首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A useful method of enzyme glucose sensor sterilization has not only to ensure the needs of sterility assurance but has also to guarantee the functional stability of the sensors. The action of 2 or 3% alkalinized glutaraldehyde solution, as well as gamma irradiation with a dose of 25 kGy caused changes of the in vitro functionality and polymer material irritations, respectively. After a combined treatment by 0.6% hydrogen peroxide solution acting over 4 days with 7 kGy gamma irradiation only a slight loss of sensitivity must be registered. The combination of a specially designed universal homogeneous ultraviolet irradiation over 300 s with a 3 days lasting treatment by an inclusion compound of hydrogen peroxide with tensides in urea (0.15% effective hydrogen peroxide concentration) did not cause any influence on the glucose sensor function in vitro. With all methods tested here, a Bacillus subtilis spore reduction over 8 log(10) cycles from 10(6) to 10(-2) spores per test object on an average could be proved experimentally. In general, if non-thermal methods must be used it seems to be impossible to guarantee a sterility assurance level of 10(-6) as it is demanded by the pharmacopoeias. Consequently, effective concepts to produce sterile glucose biosensors for medical and biological applications should be based not only on final product treatments but should include germ reducing measures in every manufacturing step.  相似文献   

2.
Disposal of the pumped contents of septic tanks (septage) represents a possible means of dissemination of enteric pathogens including viruses, since persistence of enteroviruses in septic tank sludge for greater than 100 days has been demonstrated. The risk of exposure to potentially infectious agents can be reduced by disinfecting septages before their disposal. Of the septage disinfectants examined (technical and analytical grade glutaraldehyde, hydrogen peroxide, heat treatments, and a combination of heat and hydrogen peroxide), the treatment including hydrogen peroxide (5 mg, plus 0.33 mg of trichloroacetic acid, per ml of septage) and 55 degrees C killed virtually all the bacteria in septage within 1 h, whereas 55 degrees C alone inactivated inoculated polioviruses within 30 min. Virus was the most sensitive to heat, whereas fecal coliforms appeared to be the most sensitive to all chemical treatments. The responses of fecal streptococci and virus to both grades of glutaraldehyde (each at 1 mg/ml) were similar. Virus was more resistant than either fecal streptococci or total bacteria to low concentrations of hydrogen peroxide (1 to 5 mg/ml); however, virus and fecal streptococci were more labile than total bacteria to the highest peroxide concentration (10 mg/ml) examined. It is possible that the treatment combining heat and hydrogen peroxide was the most effective in reducing the concentrations of all bacteria, because catalase and peroxidases as well as other enzymes were heat inactivated, although catalase seems the most likely cause of damage. However, this most effective treatment does not appear to be practical for on-site use as performed, so further work on septage disinfection is recommended.  相似文献   

3.
Disposal of the pumped contents of septic tanks (septage) represents a possible means of dissemination of enteric pathogens including viruses, since persistence of enteroviruses in septic tank sludge for greater than 100 days has been demonstrated. The risk of exposure to potentially infectious agents can be reduced by disinfecting septages before their disposal. Of the septage disinfectants examined (technical and analytical grade glutaraldehyde, hydrogen peroxide, heat treatments, and a combination of heat and hydrogen peroxide), the treatment including hydrogen peroxide (5 mg, plus 0.33 mg of trichloroacetic acid, per ml of septage) and 55 degrees C killed virtually all the bacteria in septage within 1 h, whereas 55 degrees C alone inactivated inoculated polioviruses within 30 min. Virus was the most sensitive to heat, whereas fecal coliforms appeared to be the most sensitive to all chemical treatments. The responses of fecal streptococci and virus to both grades of glutaraldehyde (each at 1 mg/ml) were similar. Virus was more resistant than either fecal streptococci or total bacteria to low concentrations of hydrogen peroxide (1 to 5 mg/ml); however, virus and fecal streptococci were more labile than total bacteria to the highest peroxide concentration (10 mg/ml) examined. It is possible that the treatment combining heat and hydrogen peroxide was the most effective in reducing the concentrations of all bacteria, because catalase and peroxidases as well as other enzymes were heat inactivated, although catalase seems the most likely cause of damage. However, this most effective treatment does not appear to be practical for on-site use as performed, so further work on septage disinfection is recommended.  相似文献   

