首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many tumor cells are capable of migrating through endothelial cell (EC) junctions and disintegrating sub-endothelial extracellular matrix to achieve extravasation. We demonstrate in this study that certain solid tumor cells can induce EC apoptosis to facilitate their escape from the circulation. The EC apoptosis is triggered by elevated intracellular reactive oxygen species (ROS) levels and direct contacts with tumor cells are required. Treating ECs with antioxidants, such as ascorbate and N-acetyl-L-cysteine (NAC), and a glutathione precursor can rescue the ECs from tumor-induced apoptosis and reduce the number of tumor cells migrating across endothelial barriers. NAD(P)H oxidase was identified as the major ROS producer in the event since inhibitors and small interference RNA specific to the enzyme could abrogate the tumor-induced ROS production and hence EC death. This study also provides evidence showing that the interaction between tumor and EC increases intracellular Ca(2+) concentration and activates protein kinase C (PKC) activity, which leads to NAD(P)H oxidase activation through the serine-phosphorylation of p47(phox) subunit. These findings suggest that blocking the tumor-induced EC apoptosis is a potential way to prevent tumor metastasis.  相似文献   

2.
Phenotypic differentiation of adventitial fibroblasts into myofibroblasts is an essential feature of vascular remodeling. The present study was undertaken to test the hypothesis that reactive oxygen species (ROS) are involved in rat adventitial fibroblast differentiation to myofibroblast. Activation of alpha-smooth muscle actin (alpha-SMA) was used as a marker of myofibroblast. Angiotensin II increased intracellular ROS in adventitial fibroblasts that was completely inhibited by the free radical scavenger NAC, the NAD(P)H oxidase inhibitor DPI, and transfection of antisense gp91phox oligonucleotides. Myofibroblast differentiation was prevented by inhibition of ROS generation with DPI, NAC, and antisense gp91phox as shown by decreased expression of alpha-SMA. Angiotensin II rapidly induced phosphorylation of p38 MAPK and JNK, both of which were inhibited by DPI, NAC, antisense gp91phox, and the selective AT1 receptor antagonist, losartan. Inhibiting p38MAPK with SB202190 or JNK with SP600125 also reduced angiotensin II-induced alpha-SMA expression. These findings demonstrate that angiotensin II induces adventitial fibroblast differentiation to myofibroblast via a pathway that involves NADPH oxidase generation of ROS and activation of p38MAPK and JNK pathways.  相似文献   

3.
Reduced levels of cGMP-dependent protein kinase I (PKG-I) in vasculature have been shown to contribute to diabetic vascular dysfunctions. However, the underlying mechanisms remain unknown. In this report, using primary rat aortic smooth muscle cells (VSMC), we investigated the mechanisms of glucose-mediated regulation of PKG-I expression. Our data showed that high glucose (30 mM glucose) exposure significantly reduced PKG-I production (protein and mRNA levels) as well as PKG-I activity in cultured VSMC. Glucose-mediated decreases in PKG-I levels were inhibited by a superoxide scavenger (tempol) or NAD(P)H oxidase inhibitors (diphenylene iodonium or apocynin). High glucose exposure time-dependently increased superoxide production in VSMC, which was abolished by tempol or apocynin treatment, but not by other inhibitors of superoxide-producing enzymes (L-NAME, rotenone, or oxypurinol). Total protein levels and phosphorylated levels of p47phox (an NADPH oxidase subunit) were increased in VSMC after high glucose exposure. Transfection of cells with siRNA-p47phox abolished glucose-induced superoxide production and restored PKG-I protein levels in VSMC. Treatment of cells with PKC inhibitor prevented glucose-induced p47phox expression/phosphorylation and superoxide production and restored the PKG-I levels. Decreased PKG-I protein levels were also found in femoral arteries from diabetic mice, which were associated with the decreased DEA-NONOate-induced vasorelaxation. Taken together, the present results suggest that glucose-mediated down-regulation of PKG-I expression in VSMC occurs through PKC-dependent activation of NAD(P)H oxidase-derived superoxide production, contributing to diabetes-associated vessel dysfunctions.  相似文献   

4.
We tested the hypothesis that age-related endothelial dysfunction in rat soleus muscle feed arteries (SFA) is mediated in part by NAD(P)H oxidase-derived reactive oxygen species (ROS). SFA from young (4 mo) and old (24 mo) Fischer 344 rats were isolated and cannulated for examination of vasodilator responses to flow and acetylcholine (ACh) in the absence or presence of a superoxide anion (O(2)(-)) scavenger (Tempol; 100 μM) or an NAD(P)H oxidase inhibitor (apocynin; 100 μM). In the absence of inhibitors, flow- and ACh-induced dilations were attenuated in SFA from old rats compared with young rats. Tempol and apocynin improved flow- and ACh-induced dilation in SFA from old rats. In SFA from young rats, Tempol and apocynin had no effect on flow-induced dilation, and apocynin attenuated ACh-induced dilation. To determine the role of hydrogen peroxide (H(2)O(2)), dilator responses were assessed in the absence and presence of catalase (100 U/ml) or PEG-catalase (200 U/ml). Neither H(2)O(2) scavenger altered flow-induced dilation, whereas both H(2)O(2) scavengers blunted ACh-induced dilation in SFA from young rats. In old SFA, catalase improved flow-induced dilation whereas PEG-catalase improved ACh-induced dilation. Compared with young SFA, in response to exogenous H(2)O(2) and NADPH, old rats exhibited blunted dilation and constriction, respectively. Immunoblot analysis revealed that the NAD(P)H oxidase subunit gp91phox protein content was greater in old SFA compared with young. These results suggest that NAD(P)H oxidase-derived reactive oxygen species contribute to impaired endothelium-dependent dilation in old SFA.  相似文献   

