首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trypanosoma brucei, the parasite causing human sleeping sickness, relies on the tsetse fly for its transmission. In the insect, EP and GPEET procyclins are the major surface glycoproteins of procyclic (midgut) forms of the parasite, with GPEET predominating in the early procyclic form and two isoforms of EP in the late procyclic form. EP procyclins were previously detected on salivary gland trypanosomes, presumably epimastigotes, by immunoelectron microscopy. However, no procyclins could be detected by mass spectrometry when parasites were isolated from infected glands. We have used qualitative and quantitative RT-PCR to analyse the procyclin mRNAs expressed by trypanosomes in the tsetse midgut and salivary glands at different time points after infection. The coding regions of the three EP isoforms (EP1, EP2 and EP3) are extremely similar, but their 3' untranslated regions contain unique sequences that make it possible to assign the cDNAs amplified by this technique. With the exception of EP2, we found that the spectrum of procyclin mRNAs expressed in the midgut mirrors the protein repertoire of early and established procyclic forms. Surprisingly, procyclin mRNAs, including that of GPEET, are present at relatively high levels in salivary gland trypanosomes, although the proteins are rarely detected by immunofluorescence. Additional experiments using transgenic trypanosomes expressing reporter genes or mutant forms of procyclin point to a mechanism of translational or post-translational control, involving the procyclin coding regions, in salivary gland trypanosomes. It is widely accepted that T. brucei always has a coat of either variant surface glycoprotein or procyclin. It has been known for many years that the epimastigote form does not have a variant surface glycoprotein coat. The finding that this life cycle stage is usually negative for procyclin as well is new, and means that the paradigm will need to be revised.  相似文献   

2.
Transmission of Trypanosoma brucei by the tsetse fly entails several rounds of differentiation as the parasite migrates through the digestive tract to the salivary glands of its vector. Differentiation of the bloodstream to the procyclic form in the fly midgut is accompanied by the synthesis of a new coat consisting of EP and GPEET procyclins. There are three closely related EP isoforms, two of which (EP1 and EP3) contain N-glycans. To identify the individual EP isoforms that are expressed early during synchronous differentiation in vitro, we exploited the selective extraction of GPI-anchored proteins and mass spectrometry. Unexpectedly, we found that GPEET and all isoforms of EP were coexpressed for a few hours at the onset of differentiation. At this time, the majority of EP1 and EP3 molecules were already glycosylated. Within 24 hours, GPEET became the major surface component, to be replaced in turn by glycosylated forms of EP, principally EP1, at a later phase of development. Transient transfection experiments using reporter genes revealed that each procyclin 3' untranslated region contributes to differential expression as the procyclic form develops. We postulate that programmed expression of other procyclin species will accompany further rounds of differentiation, enabling the parasite to progress through the fly.  相似文献   

3.
Immune evasion in African trypanosomes is principally mediated by antigenic variation, but rapid internalization of surface-bound immune factors may contribute to survival. Endocytosis is upregulated approximately 10-fold in bloodstream compared to procyclic forms, and surface coat remodeling accompanies transition between these life stages. Here we examined expression of endocytosis markers in tsetse fly stages in vivo and monitored modulation during transition from bloodstream to procyclic forms in vitro. Among bloodstream stages nonproliferative stumpy forms have endocytic activity similar to that seen with rapidly dividing slender forms, while differentiation of stumpy forms to procyclic forms is accompanied by rapid down-regulation of Rab11 and clathrin, suggesting that modulation of endocytic and recycling systems accompanies this differentiation event. Significantly, rapid down-regulation of endocytic markers occurs upon entering the insect midgut and expression of Rab11 and clathrin remains low throughout subsequent development, which suggests that high endocytic activity is not required for remodeling the parasite surface or for survival within the fly. However, salivary gland metacyclic forms dramatically increase expression of clathrin and Rab11, indicating that emergence of mammalian infective forms is coupled to reacquisition of a high-activity endocytic-recycling system. These data suggest that high-level endocytosis in Trypanosoma brucei is an adaptation required for viability in the mammalian host.  相似文献   