4.
The relative importance of hydrogen peroxide generated as a consequence of irradiation with X-rays for the production of chromosomal aberrations has been studied in cultured CHO cells. Catalase introduced into cells by electroporation protected DNA from strand breakage induced by hydrogen peroxide given 4h later, and the yield of chromosome aberrations was also reduced. Nevertheless, when the cells were irradiated after treatment with catalase following a similar protocol and the yield of chromosomal aberrations analyzed at metaphase, no protective effect was observed as compared with cells treated with X-rays alone. These observations seem to support the hypothesis that hydroxyl radicals generated from hydrogen peroxide are not a major factor responsible for chromosome damage induced by ionizing radiation.  相似文献   

5.
A "hypermutable" genome is a common characteristic of cancer cells, and it may contribute to the progressive accumulation of mutations required for the development of cancer. It has been reported that mammalian cells surviving exposure to gamma radiation display several highly persistent genomic instability phenotypes which may reflect a hypermutability similar to that seen in cancer. These phenotypes include an increased mutation frequency and a decreased plating efficiency, and they continue to be observed many generations after the radiation exposure. The underlying causes of this genomic instability have not been fully determined. We show here that exposure to gamma radiation and other DNA-damaging treatments induces a similar genomic instability in the yeast Saccharomyces cerevisiae. A dose-dependent increase in intrachromosomal recombination was observed in cultures derived from cells surviving gamma irradiation as many as 50 generations after the exposure. Increased forward mutation frequencies and low colony-forming efficiencies were also observed. Persistently elevated recombination frequencies in haploid cells were dominant after these cells were mated to nonirradiated partners, and the elevated recombination phenotype was also observed after treatment with the DNA-damaging agents ultraviolet light, hydrogen peroxide, and ethyl methanesulfonate. Radiation-induced genomic instability in yeast may represent a convenient model for the hypermutability observed in cancer cells.  相似文献   

6.
H Horiuchi  M Takagi    K Yano 《Journal of bacteriology》1984,160(3):1017-1021
The relaxation of plasmid DNA was observed after the visible light irradiation of Escherichia coli AB1157 harboring plasmid pBR322 or some other plasmids in the presence of a photosensitizing dye, such as toluidine blue or acridine orange, and molecular oxygen. Treatment of the cells with hydroperoxides, such as tert-butyl hydroperoxide, cumene hydroperoxide, and hydrogen peroxide, also caused the plasmid DNA relaxation in vivo. Relaxation was not observed in these treatments of purified pBR322 DNA in vitro. Plasmid DNA relaxation was also detected after near-UV irradiation. Far-UV irradiation did not induce such relaxation.  相似文献   

7.
The hydrogen peroxide production upon vacuum ultraviolet (VUV) irradiation of water is reviewed, because published results from the last 10 years lead to conflicting mechanistic interpretations. This work confirms that in pure water, hydrogen peroxide is only produced in the presence of molecular oxygen. Mechanistic schemes explain these findings and confirm earlier statements that recombination of hydroxyl radicals is kinetically disfavoured. In agreement with other recent publications, this work confirms that enhanced hydrogen peroxide production takes place upon VUV irradiation of aqueous solutions of organic compounds. For these investigations, methanol was chosen as an organic model compound. During photolyses, hydrogen peroxide, dissolved molecular oxygen, pH-value of the reaction system, methanol and its products of oxidative degradation were analyzed, and kinetic studies were undertaken to explain the evolution of the concentrations of these components.  相似文献   

