首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The methylation of erythrocyte membrane proteins has been investigated with fractionated reversible and irreversible sickle erythrocytes to better understand conflicting results obtained from two laboratories (Green and Kalra (6), Ro et al. (1). When subpopulations of intact erythrocytes obtained by two different separation methods (33% bovine serum albumin and Stractan II gradient centrifugations) were incubated with L-[methyl-3H] methionine at pH 7.2 and 37 degrees C, membranes from both reversible and irreversible sickle erythrocyte populations showed about half the [3H]methyl group incorporation than that observed in normal erythrocytes. In addition, this difference in the level of methylation between normal and sickle cells was maintained during the entire course of a 2-hr incubation utilizing S-adenosyl-L-[methyl-3H]methionine, the immediate in vivo methyl donor.  相似文献   

2.
Bovine erythrocytes, which normally lack phosphatidyl choline in their membranes, when treated with either H2O2 or diamide (1-3 mM), showed a partial appearance of phosphatidyl ethanolamine (PE 40%) and phosphatidyl serine (PS, 30-33%) in the external leaflet of the bilayer and a concomitant increased (four- to five-fold) propensity to adhere to cultured bovine aortic endothelial cells. Similar treatment of normal human erythrocytes caused an alteration in the organization of the phospholipid bilayer and also resulted in their increased adherence to endothelial cells derived either from human umbilical vein or bovine aorta. Treatment of RBCs with H2O2 at low concentration (0.5 mM) resulted in cross-linking of spectrin without significant changes in the orientation of aminophospholipids but the RBCs exhibited 15-20% increase in adherence to endothelial cells. Pretreatment of either human or bovine erythrocytes with antioxidants such as vitamin E (2 mM) prevented both oxidant-induced reorganization of phospholipids in the bilayer and enhancement of adherence to endothelial cells. Introduction of either phosphatidyl serine or phosphatidyl ethanolamine but not phosphatidyl choline into erythrocyte membranes increased their adherence to endothelial cells threefold. Oxidant-treated RBCs exhibited enhanced binding and fluorescence of Merocyanine 540 dye (MC-540), which is sensitive to the packing of lipids in the lipid bilayer. On flow cytometric analysis, 78% of H2O2 (0.5 mM)-treated erythrocytes compared to 30% of untreated RBCs exhibited MC-540 binding and fluorescence, indicating differences in the lipid packing in the outer leaflet of the bilayer. Oxidant-treated erythrocytes adhere preferentially to endothelial cells rather than to bovine aortic smooth muscle cells and skin fibroblasts. It is suggested that the alterations in the erythrocyte membrane surface due to spectrin cross-linking and the organization of the phospholipids concomitant with less ordered packing in the external leaflet of the bilayer, either induced by oxidative manipulation in normal RBC or in pathological erythrocytes, play a role in erythrocyte-endothelial cell interaction.  相似文献   

3.
In order to determine the capacity of sickle cells to undergo transglutaminase-catalyzed cross-linking of membrane proteins, human normal and sickle erythrocytes were incubated with [ring-2-14C]histamine in the presence of Ca2+ and ionophore A23187. The [14C]histamine incorporation into membrane components was observed in freshly prepared erythrocytes. Incorporation of radioactivity into spectrin and Band 3 membrane components was significantly (P less than 0.001) less in sickle erythrocytes than in normal cells. Transglutaminase deficiency was excluded by the finding of increased activity of this enzyme in sickle cells from patients with reticulocytosis. The incorporation of [3H]spermine into red cell membranes was also less in sickle erythrocytes than in normal cells under the same conditions of incubation used for [ring-2-14C]histamine. Sickle erythrocytes were more permeable to these amines than normal cells. It is proposed that the gamma-glutamyl sites of membrane proteins in sickle erythrocytes are less accessible for transglutaminase-catalyzed cross-linking to histamine and polyamines in vitro, perhaps due to prior in vivo activation of this enzyme by the increased calcium in sickle cells and/or shielding secondary to altered membrane organization.  相似文献   