4.
EP and GPEET procyclin, the major surface glycoproteins of procyclic forms of Trypanosoma brucei, are truncated by proteases in the midgut of the tsetse fly Glossina morsitans morsitans. We show that soluble extracts from the midguts of teneral flies contain trypsin-like enzymes that cleave the N-terminal domains from living culture-derived parasites. The same extract shows little activity against a variant surface glycoprotein on living bloodstream form T. brucei (MITat 1.2) and none against glutamic acid/alanine-rich protein, a major surface glycoprotein of Trypanosoma congolense insect forms although both these proteins contain potential trypsin cleavage sites. Gel filtration of tsetse midgut extract revealed three peaks of tryptic activity against procyclins. Trypsin alone would be sufficient to account for the cleavage of GPEET at a single arginine residue in the fly. In contrast, the processing of EP at multiple sites would require additional enzymes that might only be induced or activated during feeding or infection. Unexpectedly, the pH optima for both the procyclin cleavage reaction and digestion of the trypsin-specific synthetic substrate Chromozym-TRY were extremely alkaline (pH 10). Direct measurements were made of the pH within different compartments of the tsetse digestive tract. We conclude that the gut pH of teneral flies, from the proventriculus to the hindgut, is alkaline, in contradiction to previous measurements indicating that it was mildly acidic. When tsetse flies were analysed 48 h after their first bloodmeal, a pH gradient from the proventriculus (pH 10.6+/-0.6) to the posterior midgut (pH 7.9+/-0.4) was observed.  相似文献   

5.
The differentiation of mammalian stage Trypanosoma brucei bloodstream forms comprising predominantly parasites of intermediate and stumpy morphology to the procyclic forms characteristic for the insect midgut stage was studied in vitro. Differentiation of the cell population occurred synchronously as judged by the synthesis of the surface glycoprotein, procyclin, characteristic of the arising procyclic forms and the loss of the membrane-form variant surface glycoprotein, the coat protein of bloodstream forms. The change in surface antigens took place within 12 h in the absence of cell growth; subsequently, the procyclic cells divided exponentially. As defined in this study, T. brucei may be a useful model to follow other changes in gene expression, metabolism or ultrastructure during differentiation of a unicellular eucaryote.  相似文献   

6.
7.
Procyclic culture form (PCF) trypanosomes were established from a bloodstream form population of cloned Trypanosoma brucei rhodesiense and were used to immunize mice for hybridoma production. Indirect immunofluorescence was used to select 10 hybridomas which secreted antibodies that bound to the surface of homologous living PCF. The antibodies reacted with PCF of several clones of T.b. brucei, T.b. gambiense, and T.b. rhodesiense, but not with PCF of T. congolense or T. vivax, or with promastigotes of several species of Leishmania parasites. The antigens were not detectable in ethanol/acetic acid-fixed bloodstream forms or in lysates of bloodstream forms of any of the T. brucei subspecies, and are thus species-specific and stage-specific markers. Selected monoclonal antibodies bound to procyclic trypanosomes taken directly from the midgut of infected tsetse flies, and to immature epimastigote forms in salivary probes, and may therefore be useful in epidemiologic investigations.  相似文献   

8.
Antigenic variation during the developmental cycle of Trypanosoma brucei   总被引:1,自引:0,他引:1  
During the complex life cycle of Trypanosoma brucei, changes in the exposed surface antigens occur in both the mammalian host and the insect vector (Glossina spp.). These antigenic changes are associated with alterations of the variant surface glycoprotein (VSG) composition or with the loss of the VSG. In the bloodstream of the mammalian host, trypanosomes successfully evade destruction by the host's immune response by continuously expressing alternative VSGs, at low frequency, which are not destroyed by host antibodies. When ingested by the tsetse fly, the bloodstream trypanosomes rapidly lose their surface coat and surface membrane antigens are exposed which are normally covered in the bloodstream. In the salivary glands of the tsetse fly, the trypanosomes differentiate to the metacyclic stage, which reacquires a surface coat. The antigenic composition of the metacyclics is heterogeneous. The same metacyclic types are expressed regardless of the bloodstream antigenic type ingested by the tsetse fly. In the mammal the metacyclics differentiate to long-slender bloodstream forms but continue to express the metacyclic VSG for at least three days. The next VSGs expressed in the mammalian host appear to be influenced by the antigenic type ingested by the tsetse. The ingested antigenic type is often expressed in the first parasitemia following expression of the metacyclic antigenic types.  相似文献   

