共查询到20条相似文献,搜索用时 15 毫秒
1.
Stephen F. Chenoweth Howard D. Rundle Mark W. Blows 《Evolution; international journal of organic evolution》2010,64(6):1849-1856
Indirect genetics effects (IGEs)—when the genotype of one individual affects the phenotypic expression of a trait in another—may alter evolutionary trajectories beyond that predicted by standard quantitative genetic theory as a consequence of genotypic evolution of the social environment. For IGEs to occur, the trait of interest must respond to one or more indicator traits in interacting conspecifics. In quantitative genetic models of IGEs, these responses (reaction norms) are termed interaction effect coefficients and are represented by the parameter psi (Ψ). The extent to which Ψ exhibits genetic variation within a population, and may therefore itself evolve, is unknown. Using an experimental evolution approach, we provide evidence for a genetic basis to the phenotypic response caused by IGEs on sexual display traits in Drosophila serrata. We show that evolution of the response is affected by sexual but not natural selection when flies adapt to a novel environment. Our results indicate a further mechanism by which IGEs can alter evolutionary trajectories—the evolution of interaction effects themselves. 相似文献
2.
Sexual conflict theory is based on the observation that females of many species are harmed through their interactions with males. Direct harm to females, however, can potentially be counterbalanced by indirect genetic benefits, where females make up for a reduction in offspring quantity by an increase in offspring quality through a generic increase in offspring fitness (good genes) and/or one restricted to the context of sexual selection (sexy sons). Here, we quantify the magnitude of the good genes mechanism of indirect benefits in a laboratory-adapted population of Drosophila melanogaster. We find that despite high-standing genetic variance for fitness, females gain at most only a modest benefit through the good genes form of indirect benefits--far too little to counterbalance the direct cost of male-induced harm. 相似文献
3.
Sharma MD Hunt J Hosken DJ 《Evolution; international journal of organic evolution》2012,66(3):665-677
Natural and sexual selection are classically thought to oppose one another, and although there is evidence for this, direct experimental demonstrations of this antagonism are largely lacking. Here, we assessed the effects of sexual and natural selection on the evolution of cuticular hydrocarbons (CHCs), a character subject to both modes of selection, in Drosophila simulans. Natural selection and sexual selection were manipulated in a fully factorial design, and after 27 generations of experimental evolution, the responses of male and female CHCs were assessed. The effects of natural and sexual selection differed greatly across the sexes. The responses of female CHCs were generally small, but CHCs evolved predominantly in the direction of natural selection. For males, profiles evolved via sexual and natural selection, as well as through the interaction between the two, with some male CHC components only evolving in the direction of natural selection when sexual selection was relaxed. These results indicate sex‐specific responses to selection, and that sexual and natural selection act antagonistically for at least some combinations of CHCs. 相似文献
4.
Brian Hollis Janna L. Fierst David Houle 《Evolution; international journal of organic evolution》2009,63(2):324-333
Although theory indicates that indirect genetic benefits through mate choice should be widespread, empirical work has often either failed to detect the operation of such benefits or shown a net cost to the presence of sexual selection. We tested whether sexual selection can increase the speed with which a conditionally deleterious allele is removed from a laboratory population of Drosophila melanogaster. The alcohol dehydrogenase null allele ( Adh –) confers slightly lower viability than wild-type alleles in the absence of ethanol but is lethal in homozygotes when ethanol comprises 6% of the medium. We tracked the frequency of this allele in artificially constructed populations reared at three different levels of ethanol (0%, 2%, and 4%) that either experienced sexual selection or did not. Loss of the deleterious Adh – allele was more rapid when sexual selection was allowed to act, especially in the presence of ethanol. We also quantified the strength of both nonsexual and sexual selection against the Adh – allele using maximum-likelihood estimation. In contrast to recent experiments employing monogamy/polygamy designs, our results demonstrate a fitness benefit to sexual selection. This is consistent with the operation of good-genes female choice. 相似文献
5.
