首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
An acetylxylan esterase (EC 3.1.1.6) was purified to apparent homogeneity from the nonsedimentable extracellular culture fluid of Fibrobacter succinogenes S85 grown on cellulose. This enzyme had an apparent molecular mass of 55 kDa and an isoelectric point of 4.0. The temperature and pH optima were 45 degrees C and 7.0, respectively. The apparent Km and Vmax were 2.7 mM and 9,100 U/mg, respectively, for the hydrolysis of alpha-naphthyl acetate. The enzyme cleaved acetyl residues from birchwood acetylxylan but did not hydrolyze carboxymethylcellulose, larchwood xylan, ferulic acid-arabinose-xylose polymer, p-nitrophenyl-alpha-L-arab-inofuranoside, or longer-chain naphthyl fatty acid esters. The esterase enzyme may play a role in enhancing hemicellulose degradation by F. succinogenes, thereby allowing it greater access to cellulose present in forage cell walls.  相似文献   

2.
Cells of the anaerobic ruminal bacterium Fibrobacter succinogenes subsp. succinogenes S85 (formerly Bacteroides succinogenes) exhibit arylesterase activity. When cells were grown on cellulose, it was found that 69% of the total esterase activity was extracellular while 65% was nonsedimentable upon centrifugation of the culture supernatant at 100,000 x g. Disruption of the cells by various different methods failed to increase the esterase activity, indicating that the substrate was fully accessible to esterase enzymes in intact cells. During growth of cells with either glucose or cellulose as the sole carbon source, the increase in acetylesterase activity corresponded to an increase in cell density, suggesting constitutive production. The enzyme(s) hydrolyzed alpha-naphthyl, p-nitrophenyl, and 4-methylumbelliferyl derivatives of acetic acid; xylose tetraacetate; glucose pentaacetate; acetylxylan; and a polymer composed of ferulic acid, arabinose, and xylose in molar proportions of 1:1.1:2.2 (FAX). These data demonstrate the presence of an acetylxylan esterase and a ferulic acid esterase. The cleavage of FAX also documents the presence of an alpha-l-arabinofuranosidase.  相似文献   

3.
Acetylxylan esterase genes axe6A and axe6B located adjacent to one another on a Fibrobacter succinogenes chromosome have been separately cloned and their properties characterized. The corresponding esterases contained an N-terminal carbohydrate esterase family 6 catalytic domain (CD) and a C-terminal family 6 carbohydrate-binding module (CBM). The amino acid sequences of the CDs and CBMs were found to exhibit 52% and 40% amino acid similarity, respectively. The CDs of the two esterases exhibited the highest similarity to CDs of acetylxylan esterases: AxeA from the ruminal fungi Orpinomyces sp. and BnaA from Neocallimastix patriciarum. Axe6A and Axe6B were optimally active at neutral pH and had low K(m) values of 0.084 and 0.056 mmol x L(-1), respectively. Axe6A and Axe6B were shown to bind to insoluble cellulose and xylan and to soluble arabinoxylan. Axe6A deacetylated acetylated xylan at the same initial rate in the presence and absence of added Xyn10E xylanase from F. succinogenes, but the action of the xylanase on acetylated xylan was dependent upon the initial activity of Axe6A. The capacity of acetylxylan esterases to bind to plant cell wall polymers and to independently deacetylate xylan enabling xylanase to release xylooligo saccharides, documents the central role these enzymes have to improve access of F. succinogenes to cellulose.  相似文献   

4.
An acetylxylan esterase from Thermobifida fusca NTU22 was purified 51-fold as measured by specific activity from crude culture filtrate by ultrafiltration concentration, Sepharose CL-6B and DEAE-Sepharose CL-6B column chromatography. The overall yield of the purified enzyme was 14.4%. The purified enzyme gave an apparent single protein band on an SDS-PAGE. The molecular mass of purified enzyme as estimated by SDS-PAGE and by gel filtration on Sepharose CL-6B was found to be 30 and 28kDa, respectively, indicating that the acetylxylan esterase from T. fusca NTU22 is a monomer. The pI value of the purified enzyme was estimated to be 6.55 by isoelectric focusing gel electrophoresis. The N-terminal amino acid sequence of the purified esterase was ANPYERGP. The optimum pH and temperature for the purified enzyme were 8.0 and 80°C, respectively. The Zn(2+), Hg(2+), PMSF and DIPF inhibited the enzyme activity. The K(m) value for p-nitrophenyl acetate and acetylxylan were 1.86μM and 0.15%, respectively. Co-operative enzymatic degradation of oat-spelt xylan by purified acetylxylan esterase and xylanase significantly increased the acetic acid liberation compared to the acetylxylan esterase action alone.  相似文献   