5.
Tumour–stroma interaction is a prerequisite for tumour progression in skin cancer. Hereby, a critical step in stromal function is the transition of tumour-associated fibroblasts to MFs (myofibroblasts) by growth factors, for example TGFβ (transforming growth factor beta(). In this study, the question was addressed of whether fibroblast-associated NAD(P)H oxidase (NADH/NADPH oxidase), known to be activated by TGFβ1, is involved in the fibroblast-to-MF switch. The up-regulation of αSMA (alpha smooth muscle actin), a biomarker for MFs, is mediated by a TGFβ1-dependent increase in the intracellular level of ROS (reactive oxygen species). This report demonstrates two novel aspects of the TGFβ1 signalling cascade, namely the generation of ROS due to a biphasic NAD(P)H oxidase activity and a ROS-dependent downstream activation of p38 leading to a transition of dermal fibroblasts to MFs that can be inhibited by the selective NAD(P)H oxidase inhibitor apocynin. These data suggest that inhibition of NAD(P)H oxidase activity prevents the fibroblast-to-MF switch and may be important for chemoprevention in context of a ‘stromal therapy’ which was described earlier.  相似文献   

6.
Reactive oxygen species (ROS) are essential mediators of normal cell physiology. However, in the last few decades, it has become evident that ROS overproduction and/or alterations of the antioxidant system associated with inflammation and metabolic dysfunction are key pathological triggers of cardiovascular disorders. NADPH oxidases (Nox) represent a class of hetero-oligomeric enzymes whose primary function is the generation of ROS. In the vasculature, Nox-derived ROS contribute to the maintenance of vascular tone and regulate important processes such as cell growth, proliferation, differentiation, apoptosis, cytoskeletal organization, and cell migration. Under pathological conditions, excessive Nox-dependent ROS formation, which is generally associated with the up-regulation of different Nox subtypes, induces dysregulation of the redox control systems and promotes oxidative injury of the cardiovascular cells. The molecular mechanism of Nox-derived ROS generation and the means by which this class of molecule contributes to vascular damage remain debatable issues. This review focuses on the processes of ROS formation, molecular targets, and neutralization in the vasculature and provides an overview of the novel concepts regarding Nox functions, expression, and regulation in vascular health and disease. Because Nox enzymes are the most important sources of ROS in the vasculature, therapeutic perspectives to counteract Nox-dependent oxidative stress in the cardiovascular system are discussed.  相似文献   

7.
8.
The effect of different oxygen radical-generating systems on NAD(P)H was determined by incubating the reduced forms of the pyridine coenzymes with either Fe2+-H2O2 or Fe3+-ascorbate and by analyzing the reaction mixtures using a HPLC separation of adenine nucleotide derivatives. The effect of the azo-initiator 2,2'-azobis(2-methylpropionamidine)dihydrochloride was also tested. Results showed that, whilst all the three free radical-producing systems induced, with different extent, the oxidation of NAD(P)H to NAD(P)+, only Fe2+-H2O2 also caused the formation of equimolar amounts of ADP-ribose(P) and nicotinamide. Dose-dependent experiments, with increasing Fe2+ iron (concentration range 3-180 μM) or H2O2 (concentration range 50-1000 μM), were carried out at pH 6.5 in 50 mM ammonium acetate. NAD(P)+, ADP-ribose(P) and nicotinamide formation increased by increasing the amount of hydroxyl radicals produced in the medium. Under such incubation conditions NAD(P)+/ADP-ribose(P) ratio was about 4 at any Fe2+ or H2O2 concentration. By varying pH to 2.0, 3.0, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0 and 7.4, NAD(P)+/ADP-ribose(P) ratio changed to 5.5, 3.2, 1.8, 1.6, 2.0, 2.5, 3.0, 5.4 and 6.5, respectively. Kinetic experiments indicated that 90-95% of all compounds were generated within 5s from the beginning of the Fenton reaction. Inhibition of ADP-ribose(P), nicotinamide and NAD(P)+ production of Fe2+-H2O2-treated NAD(P)H samples, was achieved by adding mannitol (10-50 mM) to the reaction mixture. Differently, selective and total inhibition of ADP-ribose(P) and nicotinamide formation was obtained by performing the Fenton reaction in an almost completely anhydrous medium, i.e. in HPLC-grade methanol. Experiments carried out in isolated postischemic rat hearts perfused with 50 mM mannitol, showed that, with respect to values of control hearts, this hydroxyl radical scavenger prevented reperfusion-associated pyridine coenzyme depletion and ADP-ribose formation. On the basis of these results, a possible mechanism of action of ADP-ribose(P) and nicotinamide generation through the interaction between NAD(P)H and hydroxyl radical (which does not involve the C-center where “conventional” oxidation occurs) is presented. The implication of this phenomenon in the pyridine coenzyme depletion observed in postischemic tissues is also discussed.  相似文献   