Tristan A. F. Long Alison Pischedda William R. Rice 《Evolution; international journal of organic evolution》2010,64(9):2767-2774
By measuring the direct and indirect fitness costs and benefits of sexual interactions, the feasibility of alternate explanations for polyandry can be experimentally assessed. This approach becomes more complicated when the relative magnitude of the costs and/or benefits associated with multiple mating (i.e., remating with different males) vary with female condition, as this may influence the strength and direction of sexual selection. Here, using the model organism Drosophila melanogaster, we test whether the indirect benefits that a nonvirgin female gains by remating (“trading‐up”) are influenced by her condition (body size). We found that remating by small‐bodied, low‐fecundity females resulted in the production of daughters of relatively higher fecundity, whereas the opposite pattern was observed for large‐bodied females. In contrast, remating had no measurable effect on the relative reproductive success of sons from dams of either body size. These results are consistent with a hypothesis based on sexually antagonistic genetic variation. The implications of these results to our understanding of the evolution and consequences of polyandry are discussed. 相似文献
6.
Theory predicts that if most mutations are deleterious to both overall fitness and condition-dependent traits affecting mating success, sexual selection will purge mutation load and increase nonsexual fitness. We explored this possibility with populations of mutagenized Drosophila melanogaster exhibiting elevated levels of deleterious variation and evolving in the presence or absence of male-male competition and female choice. After 60 generations of experimental evolution, monogamous populations exhibited higher total reproductive output than polygamous populations. Parental environment also affected fitness measures - flies that evolved in the presence of sexual conflict showed reduced nonsexual fitness when their parents experienced a polygamous environment, indicating trans-generational effects of male harassment and highlighting the importance of a common garden design. This cost of parental promiscuity was nearly absent in monogamous lines, providing evidence for the evolution of reduced sexual antagonism. There was no overall difference in egg-to-adult viability between selection regimes. If mutation load was reduced by the action of sexual selection in this experiment, the resultant gain in fitness was not sufficient to overcome the costs of sexual antagonism. 相似文献
7.
The evolution of sexual display traits or preferences for them in response to divergent natural selection will alter sexual selection within populations, yet the role of sexual selection in ecological speciation has received little empirical attention. We evolved 12 populations of Drosophila serrata in a two‐way factorial design to investigate the roles of natural and sexual selection in the evolution of female mate preferences for male cuticular hydrocarbons (CHCs). Mate preferences weakened in populations evolving under natural selection alone, implying a cost in the absence of their expression. Comparison of the vectors of linear sexual selection revealed that the populations diverged in the combination of male CHCs that females found most attractive, although this was not significant using a mixed modelling approach. Changes in preference direction tended to evolve when natural and sexual selection were unconstrained, suggesting that both processes may be the key to initial stages of ecological speciation. Determining the generality of this result will require data from various species across a range of novel environments. 相似文献
8.
Katrine K. Lund-Hansen Jessica K. Abbott Edward H. Morrow 《Evolution; international journal of organic evolution》2020,74(12):2703-2713
A handful of studies have investigated sexually antagonistic constraints on achieving sex-specific fitness optima, although exclusively through male-genome-limited evolution experiments. In this article, we established a female-limited X chromosome evolution experiment, where we used an X chromosome balancer to enforce the inheritance of the X through the matriline, thus removing exposure to male selective constraints. This approach eliminates the effects of sexually antagonistic selection on the X chromosome, permitting evolution toward a single sex-specific optimum. After multiple generations of selection, we found strong evidence that body size and development time had moved toward a female-specific optimum, whereas reproductive fitness and locomotion activity remained unchanged. The changes in body size and development time are consistent with previous results, and suggest that the X chromosome is enriched for sexually antagonistic genetic variation controlling these particular traits. The lack of change in reproductive fitness and locomotion activity could be due to a number of mutually nonexclusive explanations, including a lack of sexually antagonistic variance on the X chromosome for those traits or confounding effects of the use of the balancer chromosome. This study is the first to employ female-genome-limited selection and adds to the understanding of the complexity of sexually antagonistic genetic variation. 相似文献
9.