8.
An in vivo comparison of topical agents on wound repair.   总被引:2,自引:0,他引:2  
Selection of the ideal antiseptic or antimicrobial treatment for contaminated wounds remains a controversial decision. Clinical decisions are often made on the basis of in vitro studies and personal preference. Although topical solutions are widely used, their comparative in vivo effects on wound healing are largely unreported.A porcine wound model was used to compare five commonly used topical agents-5% mafenide acetate (Sulfamylon solution), 10% povidone with 1% free iodine (Betadine), 0.25% sodium hypochlorite ("half-strength" Dakin), 3% hydrogen peroxide, and 0.25% acetic acid-with a control group. Reepithelialization, angiogenesis, neodermal regeneration, fibroblast proliferation, collagen production, and bacterial colony counts were analyzed at 4 and 7 days after wounding (n = 4).Reepithelialization was not significantly influenced among the various treatment modalities tested. Sulfamylon and Dakin solutions significantly increased neodermal thickness (p < 0.05), whereas hydrogen peroxide and acetic acid significantly inhibited neodermal formation (p < 0.001). All treatments except hydrogen peroxide significantly increased fibroblast proliferation. Sulfamylon and Betadine significantly enhanced angiogenesis (p < 0.05). Sulfamylon proved most effective in maintaining an aseptic environment while concomitantly increasing angiogenesis, fibroblast proliferation, and dermal thickness compared with control.These data show that selection of a particular topical treatment can affect various aspects of wound repair in an animal model. These results suggest that the selection of topical treatments in the clinical setting should be carefully tailored to match unique wound situations and therapeutic endpoints.  相似文献   

9.
Free peritoneal mast-cells of the rat are stimulated in vitro by molecular oxygen as well as by hydrogen peroxide. Histamine release is also observed in vivo when molecular oxygen or diluted solutions of hydrogen peroxide are injected into the peritoneal cavity of the rat. Inflammatory lesions are produced (vascular congestion, oedema, exudate) which are suppressed by pretreatment with anti-H1 antihistaminics. When hydrogen peroxide solutions are more concentrated, inflammation is also provoked but antihistaminics are no more inhibitory. Mast-cells of the skin and of the lungs are not stimulated neither by molecular oxygen, nor by hydrogen peroxide.  相似文献   

10.
The bactericidal properties of peracetic acid, hydrogen peroxide, chlorine, and formaldehyde were compared in vitro using a rapid micromethod. A combination of peracetic acid and hydrogen peroxide was also tested to assess interactions. The activities of these agents, which are widely used as disinfectants, were evaluated against water isolates and culture collection strains. Peracetic acid and chlorine exhibited an excellent antimicrobial activity, with a relatively rapid destruction of 10(5) bacteria/mL. The time-dependent bactericidal activities of hydrogen peroxide and formaldehyde were the lowest. The combination of peracetic acid and hydrogen peroxide, tested by a checkerboard micromethod, was found to be synergistic. The minimal bactericidal concentration was established in terms of time for a given mixture of peracetic acid and hydrogen peroxide. Determination of bactericidal concentrations showed that synergy was maintained with increasing contact time. Concentrations for minimal times of treatment by chemicals that provided interesting activities in vitro were tested for disinfection of ultrafiltration membranes. The bactericidal activities of peroxygen compounds were confirmed and synergism was maintained in working conditions. Chlorine showed a loss of efficacy when used on membranes.  相似文献   

11.
Insulin, ribonuclease, papain and collagen solutions saturated with nitrogen, N2O or air were irradiated with doses of 10 to 640 Gy of gamma rays. Protein solutions were also oxidized enzymatically in a system of horse-radish peroxidase: hydrogen peroxide. Column chromatography (Sephadex G-75 or Sephacryl S-200) of treated protein solutions revealed that they contain protein molecular aggregates. Nitrogen saturation of solution before irradiation was most favourable for radiation-induced aggregation of proteins. Fluorescence analysis of protein solutions resulted in detection of dityrosyl structures in irradiated as well as in enzymatically oxidized proteins. Concentration of dityrosine in proteins studied was determined fluorimetrically in their hydrolysates separated on BioGel P-2 column. In irradiated proteins, dityrosine was present almost exclusively in their aggregated forms. In proteins oxidized enzymatically, dityrosine was also present in fractions containing apparently unchanged protein. Mechanisms which could account for differences in the yield of dityrosine formation in radiolysis and in enzymatic oxidation of proteins are suggested.  相似文献   