9.
Procyclic forms of Trypanosoma brucei reside in the midgut of tsetse flies where they are covered by several million copies of glycosylphosphatidylinositol-anchored proteins known as procyclins. It has been proposed that procyclins protect parasites against proteases and/or participate in tropism, directing them from the midgut to the salivary glands. There are four different procyclin genes, each subject to elaborate levels of regulation. To determine if procyclins are essential for survival and transmission of T. brucei, all four genes were deleted and parasite fitness was compared in vitro and in vivo. When co-cultured in vitro, the null mutant and wild type trypanosomes (tagged with cyan fluorescent protein) maintained a near-constant equilibrium. In contrast, when flies were infected with the same mixture, the null mutant was rapidly overgrown in the midgut, reflecting a reduction in fitness in vivo. Although the null mutant is patently defective in competition with procyclin-positive parasites, on its own it can complete the life cycle and generate infectious metacyclic forms. The procyclic form of T. brucei thus differs strikingly from the bloodstream form, which does not tolerate any perturbation of its variant surface glycoprotein coat, and from other parasites such as Plasmodium berghei, which requires the circumsporozoite protein for successful transmission to a new host.  相似文献   

10.
The protozoan pathogen Trypanosoma brucei is transmitted between mammals by tsetse flies. The first compartment colonised by trypanosomes after a blood meal is the fly midgut lumen. Trypanosomes present in the lumen—designated as early procyclic forms—express the stage-specific surface glycoproteins EP and GPEET procyclin. When the trypanosomes establish a mature infection and colonise the ectoperitrophic space, GPEET is down-regulated, and EP becomes the major surface protein of late procyclic forms. A few years ago, it was discovered that procyclic form trypanosomes exhibit social motility (SoMo) when inoculated on a semi-solid surface. We demonstrate that SoMo is a feature of early procyclic forms, and that late procyclic forms are invariably SoMo-negative. In addition, we show that, apart from GPEET, other markers are differentially expressed in these two life-cycle stages, both in culture and in tsetse flies, indicating that they have different biological properties and should be considered distinct stages of the life cycle. Differentially expressed genes include two closely related adenylate cyclases, both hexokinases and calflagins. These findings link the phenomenon of SoMo in vitro to the parasite forms found during the first 4–7 days of a midgut infection. We postulate that ordered group movement on plates reflects the migration of parasites from the midgut lumen into the ectoperitrophic space within the tsetse fly. Moreover, the process can be uncoupled from colonisation of the salivary glands. Although they are the major surface proteins of procyclic forms, EP and GPEET are not essential for SoMo, nor, as shown previously, are they required for near normal colonisation of the fly midgut.  相似文献   

11.
The survival of Trypanosoma brucei, the causative agent of Sleeping Sickness and Nagana, is facilitated by the expression of a dense surface coat of glycosylphosphatidylinositol (GPI)-anchored proteins in both its mammalian and tsetse fly hosts. We have characterized T. brucei GPI8, the gene encoding the catalytic subunit of the GPI:protein transamidase complex that adds preformed GPI anchors onto nascent polypeptides. Deletion of GPI8 (to give Deltagpi8) resulted in the absence of GPI-anchored proteins from the cell surface of procyclic form trypanosomes and accumulation of a pool of non-protein-linked GPI molecules, some of which are surface located. Procyclic Deltagpi8, while viable in culture, were unable to establish infections in the tsetse midgut, confirming that GPI-anchored proteins are essential for insect-parasite interactions. Applying specific inducible GPI8 RNAi with bloodstream form parasites resulted in accumulation of unanchored variant surface glycoprotein and cell death with a defined multinuclear, multikinetoplast, and multiflagellar phenotype indicative of a block in cytokinesis. These data show that GPI-anchored proteins are essential for the viability of bloodstream form trypanosomes even in the absence of immune challenge and imply that GPI8 is important for proper cell cycle progression.  相似文献   