4.
A photoaffinity probe, procaine azide, was employed to determine the sites of interaction of procaine in normal and sickle cell erythrocytes. Studies show that the number of binding sites and affinity of procaine to membranes derived from normal and sickled cell erythrocytes were similar, although procaine retards the in vitro formation of irreversibly sickled cells from cells. The results show that procaine azide, a photoaffinity analogue of procaine, is covalently incorporated into both protein (60–70%) and lipid (40–30%) components of the membrane. Sodium dodecyl sulfate-gel electrophoresis of the labeled ghosts show that procaine binds specifically to band 3 and periodic acid-Schiff staining bands in membranes derived from labeled erythrocytes. Binding of procaine or covalent incorporation of procaine azide into membrane proteins does not affect the phosphate transport. Moreover, pre-treatment of intact erythrocytes with 4,4′-diisothiocyano-2,2′-stilbene disulfonate, an anion transport inhibitor, did not affect either the binding or covalent incorporation of procaine azide into erythrocytes. These results indicate that the binding of procaine azide to Band 3 protein occurs at a locus different than that involved in anion translocation process.  相似文献   

5.
The enzymatic carboxyl methyl esterification of erythrocyte membrane proteins has been investigated in three different age-related fractions of human erythrocytes. When erythrocytes of different mean age, separated by density gradient centrifugation, were incubated under physiological conditions (pH 7.4, 37 degrees C) in the presence of L-[methyl-3H]methionine, the precursor in vivo of the methyl donor S-adenosylmethionine, a fourfold increase in membrane-protein carboxyl methylation was observed in the oldest cells compared with the youngest ones. The identification of methylated species, based on comigration of radioactivity with proteins stained with Coomassie blue, analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, shows, in all cell fractions, a pattern similar to that reported for unfractionated erythrocytes. However in the membrane of the oldest erythrocytes the increase in methylation of the cytoskeletal proteins, bands 2.1 and 4.1, appears to be significantly more marked compared with that observed in the other methylated polypeptides. Furthermore the turnover rate of incorporated [3H]methyl groups in the membrane proteins of the oldest cells markedly increases during cell ageing. Particularly in band 4.1 the age-related increase in methyl esterification is accompanied by a significant reduction of the half-life of methyl esters. The activity of cytoplasmic protein methylase II does not change during cell ageing, while the isolated ghosts from erythrocytes of different age show an age-related increased ability to act as methyl-accepting substrates, when incubated in presence of purified protein methylase II and methyl-labelled S-adenosylmethionine, therefore the relevance of membrane structure in determining membrane protein methylation levels can be postulated. Finally the possible correlation of this posttranslational protein modification with erythrocyte ageing is discussed.  相似文献   

6.
"Band 3," an integral membrane protein of red blood cells, plays a relevant role in anionic transport. The C- and N-terminal portions of band 3 are cytoplasmatics, and the last is the link site for different glycolitic enzymes, such as glyceraldehyde-3-phosphate dehydrogenase, aldolase, phosphofructokinase, and hemoglobin. All or some of these interactions on the CDB3 protein could allow a subtle modulation of anion flux. The interaction among HbA, Mg(2+), and membrane proteins has been sufficiently investigated, but not the effect of Mg(2+) on pathological hemoglobin in relation to the influx of the SO(4)(2-). The aim of this study was to evaluate the involvement of hemoglobin S in sulfate transport. This has been measured with native and increased concentrations of Mg(2+), using normal erythrocytes containing HbA, sickle red cells containing HbS, or ghosts obtained from both erythrocytes and normal erythrocytes ghosts with HbS added. The magnitude of the SO(4)(2-) rate constant measured in normal red blood cells increased markedly when measured in the presence of varied Mg(2+) concentrations. The results show that a low increase of intracellular Mg(2+) concentrations exercises a different HbA modulation on band 3 protein and consequently higher anion transport activity. The same experiments carried out in sickle red cells showed that the SO(4)(2-) rate constant measured in the presence of native concentrations of Mg(2+) was normal, compared to normal red cells, and was not affected by any increase of intracellular Mg(2+). Our suppositions with regard to the importance exercised by the hemoglobin and the Mg(2+) on the SO(4)(2-) influx were confirmed by comparison of the data obtained through measuring SO(4)(2-) influx with native and increased concentrations of Mg(2+) in both normal and sickle red cell ghosts. Both revealed the same sensitivity to Mg(2+) due to withdrawal of hemoglobins. The incorporation of HbS in normal as well as in sickle red cell ghosts reduced the Mg(2+) response to sulfate influx in both the reconstituted ghosts. Our research demonstrated that the different effects exercised on the rate constants of SO(4)(2-) influx in normal (HbA) and sickle red cells (HbS) by the increased intracellular Mg(2+) could be ascribed to the physical-chemical influence exercised either on the hemoglobins or on the intracellular contents of erythrocytes.  相似文献   