12.
Feruloylated arabinoxylans isolated from wheat flour and wheat bran were compared in their cross-linking behaviour with respect to viscosity properties and cross-linking products formed when various oxidative agents were applied to dilute solutions. Optimal conditions for each oxidative agent were investigated. In case of hydrogen peroxide and peroxidase, similar conditions were found for both types of arabinoxylans but wheat bran arabinoxylans gave a larger viscosity increase upon cross-linking than those of wheat flour.

When glucose, glucoseoxidase and peroxidase or ammonium persulphate were used as oxidative agents, differences in the concentration of reagent needed to induce cross-linking and in viscosity increase were observed. The distribution of coupling products for both types of arabinoxylans and the different oxidative treatments was approximately 5 : 3 : 1 : 1 for 8-5, 8-O-4, 8-8 and 5-5, respectively. The low ferulate recovery after oxidative treatment was assumed to be caused by formation of unknown compounds, such as higher oligomers and lignin-linked products.

A 1 : 1 mixture of flour arabinoxylan and feruloylated pectin showed a maximum synergistic effect on viscosity upon oxidative treatment using hydrogen peroxide and peroxidase. Both polysaccharides were shown to participate in cross-linking.  相似文献   


13.
Aqueous N2O/O2-saturated solutions of poly(U) were irradiated at 0 degrees C and the release of unaltered uracil determined. Immediately after irradiation G(uracil release) was 1.5 which increased to a value of 5.3 +/- 0.3 upon heating to 95 degrees C. Thereby all of the organic hydroperoxides (G = 6.8 +/- 0.7) and some of the hydrogen peroxide (G = 1.7 +/- 0.2) was destroyed leaving G(peroxidic material; mainly hydrogen peroxide) = 1.0 +/- 0.7. G(chromophore loss) = 8-11 was measured immediately after irradiation, but no increase was observed upon heating. Addition of iodide destroyed the hydroperoxides and caused immediate base release to rise to G = 4 and further heating brought the value to that observed in the absence of iodide. In contrast, on reducing the hydroperoxides with NaBH4, immediate uracil release rose to only G = 2.8 and no further increase was observed on heating. A major product (G = 2.7) is carbon dioxide. There are also osazone-forming compounds produced (G = 2.7), all of which are originally bound to poly(U). Heating in acid solutions, as is required for this test, releases glycoladehyde-derived osazone (G = 0.8) and further unidentified low molecular weight material (G = 0.9). It is concluded that the primary radicals which cause these lesions are the base OH adduct radicals. In the presence of oxygen these are converted into the corresponding peroxyl radicals which abstract an H atom from the sugar moiety. In the course of this reaction base-hydroperoxides are formed. However, such base hydroperoxides cannot be the only organic hydroperoxides, but some (G congruent to 2.5) sugar-hydroperoxides must be formed as indicated by the increase in base release by the addition of iodide. It is speculated that a sugar-hydroperoxide located at C(3') is reduced by iodide to a carbonyl function at C(3'), a lesion that releases the base, while reduction with NaBH4 reduces it to an alcohol function at C(3') thus preventing base release.  相似文献   