Intralocus sexual conflict occurs when opposing selection pressures operate on loci expressed in both sexes, constraining the evolution of sexual dimorphism and displacing one or both sexes from their optimum. We eliminated intralocus conflict in Drosophila melanogaster by limiting transmission of all major chromosomes to males, thereby allowing them to win the intersexual tug‐of‐war. Here, we show that this male‐limited (ML) evolution treatment led to the evolution (in both sexes) of masculinized wing morphology, body size, growth rate, wing loading, and allometry. In addition to more male‐like size and shape, ML evolution resulted in an increase in developmental stability for males. However, females expressing ML chromosomes were less developmentally stable, suggesting that being ontogenetically more male‐like was disruptive to development. We suggest that sexual selection over size and shape of the imago may therefore explain the persistence of substantial genetic variation in these characters and the ontogenetic processes underlying them. 相似文献
10.
Female Drosophila melanogaster remate more frequently than necessary to ensure fertilization. We tested whether polyandrous females gain genetic benefits for their offspring by (1) selecting secondary sires of higher genetic-quality than original partners or (2) because post-copulatory mechanisms bias fertilizations towards genetically superior males. We screened 119 hemiclones of males for lifetime fitness then selected eight hemiclones (four of extreme high fitness and four of extreme low fitness) and mated them to virgin females. Females were then given the opportunity to remate with males of benchmark-genetic quality and their propensity to remate (fidelity) and sperm displacement scored. A female's fidelity and her level of sperm displacement varied depending on which hemiclone she mated first, but not on male-genetic quality. These findings indicate that female remating and sperm displacement are strongly influenced by male genotype, but provide no evidence that these traits contribute to adaptive female choice to obtain superior genes for offspring. 相似文献
11.
Gosden TP Shastri KL Innocenti P Chenoweth SF 《Evolution; international journal of organic evolution》2012,66(7):2106-2116
The extent to which sexual dimorphism can evolve within a population depends on an interaction between sexually divergent selection and constraints imposed by a genetic architecture that is shared between males and females. The degree of constraint within a population is normally inferred from the intersexual genetic correlation, r(mf) . However, such bivariate correlations ignore the potential constraining effect of genetic covariances between other sexually coexpressed traits. Using the fruit fly Drosophila serrata, a species that exhibits mutual mate preference for blends of homologous contact pheromones, we tested the impact of between-sex between-trait genetic covariances using an extended version of the genetic variance-covariance matrix, G, that includes Lande's (1980) between-sex covariance matrix, B. We find that including B greatly reduces the degree to which male and female traits are predicted to diverge in the face of divergent phenotypic selection. However, the degree to which B alters the response to selection differs between the sexes. The overall rate of male trait evolution is predicted to decline, but its direction remains relatively unchanged, whereas the opposite is found for females. We emphasize the importance of considering the B-matrix in microevolutionary studies of constraint on the evolution of sexual dimorphism. 相似文献
12.
13.
ZM Prokop L Michalczyk SM Drobniak M Herdegen J Radwan 《Evolution; international journal of organic evolution》2012,66(9):2665-2673
Female preferences for specific male phenotypes have been documented across a wide range of animal taxa, including numerous species where males contribute only gametes to offspring production. Yet, selective pressures maintaining such preferences are among the major unknowns of evolutionary biology. Theoretical studies suggest that preferences can evolve if they confer genetic benefits in terms of increased attractiveness of sons (\"Fisherian\" models) or overall fitness of offspring (\"good genes\" models). These two types of models predict, respectively, that male attractiveness is heritable and genetically correlated with fitness. In this meta-analysis, we draw general conclusions from over two decades worth of empirical studies testing these predictions (90 studies on 55 species in total). We found evidence for heritability of male attractiveness. However, attractiveness showed no association with traits directly associated with fitness (life-history traits). Interestingly, it did show a positive correlation with physiological traits, which include immunocompetence and condition. In conclusion, our results support \"Fisherian\" models of preference evolution, while providing equivocal evidence for \"good genes.\" We pinpoint research directions that should stimulate progress in our understanding of the evolution of female choice. 相似文献
14.