5.
Wheat straw degradation by Fibrobacter succinogenes was monitored by nuclear magnetic resonance (NMR) spectroscopy and chemolytic methods to investigate the activity of an entire fibrolytic system on an intact complex substrate. In situ solid-state NMR with 13C cross-polarization magic angle spinning was used to monitor the modification of the composition and structure of lignocellulosic fibers (of 13C-enriched wheat straw) during the growth of bacteria on this substrate. There was no preferential degradation either of amorphous regions of cellulose versus crystalline regions or of cellulose versus hemicelluloses in wheat straw. This suggests either a simultaneous degradation of the amorphous and crystalline parts of cellulose and of cellulose and hemicelluloses by the enzymes or degradation at the surface at a molecular scale that cannot be detected by NMR. Liquid-state two-dimensional NMR experiments and chemolytic methods were used to analyze in detail the various sugars released into the culture medium. An integration of NMR signals enabled the quantification of oligosaccharides produced from wheat straw at various times of culture and showed the sequential activities of some of the fibrolytic enzymes of F. succinogenes S85 on wheat straw. In particular, acetylxylan esterase appeared to be more active than arabinofuranosidase, which was more active than alpha-glucuronidase. Finally, cellodextrins did not accumulate to a great extent in the culture medium.  相似文献   

6.
Acetyl esterase production was detected in a wood-rotting fungus,Coriolus versicolor, by the formation of a clear zone on a double layer agar plate containing glucose β-d-pentaacetate. Two polysaccharide acetates, carboxymethyl cellulose acetate and xylan acetate, also served as detectable substrates in place of glucose acetate to form clear zone. In an esterase assay, this fungal esterase showed a higher specificity to acetylxylan than did porcine liver esterase, indicating that it is an acetylxylan esterase.  相似文献   

7.
The red yeast Rhodotorula mucilaginosa produced an esterase that accumulated in the culture supernatant on induction with triacetin. The enzyme was specific for substrates bearing an O-acetyl group, but was relatively nonspecific for the rest of the molecule, which could consist of a phenol, a monosaccharide, a polysaccharide, or an aliphatic alcohol. The esterase was more active against acetylxylan and glucose beta-d-pentaacetate than were a number of esterases from plant and animal sources, when activities on 4-nitrophenyl acetate were compared. The enzyme exhibited Michaelis-Menten kinetics and was active over a broad pH range (5.5 to 9.2), with an optimum between pH 8 and 10. In addition, the enzyme retained its activity for 2 h at 55 degrees C. The yeast that produced the enzyme did not produce xylanase and, hence, is of interest for the production of acetylxylan esterase that is free of xylanolytic activity.  相似文献   

8.
The axe gene which encodes an acetylxylan esterase from Thermobifida fusca NTU22, was cloned, sequenced and expressed in Escherichia coli. The gene consists of 786 base pairs and encodes a protein of 262 amino acids. The deduced amino acid sequence of the acetylxylan esterase axe exhibited a high degree of similarity with BTA-hydrolase from T. fusca DSM43793, esterase from Thermobifida alba and lipase from Streptomyces albus. The optimal pH and temperature of the purified esterase were 7.5 and 60 °C, respectively. Cooperative enzymatic treatment of oat-spelt xylan by transformant xylanase and acetylxylan esterase significantly increased the xylooligosaccharides production compared with the xylanase or acetylxylan esterase action alone. The synergy of transformant acetylxylan esterase and xylanase cannot increase the production of reducing sugars from lignocellulolytic substrate, bagasse.  相似文献   

9.
The distribution of acetyl esterase was studied in 30 strains of wood-rotting fungi. A screening test on agar plates using glucose β-d-pentaacetate as a substrate indicated that all tested fungi produced acetyl esterase to form a clear zone on the culture. All fungi also showed positive responses in an agar test using carboxymethyl cellulose acetate. Enzyme assay showed that extracellular acetylxylan esterase activity was present in the filtrates of wood-meal culture of all these fungi. The ratio of fungal acetylxylan esterase activity to 4-nitrophenyl acetyl esterase activity were higher than that of porcine liver esterase, indicating that fungal esterases have high affinity for acetylated carbohydrates. Acetyl esterase is suggested to be distributed widely in wood-rotting fungi for degradation of native acetylated hemicelluloses.  相似文献   

