首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
V79 cells have been exposed to X-rays or 238Pu alpha-particles or to X-rays following priming alpha-particle doses of 0.5, 2 or 2.5 Gy. The survival curve for exposure to alpha-particles was exponential with a D0 of 0.89 Gy. Following exposure to priming alpha-particle doses the resulting X-ray survival curves had the same slope as the single dose X-ray curve, but a reduced shoulder. For alpha-particle priming doses of 0.5 and 2 Gy this reduction was the same as for the same X-ray doses. 2.5 Gy alpha-particles reduced the subsequent X-ray curve Dq to almost zero. alpha-particles do cause damage capable of interacting with X-ray damage.  相似文献   

2.
The findings of Hill et al. (1984) on the greatly enhanced transformation frequencies at very low dose rates of fission neutrons induced us to perform an analogous study with alpha-particles at comparable dose rates. Transformation frequencies were determined with gamma-rays at high dose rate (0.5 Gy/min), and with alpha-particles at high (0.2 Gy/min) and at low dose rates (0.83-2.5 mGy/min) in the C3H 10T1/2 cell system. alpha-particles were substantially more effective than gamma-rays, both for cell inactivation and for neoplastic transformation at high and low dose rates. The relative biological effectiveness (RBE) for cell inactivation and for neoplastic transformation was of similar magnitude, and ranged from about 3 at an alpha-particle dose of 2 Gy to values of the order of 10 at 0.25 Gy. In contrast to the experiments of Hill et al. (1984) with fission neutrons, no increased transformation frequencies were observed when the alpha-particle dose was protracted over several hours.  相似文献   

3.
4.
Considerable interest has been aroused in recent years by reports that the transforming and carcinogenic effectiveness of low doses of high LET radiations can be increased by reducing the dose rate, especially for transformation of 10T1/2 cells in vitro by fission-spectrum neutrons. We report on conditions which have been established for irradiation of 10T1/2 cells with high LET monoenergetic alpha-particles (energy of 3.2 MeV, LET of 124 keV microns-1) from 238Pu. The alpha-particle irradiator allows convenient irradiation of multiple dishes of cells at selectable high or low dose rates and temperatures. The survival curves of irradiated cells showed that the mean lethal dose of alpha-particles was 0.6 Gy and corresponded to an RBE, at high dose rates, of 7.9 at 80 per cent survival and 4.6 at 5 per cent survival, relative to 60Co gamma-rays. The mean areas of the 10T1/2 nuclei, perpendicular to the incident alpha-particles, was measured as 201 microns2, from which it follows that, on average, only one in six of the alpha-particle traversals through a cell nucleus is lethal. Under the well-characterized conditions of these experiments the event frequency of alpha-particle traversals through cell nuclei is 9.8 Gy-1.  相似文献   

5.
The response of control and ataxia-telangiectasia (A-T) cells to increasing doses of high-linear-energy-transfer (LET) ionizing radiation (neutrons) was compared. Ataxia-telangiectasia cells were markedly more sensitive to neutron irradiation than were control cells. The D0 value for the two A-T cell lines was 0.4 Gy while the value for controls was approximately 1.4 Gy. Fast neutrons were considerably more effective than gamma rays in inducing cell death in both cell types, but the sensitivity factor remained approximately the same as with gamma rays. A minimal depression of DNA synthesis was observed in ataxia-telangiectasia cells after neutron irradiation, similar to that reported previously after gamma irradiation. The extent of inhibition was not significantly greater in control cells, contrary to that seen with gamma rays. In time-course experiments a significant difference in degree of inhibition of DNA synthesis was observed between the cell types. Low doses of fast neutrons induced a G2-phase delay in both cell types, but the degree and extent of this delay was greater in ataxia-telangiectasia cells as observed previously with low-LET radiation.  相似文献   

6.
7.
A comparative study of the relative biological effectiveness (RBE) of alpha-particles 249Pu for reproductive and interphase forms of killing of haploid and diploid yeast cells of wild-type and their radiosensitive mutants has been carried out. The correlation between the RBE of alpha-particles and cell repair capacity was confirmed for reproductive death: it was the highest for diploid cells, smaller for haploid cells and the smallest for their radiosensitive mutants. To achieve the interphase cell killing much higher irradiation doses were used after which cells were incapable of liquid-holding recovery during the storing of exposed cells in non-nutrient media at 30 degrees C. The RBE values for this form of killing were significantly lower in comparison with reproductive death. These data are an additional argument supporting the point of view that the RBE of densely ionizing radiation is determined not merely by physical processes of energy absorption as it is traditionally believed but also by ability of cells to recover from DNA damages inflicted by ionizing radiation.  相似文献   