Tim Connallon Robert M. Cox Ryan Calsbeek 《Evolution; international journal of organic evolution》2010,64(6):1671-1682
Theory suggests that sex‐specific selection can facilitate adaptation in sexually reproducing populations. However, sexual conflict theory and recent experiments indicate that sex‐specific selection is potentially costly due to sexual antagonism: alleles harmful to one sex can accumulate within a population because they are favored in the other sex. Whether sex‐specific selection provides a net fitness benefit or cost depends, in part, on the relative frequency and strength of sexually concordant versus sexually antagonistic selection throughout a species’ genome. Here, we model the net fitness consequences of sex‐specific selection while explicitly considering both sexually concordant and sexually antagonistic selection. The model shows that, even when sexual antagonism is rare, the fitness costs that it imposes will generally overwhelm fitness benefits of sexually concordant selection. Furthermore, the cost of sexual antagonism is, at best, only partially resolved by the evolution of sex‐limited gene expression. To evaluate the key parameters of the model, we analyze an extensive dataset of sex‐specific selection gradients from wild populations, along with data from the experimental evolution literature. The model and data imply that sex‐specific selection may likely impose a net cost on sexually reproducing species, although additional research will be required to confirm this conclusion. 相似文献
15.
Lorch PD 《Genetica》2005,123(1-2):39-47
Since the raw material of marker based mapping is recombination, understanding how and why recombination rates evolve, and how we can use variation in these rates will ultimately help to improve map resolution. For example, using this variation could help in discriminating between linkage and pleiotropy when QTL for several traits co-locate. It might also be used to improve QTL mapping algorithms. The goals of this chapter are: (1) to highlight differences in recombination rates between the sexes, (2) describe why we might expect these differences, and (3) explore how sex difference in recombination can be used to improve resolution in QTL mapping. 相似文献
16.
Linda A. Whittingham Corey R. Freeman‐Gallant Conor C. Taff Peter O. Dunn 《Molecular ecology》2015,24(7):1584-1595
Male traits that signal health and vigour are used by females to choose better quality mates, but in some cases the male trait selected by females differs among populations. Multiple male traits can be maintained through female mate choice if both traits are equally honest indicators of male quality, but tests of this prediction are rare. By choosing males based on such traits, females could gain direct benefits from males (assistance with parental care), but when females choose extra‐pair mates based on these traits, females gain only male sperm, and potentially indirect genetic benefits for their offspring. In common yellowthroats (Geothylpis trichas), female choice of extra‐pair mates targets two different plumage ornaments: the black mask in a Wisconsin population and the yellow bib in a New York population. Previously, we found that the black mask in Wisconsin is related to greater major histocompatibility complex (MHC) class II variation, which in turn signals better survival and disease resistance. In this study, we examined the signalling function of the yellow bib in New York to test whether it signals the same aspects of male quality as the black mask in Wisconsin. As predicted, we found that the yellow bib in New York is most closely associated with MHC variation, which also signals survival and resistance to blood parasites. Thus, the ornament preferred by females differs between the two populations, but the different ornaments signal similar aspects of male health and genetic quality, specifically information regarding MHC variation and potential indirect genetic benefits to females. 相似文献
17.