10.
Various conditions were applied to test the ability of acetylxylan esterase (AcXE) from Schizophyllum commune to catalyze acetyl group transfer to methyl beta-D-xylopyranoside (Me-beta-Xylp) and other carbohydrates. The best performance of the enzyme was observed in an n-hexane-vinyl acetate-sodium dioctylsulfosuccinate (DOSS)-water microemulsion at a molar water-detergent ratio (w(0)) of about 4-5. Although the enzyme was found to have a half-life of about 1 h in the system, more than 60% conversion of Me-beta-Xylp to acetylated derivatives was achieved. Under identical reaction conditions, the enzyme acetylated other carbohydrates such as methyl beta-D-cellobioside (Me-beta-Cel), cellotetraose, methyl beta-D-glucopyranoside (Me-beta-Glcp), 2-deoxy-D-glucose, D-mannose, beta-1,4-mannobiose, -mannopentaose, -mannohexaose, beta-1,4-xylobiose and -xylopentaose. This work is the first example of reverse reactions by an acetylxylan esterase and a carbohydrate esterase belonging to family 1.  相似文献   

11.
A thermostable acetylxylan esterase gene, TTE0866, which catalyzes the deacetylation of cellulose acetate, was cloned from the genome of Caldanaerobacter subterraneus subsp. tengcongensis. The pH and temperature optima were 8.0 and 60 °C. The esterase was inhibited by phenylmethylsulfonyl fluoride. A mixture of the esterase and cellulolytic enzymes efficiently degraded insoluble cellulose acetate with a higher degree of substitution.  相似文献   

12.
A cDNA encoding a bifunctional acetylxylan esterase/xylanase, XynS20E, was cloned from the ruminal fungus Neocallimastix patriciarum. A putative conserved domain of carbohydrate esterase family 1 was observed at the N-terminus and a putative conserved domain of glycosyl hydrolase family 11 was detected at the C-terminus of XynS20E. To examine the enzyme activities, XynS20E was expressed in Escherichia coli as a recombinant His6 fusion protein and purified by immobilized metal ion-affinity chromatography. Response surface modeling combined with central composite design and regression analysis was then applied to determine the optimal temperature and pH conditions of the recombinant XynS20E. The optimal conditions for the highest xylanase activity of the recombinant XynS20E were observed at a temperature of 49°C and a pH of 5.8, while those for the highest carbohydrate esterase activity were observed at a temperature of 58°C and a pH of 8.2. Under the optimal conditions for the enzyme activity, the xylanase and acetylxylan esterase specific activities of the recombinant XynS20E toward birchwood xylan were 128.7 and 873.1 U mg−1, respectively. To our knowledge, this is the first report of a bifunctional xylanolytic enzyme with acetylxylan esterase and xylanase activities from rumen fungus.  相似文献   

13.
Multiple sequence alignment of Streptomyces lividans acetylxylan esterase A and other carbohydrate esterase family 4 enzymes revealed the following conserved amino acid residues: Asp-12, Asp-13, His-62, His-66, Asp-130, and His-155. These amino acids were mutated in order to investigate a functional role of these residues in catalysis. Replacement of the conserved histidine residues by alanine caused significant reduction of enzymatic activity. Maintenance of ionizable carboxylic group in side chains of amino acids at positions 12, 13, and 130 seems to be necessary for catalytic efficiency. The absence of conserved serine excludes a possibility that the enzyme is a serine esterase, in contrast to acetylxylan esterases of carbohydrate esterase families 1, 5, and 7. On the contrary, total conservation of Asp-12, Asp-13, Asp-130, and His-155 along with dramatic decrease in enzyme activity of mutants of either of these residues lead us to a suggestion that acetylxylan esterase A from Streptomyces lividans and, by inference, other members of carbohydrate esterase family 4 are aspartic deacetylases. We propose that one component of the aspartate dyad/triad functions as a catalytic nucleophile and the other one(s) as a catalytic acid/base. The ester/amide bond cleavage would proceed via a double displacement mechanism through covalently linked acetyl-enzyme intermediate of mixed anhydride type.  相似文献   