12.
In the tsetse fly, the protozoan parasite Trypanosoma congolense is covered by a dense layer of glycosylphosphatidylinositol (GPI)-anchored molecules. These include a protease-resistant surface molecule (PRS), which is expressed by procyclic forms early in infection, and a glutamic acid- and alanine-rich protein (GARP), which appears at later stages. Since neither of these surface antigens is expressed at intermediate stages, we investigated whether a GPI-anchored protein of 50 to 58 kDa, previously detected in procyclic culture forms, might constitute the coat of these parasites. We therefore partially purified the protein from T. congolense Kilifi procyclic forms, obtained an N-terminal amino acid sequence, and identified its gene. Detailed analyses showed that the mature protein consists almost exclusively of 13 heptapeptide repeats (EPGENGT). The protein is densely N glycosylated, with up to 13 high-mannose oligosaccharides ranging from Man(5)GlcNAc(2) to Man(9)GlcNAc(2) linked to the peptide repeats. The lipid moiety of the glycosylphosphatidylinositol is composed of sn-1-stearoyl-2-lyso-glycerol-3-HPO(4)-1-(2-O-acyl)-d-myo-inositol. Heavily glycosylated proteins with similar repeats were subsequently identified in T. congolense Savannah procyclic forms. Collectively, this group of proteins was named T. congolense procyclins to reflect their relationship to the EP and GPEET procyclins of T. brucei. Using an antiserum raised against the EPGENGT repeat, we show that T. congolense procyclins are expressed continuously in the fly midgut and thus form the surface coat of cells that are negative for both PRS and GARP.  相似文献   

13.
14.
In the mammalian host, the unicellular flagellate Trypanosoma brucei is covered by a dense surface coat that consists of a single species of macromolecule, the membrane form of the variant surface glycoprotein (mfVSG). After uptake by the insect vector, the tsetse fly, bloodstream-form trypanosomes differentiate to procyclic forms in the fly midgut. Differentiation is characterized by the loss of the mfVSG coat and the acquisition of a new surface glycoprotein, procyclin. In this study, the change in surface glycoprotein composition during differentiation was investigated in vitro. After triggering differentiation, a rapid increase in procyclin-specific mRNA was observed. In contrast, there was a lag of several hours before procyclin could be detected. Procyclin was incorporated and uniformly distributed in the surface coat. The VSG coat was subsequently shed. For a single cell, it took 12-16 h to express a maximum level of procyclin at the surface while the loss of the VSG coat required approximately 4 h. The data are discussed in terms of the possible molecular arrangement of mfVSG and procyclin at the cell surface. Molecular modeling data suggest that a (Asp-Pro)2 (Glu-Pro)22-29 repeat in procyclin assumes a cylindrical shape 14-18 nm in length and 0.9 nm in diameter. This extended shape would enable procyclin to interdigitate between the mfVSG molecules during differentiation, exposing epitopes beyond the 12-15-nm-thick VSG coat.  相似文献   

