首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 442 毫秒
1.
The interaction of RNA polymerases from Escherichia coli and Thermus aquaticus with lacUV5 promoter was studied at various temperatures. Using DNA-protein cross-linking induced by formaldehyde, it was demonstrated that each RNA polymerase formed a unique pattern of contacts with DNA in the open promoter complex. In the case of E. coli RNA polymerase, beta and sigma subunits were involved into formation of cross-links with the promoter, whereas in the case of T. aquaticus RNA polymerase its beta subunit formed the cross-links with the promoter. A cross-linking pattern in promoter complexes of a hybrid holoenzyme comprised of the core-enzyme of E. coli and sigma subunit of T. aquaticus was similar to that of the E. coli holoenzyme. This suggests that DNA-protein contacts in the promoter complex are primarily determined by the core-enzyme of RNA polymerase. However, temperature-dependent behavior of contact formation is determined by the sigma subunit. Results of the present study indicate that the method of formaldehyde cross-linking can be employed for elucidation of differences in the structure of promoter complexes of RNA polymerases from various bacteria.  相似文献   

2.
3.
Plasmids pKS5 and pKSrec30 carrying normal and mutant alleles of the Deinococcus recA gene controlled by the lactose promoter slightly increase radioresistance of Escherichia coli cells with mutations in genes recA and ssb. The RecA protein of D. radiodurans is expressed in E. coli cells, and its synthesis can be supplementary induced. The radioprotective effect of the xenologic protein does not exceed 1.5 fold and yields essentially to the contribution of plasmid pUC19-recA1.1 harboring the E. coli recA + gene in the recovery of resistance of the ΔrecA deletion mutant. These data suggest that the expression of D. radiodurans recA gene in E. coli cells does not complement mutations at gene recA in the chromosome possibly due to structural and functional peculiarities of the D. radiodurans RecA protein.  相似文献   

4.
5.
The Campylobacter coli 72Dz/92 cjaA gene (orthologue of cj0982c of C. jejuni NCTC 11168) product is a highly immunogenic, amino acid-binding protein. CjaA was palmitic acid-modified when processed in E. coli. In addition, site-directed mutagenesis of the Cys residue of the LAAC motif of its signal sequence confirmed that CjaA is a lipoprotein when processed in Campylobacter. Localization of the protein appeared to be host dependent. In Campylobacter, CjaA was recovered mainly as an inner-membrane protein, whereas in E. coli most of the protein was present in the periplasmic space. Interestingly, antiserum raised against Campylobacter glycine-extracted material also recognized CjaA produced by Campylobacter and Escherichia coli, indicating that at least part of the protein may be surface exposed. Site-directed mutagenesis of the Asn residues of two putative N-linked glycosylation sites (NIS and NFT) showed that CjaA is glycosylated and that only the first N-X-S/T sequeon serves as a glycan acceptor.  相似文献   

6.
MULTIPLE RNA polymerases have been shown to exist in a wide variety of eukaryotic organisms1–5. Two nuclear polymerases have been found in all the cells studied, each with a specific location and a specific function: the DEAE fraction I enzyme is located in the nucleolus and may be involved in the synthesis of ribosomal RNA1,2,5,6; the DEAE fraction II enzyme is located in the non-nucleolar nucleoplasm and functions in the synthesis of DNA-like RNA2–5,7. The DEAE fraction III enzyme was reported to exist in sea urchin1, the aquatic fungus B. emersonii5 and to be present sometimes in rat liver preparations1,8. Although there have been some reports that polymerase III is nuclear, Horgen and Griffin5 showed that the enzyme was sensitive to the prokaryotic RNA polymerase inhibitor rifampicin. They suggested that the fraction III enzyme may be mitochondrial, formed as the result of organelle contamination in their crude nuclear preparations. The results of this study show that the DEAE fraction III enzyme in B. emersonii is a mitochondrial enzyme, most likely functioning in the synthesis of mitochondrial RNA. The rifampicin sensitivity of the enzyme is further evidence of a prokaryotic origin of mitochondria9,10.  相似文献   

7.
Lin X  Minamisawa N  Takechi K  Zhang W  Sato H  Takio S  Tsukaya H  Takano H 《Planta》2008,228(4):601-608
ANGUSTIFOLIA (AN), a plant homolog of C-terminal binding protein, controls the polar elongation of leaf cells and the trichome-branching pattern in Arabidopsis thaliana. In the present study, degenerate PCR was used to isolate an ortholog of AN, referred to as LgAN, from larch (Larix gmelinii). The LgAN cDNA is predicted to encode a protein of 646 amino acids that shows striking sequence similarity to AN proteins from other plants. The predicted amino acid sequence has a conserved NAD-dependent 2-hydroxy acid dehydrogenase (D2-HDH) motif and a plant AN-specific LxCxE/D motif at its N-terminus, as well as a plant-specific long C-terminal region. The LgAN gene is a single-copy gene that is expressed in all larch tissues. Expression of the LgAN cDNA rescued the leaf width and trichome-branching pattern defects in the angustifolia-1 (an-1) mutant of Arabidopsis, showing that the LgAN gene has effects complementary to those of AN. These results suggest that the LgAN gene has the same function as the AN gene.  相似文献   