7.
p-Aminobenzoic acid (PABA) was found to prevent eichinocytosis of red cells in vitro. Equilibrium binding studies with right-side-out membrane vesicles revealed a similar number of binding sites and Kd values for both normal and sickle cell membranes. A [14C]Azide analog of PABA was synthesized as a photoaffinity label to probe its sites of interaction on the erythrocyte membranes. Competitive binding studies of PABA with its azide indicated that both the compounds share common binding sites on the membrane surface. The azide was found to covalently incorporate into the membrane components upon irradiation; 52-35% of the label was associated with the proteins and the remaining with the lipids. Electrophoretic analysis of photolabeled membranes revealed that the azide interacts mainly with Band 3 protein in the case of intact erythrocytes and right-side-out sealed vesicles; however, if unsealed ghosts are used, other membrane proteins besides Band 3 are photolabeled. PABA was found to inhibit both high and low affinity calcium-binding sites situated on either surface of the membrane apparently in a non-competitive manner. However, calcium binding stimulated by magnesium and ATP was only slightly affected. Calcium transport into inside-out vesicles was inhibited by PABA, but it did not affect the calcium ATPase activity.  相似文献   

8.
In order to define the influence of skeletal protein organization on transmembrane phospholipid movement in erythrocyte membranes, we measured the translocation rate of lysophosphatidylcholine in pathologic red cells. A simple method based on the differential extraction of lysophosphatidylcholine from the red cell membrane by saline and albumin solutions was used to quantitate the translocation rate. Two groups of pathologic red cells were chosen for these studies: red cells with quantitative deficiencies of the skeletal proteins, spectrin and protein 4.1, and sickle erythrocytes in which controlled reorganization of the membrane was induced by hemoglobin polymerization. Marked increase in lipid translocation rate was seen in red cells having quantitative deficiencies of spectrin and protein 4.1. The magnitude of the increase in translocation rate in spectrin-deficient red cells was related to the magnitude of protein deficiency. Translocation rate in sickle erythrocyte membranes increased by 50% upon deoxygenation as a result of sickle hemoglobin polymerization. No increase in translocation rate was seen in normal cells upon deoxygenation. By manipulating the extent of membrane reorganization that occurred following deoxygenation of sickle cells, we have been able to show that skeletal reorganization induced by hemoglobin polymerization and not hemoglobin polymerization per se is responsible for the increase in translocation rate. Together, these findings imply that the structural organization of membrane skeletal proteins plays an important role in regulating the rate of transbilayer movement of lipids across the erythrocyte membrane.  相似文献   

9.
Prostaglandin E2 has previously been shown to enhance the shape transformation of sickle prone erythrocytes (8) and to reduce the oxygen resaturation of Hemoglobin SS within intact sickle cell erythrocytes after deoxygenation (15). In view of the recent importance attributed to calcium transport in maintaining erythrocyte shape and viability (10) and the suggestion that prostaglandins may act via a calcium ionophore mechanism (9) on cell membranes, erythrocyte ghosts were prepared following the method of Lepke and Passow (12) from normal and sickle cell anemia erythrocytes. These two classes of ghosts are shown to display differing patterns of sodium and calcium transport, whith calcium influx being preferentially stimulated by prostaglandin E2 in sickle cell ghosts. It is suggested that in hypoxic, stasis conditions in vivo, prostaglandins may play a role in accelerating sickling of sickle prone erythrocytes via stimulation of calcium influx.  相似文献   

10.
In this study we examined the effect of carnitine and acetylcarnitine on the human erythrocyte membrane stability and membrane deformability. Since erythrocyte membranes are impermeable to these compounds, we resealed erythrocyte ghosts in the presence of different concentrations of carnitine or acetylcarnitine. Resealed ghosts can be adequately studied in their cellular deformability and membrane stability properties by means of ektacytometry. Both carnitine and acetylcarnitine alter the membrane stability but not membrane deformability of the red cell membrane. Resealed ghosts containing 20, 50, 150, and 300 microM carnitine had 1.1, 1.6, 0.9, and 0.7 times the normal stability. While resealed ghosts containing 20, 50, 150, and 300 microM acetylcarnitine had 1.1, 1.5, 1.3, and 1.2 times the normal stability. Such changes were found to be reversible. We also conducted SDS PAGE of cytoskeletal membrane proteins from membrane fragments and residual membranes produced during membrane stability analysis, and unsheared resealed membranes in those samples where we observed an increase or a decrease of membrane stability. No changes in the cytoskeletal membrane proteins were noticed, even when the samples, prior SDS PAGE analysis, were treated with or without dithiothreitol. In addition, fluorescence steady state anisotropy of DPH in the erythrocyte membrane treated with carnitine or acetylcarnitine shows no modification of the lipid order parameter. Our results would suggest that both carnitine and its acetyl-ester, at physiological concentrations, may increase membrane stability in mature erythrocytes, most likely via a specific interaction with one or more cytoskeletal proteins, and that this effect would manifest when the erythrocytes are subjected to high shear stress.  相似文献   