14.
Acetylxylan esterase from Trichoderma reesei removes acetyl side groups from xylan. The crystal structure of the catalytic core of the enzyme was solved at 1.9 A resolution. The core has an alpha/beta/alpha sandwich fold, similar to that of homologous acetylxylan esterase from Penicillium purpurogenum and cutinase from Fusarium solani. All three enzymes belong to family 5 of the carbohydrate esterases and the superfamily of the alpha/beta hydrolase fold. Evidently, the enzymes have diverged from a common ancestor and they share the same catalytic mechanism. The catalytic machinery of acetylxylan esterase from T. reesei was studied by comparison with cutinase, the catalytic site of which is well known. Acetylxylan esterase is a pure serine esterase having a catalytic triad (Ser90, His187, and Asp175) and an oxyanion hole (Thr13 N, and Thr13 O gamma). Although the catalytic triad of acetylxylan esterase has been reported previously, there has been no mention of the oxyanion hole. A model for the binding of substrates is presented on the basis of the docking of xylose. Acetylxylan esterase from T. reesei is able to deacetylate both mono- and double-acetylated residues, but it is not able to remove acetyl groups located close to large side groups such as 4-O-methylglucuronic acid. If the xylopyranoside residue is double-acetylated, both acetyl groups are removed by the catalytic triad: first one acetyl group is removed and then the residue is reorientated so that the nucleophilic oxygen of serine can attack the second acetyl group.  相似文献   

15.
A DNA fragment coding for a cellodextrinase of Bacteroides succinogenes S85 was isolated by screening of a pBR322 gene library in Escherichia coli HB101. Of 100,000 colonies screened on a complex medium with methylumbelliferyl-beta-D-cellobioside as the indicator substrate, two cellodextrinase-positive clones (CB1 and CB2) were isolated. The DNA inserts from the two recombinant plasmids were 7.7 kilobase pairs in size and had similar restriction maps. After subcloning from pCB2, a 2.5-kilobase-pair insert which coded for cellodextrinase activity was isolated. The enzyme was located in the cytoplasm of the E. coli host. It exhibited no activity on carboxymethyl cellulose, Avicel microcrystalline cellulose, acid-swollen cellulose, or cellobiose but hydrolyzed p-nitrophenyl-beta-D-cellobioside and p-nitrophenyl-beta-D-lactoside. The Km (0.1 mM) for the hydrolysis of p-nitrophenyl-cellobioside by the enzyme expressed in E. coli was similar to that reported for the purified enzyme from B. succinogenes. Expression of the cellodextrinase gene was subjected to catabolite repression by glucose and was not induced by cellobiose. The origin of the DNA insert from B. succinogenes was confirmed by Southern blot analysis. Western blotting (immunoblotting) using antibodies raised against the purified B. succinogenes cellodextrinase revealed a protein with a molecular weight of approximately 50,000 in E. coli clones which comigrated with the native enzyme isolated from B. succinogenes. These data indicate that the cellodextrinase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to those of the native enzyme.  相似文献   

16.
A DNA fragment coding for a cellodextrinase of Bacteroides succinogenes S85 was isolated by screening of a pBR322 gene library in Escherichia coli HB101. Of 100,000 colonies screened on a complex medium with methylumbelliferyl-beta-D-cellobioside as the indicator substrate, two cellodextrinase-positive clones (CB1 and CB2) were isolated. The DNA inserts from the two recombinant plasmids were 7.7 kilobase pairs in size and had similar restriction maps. After subcloning from pCB2, a 2.5-kilobase-pair insert which coded for cellodextrinase activity was isolated. The enzyme was located in the cytoplasm of the E. coli host. It exhibited no activity on carboxymethyl cellulose, Avicel microcrystalline cellulose, acid-swollen cellulose, or cellobiose but hydrolyzed p-nitrophenyl-beta-D-cellobioside and p-nitrophenyl-beta-D-lactoside. The Km (0.1 mM) for the hydrolysis of p-nitrophenyl-cellobioside by the enzyme expressed in E. coli was similar to that reported for the purified enzyme from B. succinogenes. Expression of the cellodextrinase gene was subjected to catabolite repression by glucose and was not induced by cellobiose. The origin of the DNA insert from B. succinogenes was confirmed by Southern blot analysis. Western blotting (immunoblotting) using antibodies raised against the purified B. succinogenes cellodextrinase revealed a protein with a molecular weight of approximately 50,000 in E. coli clones which comigrated with the native enzyme isolated from B. succinogenes. These data indicate that the cellodextrinase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to those of the native enzyme.  相似文献   

17.
An acetylxylan esterase (R.44), belonging to the carbohydrate esterase family 6 (CE6), retrieved from bovine rumen metagenome was analyzed. Molecular modelling and site-directed mutagenesis indicated that the enzyme possesses a catalytic triad formed by Ser(14), His(231) and Glu(152). The catalytic Ser and His have been identified in highly conserved sequences GQSX and DXXH in the CE6 family, respectively, and the active-site glutamate was part of a highly conserved sequence HQGE. This motif is situated near to the so-called Block III in the CE6 family and its role in catalysis has not been identified so far.  相似文献   