8.
9.
10.
11.
The effect of N-methyl-N-nitrosourea (MNU) on the cell cycle, DNA synthesis and chromosomal sensitivity of cultivated diploid fibroblasts and fibroblasts with trisomy 21 was investigated in vitro. With the exception of the inhibition of G2, Down's cells proved to be more sensitive than diploid cells with respect to the decrease of the mitotic and labelling index, the inhibition of the progression of cells through the early and middle S and the frequency of induced chromosomal aberrations. The chromosomal sensitivity was dependent on the position of cells in the cell cycle during treatment with MNU. If treated during late S no differences concerning the S block and aberration frequencies were found between diploid and Down's cells. However, if MNU treatment took place in the middle and early S, Down's cells were more sensitive. The higher aberration frequencies in Down's cells resulted from elevated levels of chromatid breaks, multiple fragmentations and chromatid translocations. Possible reasons for the increased sensitivity of Down's cells are discussed.  相似文献   

12.
13.
Growth-arrested rat fibroblasts, 3Y1, and human diploid fibroblasts, TIG-1, were induced to synthesize DNA by stimulation with various agents such as fetal bovine serum (FBS), epidermal growth factor (EGF), colcemid, or colchicine. Taxol, a microtubule-stabilizing agent, blocked the induction of DNA synthesis after stimulation with colcemid or colchicine in both cell lines. Taxol inhibited the induction of DNA synthesis after stimulation with FBS or EGF in TIG-1, but did not in 3Y1. 12-O-tetradecanoylphorbol-13-acetate (TPA) induced DNA synthesis in TIG-1, which was reduced only partly by taxol. Taxol stabilized or polymerized microtubules in both cell lines. These results indicate that the inhibitory effect of taxol on the induction of DNA synthesis varied among cell lines and among growth factors, and suggest that signal transduction processes may be differentiated by taxol sensitivity. In TIG-1 cells, when taxol was added within 6 h, about halfway into the initiation of DNA synthesis after the addition of FBS or EGF, the inhibition of DNA synthesis still occurred. Taxol did not inhibit the induction of c-fos and c-myc genes by FBS or EGF stimulation. Colchicine itself did not induce these genes in TIG-1. Thus, taxol appeared to inhibit the induction of DNA synthesis not by blockage in the early transduction process of the growth signal from the cell surface to nuclei but by blockage in processes operating in the mid- or late-prereplicative phase.  相似文献   

14.
15.
The Mongolian gerbil (Meriones unguiculatus) is known to be one of the most radioresistant animals. We have examined the X-ray sensitivity of normal diploid fibroblasts from Mongolian gerbil embryos compared with those of cultured embryo cells obtained from various laboratory animals and a normal human. There was a wide difference in X-ray sensitivity for cell killing among different mammalian species. The D0 values for Mongolian gerbil cells ranged from 2.08 to 2.28 Gy, values which are twice as high as those for human cells. The mean D0 value for human cells was 1.06 Gy. Mouse, rat, Chinese hamster, and Syrian/golden hamster cells showed similar D0 values ranging from 1.30 to 1.56 Gy. When cells were irradiated with X rays, ten times more chromosome aberrations were detected in human cells than in Mongolian gerbil cells. The frequencies of chromosome aberrations in other rodent cells were between the values for cells from humans and those from gerbils. These data indicate that the Mongolian gerbil cells are resistant to X-ray-induced cell killing and chromosome aberrations, and that the radiation sensitivity of mammalian cells in primary culture may be reflected by their radioresistance in vivo.  相似文献   

16.
17.
18.
19.
Using the neutral filter elution technique, the induction of DNA double-strand breaks (dsb) has been measured in 250 kVp X-irradiated V79-379A Chinese hamster cells irradiated under air or nitrogen. The dose-effect curves for induced dsb were curvilinear, mirroring cell survival curves, such that there was an approximately linear relationship between induced dsb and lethal lesions (-In (cell survival)) which was independent of oxygen. With cells irradiated with 2.3 MeV neutrons or 238Pu alpha-particles the correlations between lethal events and dsb, although also approximately linear, do not match those for X-rays. With neutrons there is approximately a 2.5-fold reduction in the level of dsb induction per lethal event. Thus either the apparently linear relationships found are spurious, and there is no general correlation between induced dsb and lethal effect, or there are qualitative differences between neutron, alpha-particle and X-ray induced dsb that give them differing probabilities of cell kill.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号