14.
Bacteriophage T1 was suspended in distilled water and in phosphate buffer, saturated with oxygen, nitrogen, hydrogen, and carbon monoxide, and irradiated with gamma rays and x-rays. Under the same conditions phage was exposed to hydrogen peroxide. Oxygen acted as a protective agent against both irradiation and hydrogen peroxide inactivation. As a protective agent against irradiation, oxygen was more efficient in distilled water than in buffer. The phage was much more sensitive to irradiation in the presence of hydrogen or nitrogen than in the presence of oxygen. Survivals of phage irradiated in suspensions saturated with hydrogen and with nitrogen did not differ significantly. From this it was concluded that oxygen did not protect T1 by removing atomic hydrogen from the irradiated medium, since the hydrogen-saturated medium increased the yield of atomic hydrogen but did not increase the yield of inactivated phage. It was presumed, therefore, that phage is sensitive to OH radicals and this was confirmed by irradiating phage with UV in the presence of hydrogen peroxide and comparing this survival with the survivals obtained from hydrogen peroxide alone and from UV alone. The combined effect of hydrogen peroxide and UV acting simultaneously was greater than the effect attributable to hydrogen peroxide and UV acting separately. Evidence for sensitivity to HO2 radicals was considered, and the effect was attributed chiefly to an oxidizing action since phage sensitivity is greater at higher hydrogen ion concentrations, which favor oxidation by HO2 radicals. Since the OH radical is a more efficient oxidizing agent than O-, the former being favored in an acid medium, the latter in an alkaline medium, and since the phage is more sensitive in the first situation than in the second, the present tests proved the importance of oxidation as the mechanism of inactivation. Since some inactivation was encountered when phage was exposed to reducing agents, independently of irradiation, it was concluded that phage is somewhat sensitive to reducing agents, but the inactivation attributable to ionizing radiations is due chiefly to oxidation, against which these reducing agents are very efficient protectors. Under no circumstances did hydrogen peroxide protect T1, whether produced by irradiation in the medium or added beforehand to the medium to be irradiated. The first point was investigated by irradiating T1 in the presence of hydrogen and oxygen combined; this produced a higher yield of hydrogen peroxide but a lower survival of T1. In all these tests phage survival under irradiation was directly correlated with oxygen content of the medium rather than with production of hydrogen peroxide. It is proposed that the protective effect of oxygen is due to a reaction between the phage and oxygen, and this complex confers stability upon the phage.  相似文献   

15.
The antimicrobial properties of aqueous solutions of peracetic acid and hydrogen peroxide have been compared. Peracetic acid exhibited excellent antimicrobial properties, especially under acidic conditions. Reductions by a factor of 106 in the numbers of vegetative bacteria are obtained within 1 min at 25°C using a solution containing 1.3 mmol/l of peracetic acid. Rapid activity against bacterial spores and yeasts also occurs. Hydrogen peroxide is more effective as a sporicide than as a bactericide, with sporicidal action being obtained using a solution containing 0.88 mol/l. Bactericidal action is poor but hydrogen peroxide was bacteriostatic at concentrations above 0.15 mmol/l.  相似文献   

16.
Our previous results indicated a close relationship between the presence of a BRCA1 mutation in lymphocytes and hypersensitivity for the induction of micronuclei by gamma irradiation and hydrogen peroxide (H(2)O(2)). Comparative investigations with the comet assay (single-cell gel electrophoresis) suggested a normal rate of damage removal and pointed to a disturbed fidelity of DNA repair as a direct or indirect consequence of a BRCA1 mutation. We now wanted to see whether similar results could be obtained with lymphoblastoid cell lines (LCLs) and whether such permanent cells are suitable as a model for the investigation of mechanisms involved in mutagen sensitivity. Our results show that LCLs with a BRCA1 mutation are also hypersensitive to the chromosome-damaging effects of gamma irradiation or H(2)O(2), as revealed by the micronucleus test. Interestingly, LCLs heterozygous for an ataxia telangiectasia (AT) mutation have similar characteristics as BRCA1 cells with respect to the induction and repair of DNA damage induced by either gamma irradiation or H(2)O(2). However, caffeine enhanced the induction of micronuclei by gamma irradiation only in normal and heterozygous AT cells but not in BRCA1 cells, thus indicating a difference in the pathways leading to mutagen sensitivity in cells with a BRCA1 or an AT mutation. Our results suggest that caffeine could be useful in discriminating AT heterozygotes from carriers of a BRCA1 mutation, as well as BRCA1 mutation carriers from normal individuals.  相似文献   