8.
The RNA-dependent RNA polymerase (RdRP) cDNA, designated as Gossypium hirsutum RdRP (GhRdRP) was cloned from cotton by rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The full-length cDNA was 3,672 bp in size and encoded an open reading frame (ORF) of 1,110 amino acids which contained the RdRP conserved functional domain and the signature motif DbDGD. Amino acid sequence alignment indicated that GhRdRP shared the highest identity (66.37%) with AtRdRP1 and had homology with other plant, fungal, yeast and nematode RdRPs. The corresponding genomic DNA containing five exons and four introns, was isolated and analyzed. Also a 5′-flanking region was cloned, and a group of putative cis-acting elements were identified. Southern blot analysis revealed a single copy of the GhRdRP gene in cotton genome. The expression analysis by semi-quantitative RT-PCR showed that GhRdRP was induced by salicylic acid (SA), 5-chloroSA (5-CSA) and fungal infection of Rhizoctonia solani Kuhn. The cloning and characterization of the GhRdRP gene will be useful for further studies of biological roles of GhRdRP in plants.  相似文献   

9.
The participation of global regulators GrrS (sensor kinase GacA/GacS-like regulatory system) and sigma S subunit of RNA polymerase in the control of phosphatase synthesis in a soil bacterium Serratia plymuthica was shown. In cells of null mutants for genes grrS and rpoS synthesis of acid and alkaline phosphatases was markedly decreased.  相似文献   

10.
Two mariner-like elements, Ramar1 and Ramar2, are described in the genome of Rhynchosciara americana, whose nucleotide consensus sequences were derived from multiple defective copies containing deletions, frame shifts and stop codons. Ramar1 contains several conserved amino acid blocks which were identified, including a specific D,D(34)D signature motif. Ramar2 is a defective mariner-like element, which contains a deletion overlapping in most of the internal region of the transposase ORF while its extremities remain intact. Predicted transposase sequences demonstrated that Ramar1 and Ramar2 phylogenetically present high identity to mariner-like elements of mauritiana subfamily. Southern blot analysis indicated that Ramar1 is widely represented in the genome of Rhynchosciara americana. In situ hybridizations showed Ramar1 localized in several chromosome regions, mainly in pericentromeric heterochromatin and their boundaries, while Ramar2 appeared as a single band in chromosome A.  相似文献   

11.
In addition to their physiological importance, microbial lipases, like staphylococcal ones, are of considerable commercial interest for biotechnological applications such as detergents, food production, and pharmaceuticals and industrial synthesis of fine chemicals. The gene encoding the extracellular lipase of Staphylococcus simulans (SSL) was subcloned in the pET-14b expression vector and expressed in Esherichia coli BL21 (DE3). The wild-type SSL was expressed as amino terminal His6-tagged recombinant protein. One-step purification of the recombinant lipase was achieved with nickel metal affinity column. The purified His-tagged SSL (His6-SSL) is able to hydrolyse triacylglycerols without chain length selectivity. The major differences among lipases are reflected in their chemical specificity in the hydrolysis of peculiar ester bonds, and their respective capacity to hydrolyse substrates having different physico-chemical properties. It has been proposed, using homology alignment, that the region around the residue 290 of Staphylococcus hyicus lipase could be involved in the selection of the substrate. To evaluate the importance of this environment, the residue Asp290 of Staphylococcus simulans lipase was mutated to Ala using site-directed mutagenesis. The mutant expression plasmid was also overexpressed in Esherichia coli and purified with a nickel metal affinity column. The substitution of Asp290 by Ala was accompanied by a significant shift of the acyl-chain length specificity of the mutant towards short chain fatty acid esters. Kinetic studies of wild-type SSL and its mutant D290A were carried out, and show essentially that the catalytic efficiency (k cat /K M ) of the mutant was affected. Our results confirmed that Asp290 is important for the chain length selectivity and catalytic efficiency of Staphylococcus simulans lipase.  相似文献   

12.
Arima J  Kono M  Kita M  Mori N 《Biotechnology letters》2012,34(6):1093-1099
l-Aspartyl l-amino acid methyl ester was synthesized using a mutant of a thermostable leucine aminopeptidase from Streptomyces cinnamoneus, D198 K SSAP, obtained in previously. A peptide of high-intensity sweetener, l-aspartyl-l-phenylalanine methyl ester, was selected as a model for demonstrating the synthesis of l-aspartyl l-amino acid methyl ester. The hydrolytic activities of D198 K SSAP toward l-aspartyl-l-phenylalanine and its methyl ester were, respectively, 74-fold and fourfold higher than those of wild type. Similarly, the initial rate of the enzyme for l-aspartyl-l-phenylalanine methyl ester synthesis was over fivefold higher than that of wild-type SSAP in 90% methanol (v/v) in a one-pot reaction. Furthermore, other l-aspartyl l-amino acid methyl esters were synthesized efficiently using D198 K SSAP. Results show that the substitution of Asp198 of SSAP with Lys is effective for synthesizing l-aspartyl l-amino acid methyl ester.  相似文献   