11.
We have studied the differences between erythrocytes and erythrocyte ghosts as target membranes for the study of Sendai virus fusion activity. Fusion was monitored continuously by fluorescence dequenching of R18-labeled virus. Experiments were carried out either with or without virus/target membrane prebinding. When Sendai virus was added directly to a erythrocyte/erythrocyte ghost suspension, fusion was always lower than that obtained when experiments were carried out with virus already bound to the erythrocyte/erythrocyte ghost in the cold, since with virus prebinding fusion can be triggered more rapidly. Although virus binding to both erythrocytes and erythrocyte ghosts was similar, fusion activity was much more pronounced when erythrocyte ghosts were used as target membranes. These observations indicate that intact erythrocytes and erythrocyte ghosts are not equivalent as target membranes for the study of Sendai virus fusion activity. Fusion of Sendai virus with both target membranes was inhibited when erythrocytes or erythrocyte ghosts were pretreated with proteinase K, suggesting a role of target membrane proteins in this process. Treatment of both target membranes with neuraminidase, which removes sialic acid residues (the biological receptors for Sendai virus) greatly reduced viral binding. Interestingly, this treatment had no significant effect on the fusion reaction itself.  相似文献   

12.
Prostaglandin E2 has previously been shown to enhance the shape transformation of sickle prone erythrocytes (8) and to reduce the oxygen resaturation of Hemoglobin SS within intact sickle cell erythrocytes after deoxygenation (15). In view of the recent importance attributed to calcium transport in maintaining erythrocyte shape and viability (10) and the suggestion that prostaglandins may act via a calcium ionophore mechanism (9) on cell membranes, erythrocyte ghosts were prepared following the method of Lepke and Passow (12) from normal and sickle cell anemia erythrocytes. These two classes of ghosts are shown to display differing patterns of sodium and calcium transport, with calcium influx being preferentially stimulated by prostaglandin E2 in sickle cell ghosts. It is suggested that in hypoxic, stasis conditions , prostaglandins may play a role in accelerating sickling of sickle prone erythrocytes via stimulation of calcium influx.  相似文献   

13.
Non-enzymatic glycosylation of erythrocyte membranes was studied using a non-radioactive and sensitive procedure for specific quantitation of lysine-bound glucose in proteins. About 2 nmol lysine-bound glucose/mg protein were found in ghosts from normal erythrocytes, and this value was about doubled in diabetic patients. In vitro incubation of normal ghosts with glucose gave rise to levels of lysine-bound glucose similar to those found in diabetics. There was a linear correlation between the amount of lysine-bound glucose of total hemoglobin and of membrane proteins. Membrane glycosylation also depended on the age of erythrocytes displaying significantly higher values in old cell populations.  相似文献   

14.
Phospholipid asymmetry in human erythrocyte ghosts   总被引:6,自引:0,他引:6  
Using phospholipase digestion and the fluorescent probe merocyanine 540 the maintenance of phospholipid asymmetry in the plasma membrane of human erythrocyte ghosts was investigated. Digestion with phospholipase A2 indicated that ghosts prepared in the presence of Mg++ as the only divalent cation retained the normal phospholipid asymmetry characteristic of intact erythrocytes. These ghosts, like normal erythrocytes, also failed to stain with merocyanine 540. However, the presence of as little as 5-10 microM Ca++ during ghost preparation resulted in ghosts in which lipid asymmetry had been abolished, as indicated by phospholipase digestion. Moreover, these ghosts stained with merocyanine 540. In contrast to ghosts, intact erythrocytes treated with ionophore required millimolar levels of Ca++ ions to disrupt membrane lipid asymmetry. To discover the reason for this difference in behavior between ghosts and intact cells, ghosts were prepared from preswollen cells using only small volumes of buffer for lysis. These experiments demonstrated that as the cellular contents of erythrocytes are diluted, the asymmetric arrangement of phospholipids becomes more sensitive to disruption by Ca++.  相似文献   