Jacqueline L. Sztepanacz Howard D. Rundle 《Evolution; international journal of organic evolution》2012,66(10):3101-3110
Directional selection is prevalent in nature, yet phenotypes tend to remain relatively constant, suggesting a limit to trait evolution. However, the genetic basis of this limit is unresolved. Given widespread pleiotropy, opposing selection on a trait may arise from the effects of the underlying alleles on other traits under selection, generating net stabilizing selection on trait genetic variance. These pleiotropic costs of trait exaggeration may arise through any number of other traits, making them hard to detect in phenotypic analyses. Stabilizing selection can be inferred, however, if genetic variance is greater among low‐ compared to high‐fitness individuals. We extend a recently suggested approach to provide a direct test of a difference in genetic variance for a suite of cuticular hydrocarbons (CHCs) in Drosophila serrata. Despite strong directional sexual selection on these traits, genetic variance differed between high‐ and low‐fitness individuals and was greater among the low‐fitness males for seven of eight CHCs, significantly more than expected by chance. Univariate tests of a difference in genetic variance were nonsignificant but likely have low power. Our results suggest that further CHC exaggeration in D. serrata in response to sexual selection is limited by pleiotropic costs mediated through other traits. 相似文献
18.
Birds differ considerably in the degree of male parental care,and it has been suggested that interspecific variation in extrapairpaternity is determined by the relative importance of benefitsto females from male parental care and good genes from extrapairsires. I estimated the relationship between extrapair paternityand the importance of male parental care for female reproductivesuccess mainly based on male removal studies, using a comparativeapproach. The reduction in female reproductive success causedby the absence of a male mate was positively correlated withthe male contribution to feeding offspring. The frequency ofextrapair paternity was negatively related to the reductionin female reproductive success caused by the absence of a mate.This was also the case when potentially confounding variablessuch as developmental mode of offspring and sexual dichromatismwere considered. A high frequency of extrapair paternity occursparticularly in bird species in which males play a minor rolein offspring provisioning and in which attractive males providerelatively little parental care. Bird species with frequentextrapair paternity thus appear to be those in which directfitness benefits from male care are small, females can readilycompensate for the absence of male care, and indirect fitnessbenefits from extrapair sires are important. 相似文献
19.
Most studies on eco‐evolutionary feedbacks concern the influence of abiotic factors, or predator–prey and host–parasite interactions, while studies involving sexual interactions are lagging behind. This is at odds with the potential of these interactions to engage in such processes. Indeed, there is now ample evidence that sexual selection is affected by ecological change and that sexually selected traits can evolve rapidly, which may modify the ecological context of populations, and thus the selection pressures they will be exposed to. Here we review evidence for such eco‐evolutionary processes. We discuss examples of eco‐evolutionary change in an attempt to understand the challenges related with identifying and characterizing such processes. In particular, we focus on the challenges associated with accurately identifying the components of the feedback as well as their causal relation. Finally, we evaluate scenarios where understanding eco‐evolutionary feedbacks of sexual selection may help us appreciate the effects of sexual selection in shaping evolutionary processes. 相似文献
20.
How should females choose their mates if choice is not completely free, but at least partly dictated by outcomes of male–male competition, or sexual coercion? This question is of central importance when evaluating the relationship between sexually antagonistic ‘chase-away’ scenarios and models of more traditional female choice. Currently, there is a mismatch between theories: indirect benefits are seen to play a role in conventional mate choice, whereas they are not predicted to have an influence on the outcome if matings impose direct costs on females. This is at odds with the idea that resistance and preference are two sides of the same coin: either leads to a subset of males enjoying enhanced mating success. In the same way as choosy females benefit from mating with sexy males if this yields sexy sons, females could benefit from being manipulated or ‘seduced’, if the manipulative or seductive ability of males is heritable. Here I build a model where male dominance (or coerciveness) improves his mating success, and this relationship can be modified by female behaviour. This clarifies the definitions of resistance and preference: resisting females diminish the benefit a male gains from being dominant, while preferences enhance this pre-existing benefit enjoyed by dominant males. In keeping with earlier theory, females may evolve to resist costly mating attempts as a counterstrategy to male traits, particularly if male dominance is environmentally rather than genetically determined. Contrary to earlier results, however, indirect benefits are also predicted to influence female mating behaviour, and if sufficiently strong, they may produce female preferences for males that harm them. 相似文献