13.
14.
To investigate the radiation sensitivity of the natronobacterium Natronomonas pharaonis in comparison with Escherichia coli strains (N. pharaonis DSM 2160T, E. coli strains AB1157 and K12 lambda s) were exposed to gamma-radiation (60Co-gamma-source, 100 Gy min-1) in the presence of oxygen (air) and under strongly reduced oxygen conditions (argon-saturated medium). After irradiation, the colony-forming ability (dose-survival curves) and the D37 dose were determined. The oxygen content of the solutions containing high NaCl concentrations was measured with an oxygen electrode (Clark electrode). It was found that N. pharaonis can tolerate a remarkably higher irradiation dose than the two E. coli strains (approx. 1.5-fold of K12 lambda s and approx. 4-fold of AB1157). The oxygen enhancement ratio (OER) is 2.8 for N. pharaonis and 2.6 for both E. coli strains. Therefore the higher radiation resistance of the N. pharaonis is not due to the low oxygen content of the cell solution (high salt concentration) but is probably related to the higher DNA repair ability of this archaebacteria strain.  相似文献   

15.
Streptolydigin, a secondary metabolite produced by Streptomyces lydicus, is a potent inhibitor of bacterial RNA polymerases. It has been suggested that streptolydigin biosynthesis is associated with polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS). Thus, there is great interest in understanding the role of fatty acid biosynthesis in the biosynthesis of streptolydigin. In this paper, we cloned a type II fatty acid synthase (FAS II) gene cluster of fabDHCF from the genome of S. lydicus and constructed the SlyfabCF-disrupted mutant. Sequence analysis showed that SlyfabDHCF is 3.7 kb in length and encodes four separated proteins with conserved motifs and active residues, as shown in the FAS II of other bacteria. The SlyfabCF disruption inhibited streptolydigin biosynthesis and retarded mycelial growth, which were likely caused by the inhibition of fatty acid synthesis. Streptolydigin was not detected in the culture of the mutant strain by liquid chromatography–mass spectrometry. Meanwhile, the streptolol moiety of streptolydigin accumulated in cultures. As encoded by fabCF, acyl carrier protein (ACP) and β-ketoacyl-ACP synthase II are required for streptolydigin biosynthesis and likely involved in the step between PKS and NRPS. Our results provide the first genetic and metabolic evidence that SlyfabCF is shared by fatty acid synthesis and antibiotic streptolydigin synthesis.  相似文献   

16.
A plasmid carrying the Deinococcus radiodurans recX gene under the control of a lactose promoter decreases the Escherichia coli cell resistance to UV irradiation and γ irradiation and also influences the conjugational recombination process. The D. radiodurans RecX protein functions in the Escherichia coli cells similarly to the E. coli RecX protein. Isolated and purified D. radiodurans RecX and E. coli RecX proteins are able to replace each other interacting with the E. coli RecA and D. radiodurans RecA proteins in vitro. Data obtained demonstrated that regulatory interaction of RecA and RecX proteins preserves a high degree of conservatism despite all the differences in the recombination reparation system between E. coli and D. radiodurans.  相似文献   

17.
18.
19.
An extracellular xylanase XynI of glycoside hydrolase family 11 from the dimorphic fungus Aureobasidium pullulans ATCC 20524 possesses an N-terminal extension of 34 amino acids (Ohta et al., J. Biosci. Bioeng. 92:262–270, 2001). The N-terminal extension includes three sites (Ala-X-Ala-X-Ala-X-Ala) that are potentially cleavable by signal peptidase I of Escherichia coli. The A. pullulans xynI signal sequence was fused in frame to the mature protein region of the equivalent xylanase gene xynA from the filamentous fungus Penicillium citrinum. The gene fusion xynI::A was inserted into the plasmid pET-26b(+) to yield pEXP401. An E. coli BL21(DE3) transformant harboring the pEXP401 exhibited xylanase activity (per ml of the culture) of 16.8 U in the fraction of culture supernatant as well as 4.29 U in the fraction of cell-free extract after 12 h of growth with isopropyl-β-d-thiogalactopyranoside at 30°C. N-terminal amino acid sequence analysis of the secreted recombinant proteins revealed cleavage at four distinct sites within the N-terminal extension of XynI, two of which conformed to the Ala-X-Ala motif prior to the cleavage site. The XynA proteins secreted into the culture medium showed high specific activities from 506 to 651 U/mg, which were twofold higher than that of the native enzyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号