15.
A cytosolic protein carboxyl methyltransferase (S-adenosyl-L-methionine:protein O-methyltransferase, E.C. 2.1.1.24) purified from human erythrocytes catalyzes the methylation of erythrocyte membrane proteins in vitro using S-adenosyl-L-[methyl-3H]methionine as the methyl group donor. The principal methyl-accepting proteins have been identified by sodium dodecyl sulfate-gel electrophoresis at pH 2.4 and fluorography as the anion transport protein (band 3), ankyrin (band 2.1), and integral membrane proteins with molecular weights of 45,000, 28,000, and 21,000. Many of the methylation sites associated with intrinsic membrane proteins may reside in their extracellular portions, since these same proteins are methylated when intact cells are used as the substrate. The maximal number of methyl groups transferred in these experiments is approximately 30 pmol/mg of membrane protein, a value which represents less than one methyl group/50 polypeptide chains of any methyl-accepting species. The number of methylation sites associated with the membranes is increased, but not to stoichiometric levels, by prior demethylation of the membranes. The additional sites are associated primarily with bands 2.1 and 4.1, the principal methyl acceptors in vivo, suggesting that most methylation sites are fully modified in vivo. Extracellular methylation sites are not increased by demethylation of membranes. The aspartic acid beta-methyl ester which can be isolated from carboxypeptidase Y digests of [3H]methylated membranes is in the unusual D-stereoconfiguration. Similar results have been obtained with [3H]methylated membranes isolated from intact cells (McFadden, P.N., and Clarke, S. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2460-2464). It is proposed that the methyltransferase recognizes D-aspartyl residues in proteins and is involved with the metabolism of damaged proteins in vivo.  相似文献   

16.
A four-fold increase in the binding of 3H-PDBu by red cell membrane ghosts isolated from sickle red cells compared to that from normal controls is presented. Phosphorylation studies with gamma-32P-ATP indicate a similar (two to three-fold) increase in the radiolabelling of the acid-precipitable membrane proteins in sickle red cells. When red cells were loaded with Ca2+ using Ionophore A23187, both normal and sickle red cells enhanced their phosphorylation and sickle red cells to a greater extent than normal red cells. Polyacrylamide slab gel electrophoretic separation of the phosphoproteins and autoradiography also reveal phosphorylation, predominantly of protein bands 3, 4.1 and 4.9 which are known in the red cells as specific substrates for the PDBu receptor, protein kinase C. These results indicate that membrane association of protein kinase C in sickle red cells is increased, possibly as a consequence of the pathological change in their ability to accumulate intracellular calcium.  相似文献   

17.
The 'Mediterranean' variant of glucose-6-phosphate dehydrogenase (G6PD) deficiency is due to the C563CT point mutation, leading to replacement of Ser with Phe at position 188, resulting in acute haemolysis triggered by oxidants. Previous work has shown increased formation of altered aspartate residues in membrane proteins during cell ageing and in response to oxidative stress in normal erythrocytes. These abnormal residues are specifically recognized by the repair enzyme L-isoaspartate (d-aspartate) protein O-methyltransferase (PCMT; EC 2.1.1.77). The aim of this work was to study the possible involvement of protein aspartate damage in the mechanism linking the G6PD defect and erythrocyte injury, through oxidative stress. Patients affected by G6PD deficiency (Mediterranean variant) were selected. In situ methylation assays were performed by incubating intact erythrocytes in the presence of methyl-labelled methionine. Altered aspartate residues were detected in membrane proteins by methyl ester quantification. We present here evidence that, in G6PD-deficient erythrocytes, damaged residues are significantly increased in membrane proteins, in parallel with the decay of pyruvate kinase activity, used as a cell age marker. Erythrocytes from patients were subjected to oxidative stress in vitro, by treatment with t-butylhydroperoxide, monitored by a rise in concentration of both methaemoglobin and thiobarbituric acid-reactive substances. L-Isoaspartate residues increased dramatically in G6PD-deficient erythrocytes in response to such treatment, compared with baseline conditions. The increased susceptibility of G6PD-deficient erythrocytes to membrane protein aspartate damage in response to oxidative stress suggests the involvement of protein deamidation/isomerization in the mechanisms of cell injury and haemolysis.  相似文献   