17.
Synopsis A densitometric method was utilized in the measurement of the relative thickness of the cellular membranes in the ventral lobe of the rat prostate. Potassium permanganate, glutaraldehyde, osmium tetroxide, and ruthenium tetroxide solutions were used as fixatives. During preparation for electron microscopy, the tissues were given standardized treatments to reduce methodological errors; latex particles were applied to the thin sections to serve as reference particles of a known size. The most remarkable observation of the study was that the densitometric method yielded reproducible results and that the different fixatives gave significantly different values for the relative thickness of cellular membranes. Glutaraldehyde, or glutaraldehyde followed by ruthenium tetroxide post-fixation, gave the highest values for membrane thickness while osmium tetroxide and potassium permanganate gave the lowest values. Glutaraldehyde treatment, prior to osmium tetroxide or potassium permanganate post-fixations, rendered the membranes thicker than after osmium tetroxide and potassium permanganate treatments alone. Ruthenium tetroxide appeared to be very suitable for fixation of cellular membranes.  相似文献   

18.
The effect of ribonucleosides on 8-oxoguanine formation in salmon sperm DNA dissolved in 1 mM phosphate buffer, pH 6.8, upon exposure to gamma rays was examined by ELISA using monoclonal antibodies against 8-oxoguanine. Nucleosides (1 mM) decreased the radiation-induced yield of 8-oxoguanine in the order Guo > Ino > Ado > Thd > Urd > Cyd. Guanosine and inosine considerably reduced deamination of cytosine in the DNA solutions upon heating for 24 h at 80 degrees C. The action of nucleosides on the heat-induced generation of reactive oxygen species in the phosphate buffer was studied. The concentration of hydrogen peroxide was measured by enhanced chemiluminescence in a peroxidase-luminol-p-iodophenol system; the hydroxyl radical formation was measured fluorometrically by the use of coumarin-3-carboxylic acid. Guanosine and inosine considerably decreased the heat-induced production of both hydrogen peroxide and OH radicals. Guanosine and inosine increased survival of mice after a lethal dose of radiation. They especially enhanced the survival of animals when were administered shortly after irradiation. The results indicate that guanosine and inosine, natural antioxidants, prevent oxidative damage to DNA, decrease the generation of ROS, and protect mice against gamma-radiation-induced death.  相似文献   

19.
Lipid peroxidation in isolated membranes of Salmonella typhi occurred following gamma irradiation. The presence of the sensitizer, ascorbic acid, during irradiation resulted in a stimulation in the level of peroxidation. This enhancement of lipid damage could be prevented by the addition of the free radical scavenger sodium formate. Catalase and superoxide dismutase appeared less effective in this respect. Peroxidation in an unsaturated fatty acid and a phospholipid was also affected by gamma radiation and ascorbic acid in a manner similar to that observed in the cell membranes. The results suggest that hydroxyl radicals may be the major species responsible for the increased peroxidation effected by the sensitizer.  相似文献   

20.
Hydroxyl radicals and hydrogen atoms were produced in argon-saturated aqueous solutions exposed to ultrasound using clinical dental equipment. .OH and .H radicals were detected and identified by ESR and were spin trapped with 5,5-dimethyl-1-delta-pyrroline-N-oxide (DMPO) and alpha-4-pyridyl-1-oxide-N-tert-butylnitrone (POBN). The observed ESR spectra were compared with those obtained from sonolysis of argon-saturated water in an ultrasonic bath, from gamma radiolysis of air-saturated water, and from uv photolysis of aqueous hydrogen peroxide solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号