18.
Spániková S  Biely P 《FEBS letters》2006,580(19):4597-4601
The cellulolytic system of the wood-rotting fungus Schizophyllum commune contains an esterase that hydrolyzes methyl ester of 4-O-methyl-d-glucuronic acid. The enzyme, called glucuronoyl esterase, was purified to electrophoretic homogeneity from a cellulose-spent culture fluid. Its substrate specificity was examined on a number of substrates of other carbohydrate esterases such as acetylxylan esterase, feruloyl esterase and pectin methylesterase. The glucuronoyl esterase attacks exclusively the esters of MeGlcA. The methyl ester of free or glycosidically linked MeGlcA was not hydrolysed by other carbohydrate esterases. The results suggest that we have discovered a new type of carbohydrate esterase that might be involved in disruption of ester linkages connecting hemicellulose and lignin in plant cell walls.  相似文献   

19.
Y Shi  C L Odt    P J Weimer 《Applied microbiology》1997,63(2):734-742
Three predominant ruminal cellulolytic bacteria (Fibrobacter succinogenes S85, Ruminococcus flavefaciens FD-1, and Ruminococcus albus 7) were grown in different binary combinations to determine the outcome of competition in either cellulose-excess batch culture or in cellulose-limited continuous culture. Relative populations of each species were estimated by using signature membrane-associated fatty acids and/or 16S rRNA-targeted oligonucleotide probes. Both F. succinogenes and R. flavefaciens coexisted in cellulose-excess batch culture with similar population sizes (58 and 42%, respectively; standard error, 12%). By contrast, under cellulose limitation R. flavefaciens predominated (> 96% of total cell mass) in coculture with F. succinogenes, regardless of whether the two strains were inoculated simultaneously or whether R. flavefaciens was inoculated into an established culture of F. succinogenes. The predominance of R. flavefaciens over F. succinogenes under cellulose limitation is in accord with the former's more rapid adherence to cellulose and its higher affinity for cellodextrin products of cellulose hydrolysis. In batch cocultures of F. succinogenes and R. albus, the populations of the two species were similar. However, under cellulose limitation, F. succinogenes was the predominant strain (approximately 80% of cell mass) in cultures simultaneously coinoculated with R. albus. The results from batch cocultures of R. flavefaciens and R. albus were not consistent within or among trials: some experiments yielded monocultures of R. albus (suggesting production of an inhibitory agent by R. albus), while others contained substantial populations of both species. Under cellulose limitation, R. flavefaciens predominated over R. albus (85 and 15%, respectively), as would be expected by the former's greater adherence to cellulose. The retention of R. albus in the cellulose-limited coculture may result from a combination of its ability to utilize glucose (which is not utilizable by R. flavefaciens), its demonstrated ability to adapt under selective pressure in the chemostat to utilization of lower concentrations of cellobiose, a major product of cellulose hydrolysis, and its possible production of an inhibitory agent.  相似文献   

20.
Acetylxylan esterases hydrolyze the ester linkages of acetyl groups at positions 2 and/or 3 of the xylose moieties in xylan and play an important role in enhancing the accessibility of xylanases to the xylan backbone. The hemicellulolytic system of the thermophilic bacterium Geobacillus stearothermophilus T-6 comprises a putative acetylxylan esterase gene, axe2. The gene product belongs to the GDSL hydrolase family and does not share sequence homology with any of the carbohydrate esterases in the CAZy Database. The axe2 gene is induced by xylose, and the purified gene product completely deacetylates xylobiose peracetate (fully acetylated) and hydrolyzes the synthetic substrates 2-naphthyl acetate, 4-nitrophenyl acetate, 4-methylumbelliferyl acetate, and phenyl acetate. The pH profiles for k(cat) and k(cat)/K(m) suggest the existence of two ionizable groups affecting the binding of the substrate to the enzyme. Using NMR spectroscopy, the regioselectivity of Axe2 was directly determined with the aid of one-dimensional selective total correlation spectroscopy. Methyl 2,3,4-tri-O-acetyl-β-d-xylopyranoside was rapidly deacetylated at position 2 or at positions 3 and 4 to give either diacetyl or monoacetyl intermediates, respectively; methyl 2,3,4,6-tetra-O-acetyl-β-d-glucopyranoside was initially deacetylated at position 6. In both cases, the complete hydrolysis of the intermediates occurred at a much slower rate, suggesting that the preferred substrate is the peracetate sugar form. Site-directed mutagenesis of Ser-15, His-194, and Asp-191 resulted in complete inactivation of the enzyme, consistent with their role as the catalytic triad. Overall, our results show that Axe2 is a serine acetylxylan esterase representing a new carbohydrate esterase family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号