18.
The lateral diffusion coefficients (D) and the mobile fractions of the fluorescent phospholipid N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)phosphatidylethanolamine (NBD-PE) and of membrane proteins labelled with fluorescein isothiocyanate, were measured by fluorescence photobleaching recovery on erythrocytes from healthy persons and from a hereditary spherocytosis patient. Measurements of lipid probe mobility were performed on ghosts labelled by NBD-PE exclusively at the external monolayer, or at both sides of the membrane. Our results indicate the following: (1) The mean values and the temperature dependence of D are different at the external and internal membrane leaflets. (2) In both normal and HS ghosts the mobile fraction of NBD-PE in the external monolayer does not depend significantly on temperature. On the other hand, the mobile fraction in the internal monolayer is reduced as the temperature is decreased. (3) At low temperatures, the mobile fraction of NBD-PE in the internal monolayer of spherocytic ghosts is significantly lower than the mobile fraction in the internal monolayer of normal ghosts. (4) No differences were observed between the mobilities of membrane proteins in normal and in spherocytic ghosts. However, differences were observed between the two cell populations in the temperature-dependence of the intrinsic fluorescence of unlabelled membrane proteins. The implications of these results for membrane phospholipid asymmetry and for cytoskeletal interactions with the internal lipid monolayer are discussed.  相似文献   

19.
The rheological properties of normal erythrocytes appear to be largely determined by those of the red cell membrane. In sickle cell disease, the intracellular polymerization of sickle hemoglobin upon deoxygenation leads to a marked increase in intracellular viscosity and elastic stiffness as well as having indirect effects on the cell membrane. To estimate the components of abnormal cell rheology due to the polymerization process and that due to the membrane abnormalities, we have developed a simple mathematical model of whole cell deformability in narrow vessels. This model uses hydrodynamic lubrication theory to describe the pulsatile flow in the gap between a cell and the vessel wall. The interior of the cell is modeled as a Voigt viscoelastic solid with parameters for the viscous and elastic moduli, while the membrane is assigned an elastic shear modulus. In response to an oscillatory fluid shear stress, the cell--modeled as a cylinder of constant volume and surface area--undergoes a conical deformation which may be calculated. We use published values of normal and sickle cell membrane elastic modulus and of sickle hemoglobin viscous and elastic moduli as a function of oxygen saturation, to estimate normalized tip displacement, d/ho, and relative hydrodynamic resistance, Rr, as a function of polymer fraction of hemoglobin for sickle erythrocytes. These results show the transition from membrane to internal polymer dominance of deformability as oxygen saturation is lowered. More detailed experimental data, including those at other oscillatory frequencies and for cells with higher concentrations of hemoglobin S, are needed to apply fully this approach to understanding the deformability of sickle erythrocytes in the microcirculation. The model should be useful for reconciling the vast and disparate sets of data available on the abnormal properties of sickle cell hemoglobin and sickle erythrocyte membranes, the two main factors that lead to pathology in patients with this disease.  相似文献   

20.
Three properties related to the erythrocyte membrane skeleton are found to be altered after the binding of concanavalin A (Con A) to erythrocytes or their isolated membranes. Con A binding to normal erythrocytes imparts resistance to heat (49 degrees C)-induced fragmentation of the cells. The fragmentation, due to denaturation of spectrin at 49 degrees C, is prevented by Con A in a dose-dependent manner, but levels off at concentrations of Con A in excess of 100 micrograms/ml. The binding of Con A to ghosts isolated from normal, trypsin- or Pronase-treated cells prevents (completely or substantially) the elution of the skeletal protein complex when the membranes are extracted under low-ionic-strength conditions in the cold. The Con A-agglutinated membranes of trypsin- and Pronase-treated, but not normal, cells show cross-linking of skeletal proteins and band 3 with dimethyl adipimidate, a 0.86 nm (8.6 A)-span bifunctional reagent. The extent of cross-linking is greater in the Pronase-treated membrane than in the less-agglutinable trypsin-treated membranes. The results show that, after Con A has bound, rearrangements occur in the membrane that alter properties of the skeletal proteins. Additionally, redistribution of the skeletal proteins and the Con A receptor occurs in the lectin-agglutinated membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号