also prepared by the reaction of complexes 1 and 2 with the appropriate ligand, L1 or L2 in the presence of AgBF4 (L1 = PyCN, DMAP; L2 = 4,4′-bipy, pyrazine). The complexes are characterized on the basis of spectroscopic data and molecular structures of three representative compounds have been determined by single crystal X-ray diffraction study.  相似文献   

17.
Dinuclear cobalt(II) complexes Co2(bpmp)(OAc)3 (1) and Co2(bpcp)(OAc)3 (2) have been synthesized by using acyclic ligands 2,6-bis((4-(pyridin-2-yl)pyrimidin-2-ylthio)methyl)-4-methylphenol [H(bpmp)] and 2,6-bis((4-(pyridin-2-yl)pyrimidin-2-ylthio)methyl)-4-chlorophenol [H(bpcp)] with versatile coordination sites. X-ray analysis uncovered that complex 1 · 3H2O contains a μ-phenoxo-μ-acetato-bis(η2-acetato) dicobalt(II, II) core. Magnetic susceptibility was measured for 1 over the temperature range 1.8-300 K, and the best theoretical fitting parameters were g = 2.12(6), J = −3.63(9) cm−1 and D = −12(4) cm−1.  相似文献   

18.
α/β-Galactoside α2,3-sialyltransferase produced by Photobacterium phosphoreum JT-ISH-467 is a unique enzyme that catalyzes the transfer of N-acetylneuraminic acid residue from cytidine monophosphate N-acetylneuraminic acid to acceptor carbohydrate groups. The enzyme recognizes both mono- and di-saccharides as acceptor substrates, and can transfer Neu5Ac to both α-galactoside and β-galactoside, efficiently. To elucidate the structural basis for the broad acceptor substrate specificity, we determined the crystal structure of the α2,3-sialyltransferase in complex with CMP. The overall structure belongs to the glycosyltransferase-B structural group. We could model a reasonable active conformation structure based on the crystal structure. The predicted structure suggested that the broad substrate specificity could be attributed to the wider entrance of the acceptor substrate binding site.  相似文献   

19.
N-Salicyloyl-N-p-hydroxythiobenzohydrazide (H2STPH) and N-benzoyl-N-thiobenzohydrazide (H2BTBH) and their Co(II), Ni(II), Cu(II) and Zn(II) complexes were prepared and characterized by physicochemical studies. IR and NMR spectral studies imply dibasic tetradentate behaviour of the ligands bonding through `thiolato' sulfur, enolic oxygen and the two hydrazinic nitrogens in a polymeric fashion. The electronic spectra indicate [Ni(STPH)(H2O)2], [Co(STPH)(H2O)2] to be distorted octahedral while [Cu(BTBH)] has a square-planar geometry. In vitro antitumor results of the ligand and the complexes on P-815 (murine mastocytoma) and L-929 (murine fibroblast) indicate that these compounds show significant inhibition of 3H-thymidine and 3H-uridine incorporation in DNA and RNA, respectively, in these tumor cells at dose levels of 1, 2.5 and 5 g cm–3. Antitumor studies suggest that [Cu(BTBH)] has significant dose dependent inhibitory effect on DNA synthesis. In vivo administration of [Cu(BTBH)] and [Ni(STPH)(H2O)2] resulted into prolongation of life span of Dalton's Lymphoma (DL) bearing mice.  相似文献   

20.
The new thiocyanato- (5) and azido- (6) complexes were synthesized and studied under their Fe(II) and Fe(III) redox states. For the first time among the various [Fe(η5-C5Me5)(η2-dppe)]-based cationic radicals studied so far, the magnitude and spatial orientation of the g-tensor diagonal values were experimentally determined for 5[PF6]. These data are in good agreement with those issued from a DFT modelization. The changes experienced by the electronic structure of the Fe(II) complexes subsequent to oxidation are reminiscent of these previously observed for the known arylalkynyl analogues, albeit some differences can be pointed out. Thus, the differences observed in the 1H NMR spectra of 5[PF6] and 6[PF6] are attributed to a slower electronic spin relaxation and to the differently oriented magnetic anisotropy. The sizeable spin density evidenced by DFT on the terminal atom of the ligands of the Fe(III) complexes renders these new paramagnetic metallo-ligands quite appealing for accessing larger polynuclear molecular assemblies with magnetically interacting centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号