15.
Differentiation in African trypanosomes (Trypanosoma brucei) entails passage between a mammalian host, where parasites exist as a proliferative slender form or a G0-arrested stumpy form, and the tsetse fly. Stumpy forms arise at the peak of each parasitaemia and are committed to differentiation to procyclic forms that inhabit the tsetse midgut. We have identified a protein tyrosine phosphatase (TbPTP1) that inhibits trypanosome differentiation. Consistent with a tyrosine phosphatase, recombinant TbPTP1 exhibits the anticipated substrate and inhibitor profile, and its activity is impaired by reversible oxidation. TbPTP1 inactivation in monomorphic bloodstream trypanosomes by RNA interference or pharmacological inhibition triggers spontaneous differentiation to procyclic forms in a subset of committed cells. Consistent with this observation, homogeneous populations of stumpy forms synchronously differentiate to procyclic forms when tyrosine phosphatase activity is inhibited. Our data invoke a new model for trypanosome development in which differentiation to procyclic forms is prevented in the bloodstream by tyrosine dephosphorylation. It may be possible to use PTP1B inhibitors to block trypanosomatid transmission.  相似文献   

16.
Two-dimensional polyacrylamide gel electrophoresis has been used to analyze changes in protein content and protein synthesis in three stages of the life cycle of the protozoan parasite Trypanosoma brucei. The stages examined were slender and stumpy mammalian bloodstream forms and procyclic forms, which are analogous to the tsetse fly midgut stage. Two-dimensional gels of 35S-methionine-labeled proteins were examined by autoradiography to analyze newly synthesized protein, and gels were stained with ammoniacal silver to analyze proteins present. Several stage-specific molecules were noted. The most obvious was the variant surface glycoprotein, which was only present in bloodstream forms. Some other proteins were also bloodstream form specific; they had molecular weights of 120,000 and 38,000. Proteins of 52,000, 46,000, 25-30,000, and 16,000 daltons were present both in stumpy forms and procyclics but not in slender-form trypanosomes. Several proteins (molecular weights of 50-70,000, 43,000, 40,000, 26-24,000, 20-25,000, and 15,000) were present only in one of the three stages. One protein, a molecule of about 18,000 daltons present in both slender and stumpy parasites, did not appear to be synthesized in the stumpy stage. In vitro translation products of mRNA purified from the three stages were also examined. The abundance of mRNA encoding a protein of about 40,000 daltons appeared to be greater in slender than in stumpy parasites although the stumpy forms contained more of the protein and synthesized it at a higher rate.  相似文献   

17.
18.
Growth control of African trypanosomes in the mammalian host is coupled to differentiation of a non-dividing life cycle stage, the stumpy bloodstream form. We show that a protein kinase with novel domain architecture is important for growth regulation. Zinc finger kinase (ZFK) has a kinase domain related to RAC and S6 kinases flanked by a FYVE-related zinc finger and a phox (PX) homology domain. To investigate the function of the kinase during cyclical development, a stable transformation procedure for bloodstream forms of differentiation-competent (pleomorphic) Trypanosoma brucei strains was established. Deletion of both allelic copies of ZFK by homologous recombination resulted in reduced growth of bloodstream-form parasites in culture, which was correlated with an increased rate of differentiation to the non-dividing stumpy form. Growth and differentiation rates were returned to wild-type level by ectopic ZFK expression. The phenotype is stage-specific, as growth of procyclic (insect form) trypanosomes was unaffected, and Deltazfk/Deltazfk clones were able to undergo full cyclical development in the tsetse fly vector. Deletion of ZFK in a differentiation-defective (monomorphic) strain of T. brucei did not change its growth rate in the bloodstream stage. This suggests a function of ZFK associated with the trypanosomes' decision between either cell cycle progression, as slender bloodstream form, or differentiation to the non-dividing stumpy form.  相似文献   

19.
20.
Trypanosoma brucei is a unicellular eukaryote that causes the deadly human African trypanosomiasis ('sleeping sickness') in humans. The parasite has a complicated lifestyle, it developmentally changes aspects of its mitochondrial function as it alternates from forms in the tsetse fly to forms adapted for life in the human bloodstream. The single mitochondrion found in each trypanosome has to be duplicated precisely in each round of the cell cycle in order for parasites to replicate, and this depends on the import of proteins from the cytosol. Here we review what is known about the mitochondrial protein import pathway in T. brucei, how it compares with the process in humans, and how the distinguishing features seen in T. brucei and humans promise new understanding of the mitochondrial protein import process in all eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号