9.
In the present study we sought to determine the ability of the chemiluminescence dye 8-amino-5-chloro-7-phenylpyridol[3,4-d]pyridazine-1,4-(2H,3H)dione sodium salt (L-012) to detect superoxide in different biological systems. In human whole blood or isolated leukocytes, the sensitivity of the luminol analogue L-012 to detect superoxide was higher as compared with luminol, lucigenin, coelenterazine, and the fluorescence dye dihydroethidine. In isolated leukocytes as well as aortic rings from control (New Zealand White) and hyperlipidemic (Watanabe heritable hyperlipidemic) rabbits, L-012-enhanced chemiluminescence was successful in detecting differences in superoxide formation under basal conditions and on stimulation with the direct activator of protein kinase C, phorbol 12,13-dibutyrate (PDBu). The effects of PDBu were abrogated by gliotoxin and inhibitors of protein kinase C such as chelerythrine, identifying NAD(P)H oxidase as the significant superoxide source. Experiments using electron paramagnetic resonance and the spin trap 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide revealed that in contrast to lucigenin, L-012 is not subject to redox cycling. These findings indicate that L-012-enhanced chemiluminescence represents a sensitive and reliable probe to detect superoxide in whole blood, inflammatory cells, and vascular tissue.  相似文献   

10.
Fibrotic disorders are typified by excessive connective tissue and extracellular matrix (ECM) deposition that precludes normal healing processes in different tissues. Angiotensin-II (Ang-II) is involved in the fibrotic response. Several muscular dystrophies are characterized by extensive fibrosis. However, the exact role of Ang-II in skeletal muscle fibrosis is unknown. Here we show that myoblasts responded to Ang-II by increasing protein levels of connective tissue growth factor (CTGF/CCN2), collagen-III and fibronectin. These Ang-II-induced pro-fibrotic effects were mediated by AT-1 receptors. Remarkably, Ang-II induced reactive oxygen species (ROS) via a NAD(P)H oxidase-dependent mechanism, as shown by inhibition of ROS production via the NAD(P)H oxidase inhibitors diphenylene iodonium (DPI) and apocynin. This increase in ROS is critical for Ang-II-induced fibrotic effects, as indicated by the decrease in Ang-II-induced CTGF and fibronectin levels by DPI and apocynin. We also show that Ang-II-induced ROS production and fibrosis require PKC activity as indicated by the generic PKC inhibitor chelerythrine.These results strongly suggest that the fibrotic response induced by Ang-II is mediated by AT-1 receptor and requires NAD(P)H-induced ROS in skeletal muscle cells.  相似文献   

11.
Hypoxia sensing and related signaling events, including activation of hypoxia-inducible factor 1 (HIF-1), represent key features in cell physiology and lung function. Using cultured A549 cells, we investigated the role of NAD(P)H oxidase 1 (Nox1), suggested to be a subunit of a low-output NAD(P)H oxidase complex, in hypoxia signaling. Nox1 expression was detected on both the mRNA and protein levels. Upregulation of Nox1 mRNA and protein occurred during hypoxia, accompanied by enhanced reactive oxygen species (ROS) generation. A549 cells, which were transfected with a Nox1 expression vector, revealed an increase in ROS generation accompanied by activation of HIF-1-dependent target gene expression (heme oxygenase 1 mRNA, hypoxia-responsive-element reporter gene activity). In A549 cells stably overexpressing Nox1, accumulation of HIF-1alpha in normoxia and an additional increase in hypoxia were noted. Interference with ROS metabolism by the flavoprotein inhibitor diphenylene iodonium (DPI) and catalase inhibited HIF-1 induction. This suggests that H2O2 links Nox1 and HIF-1 activation. We conclude that hypoxic upregulation of Nox1 and subsequently augmented ROS generation may activate HIF-1-dependent pathways.  相似文献   

12.
We recently reported that alpha(1)-adrenoceptor (alpha(1)-AR) stimulation induces hypertrophy via activation of the mitogen/extracellular signal-regulated kinase (MEK) 1/2-extracellular signal-regulated kinase (ERK) 1/2 pathway and generates reactive oxygen species (ROS) in adult rat ventricular myocytes (ARVM). Here we investigate the intracellular source of ROS in ARVM and the mechanism by which ROS activate hypertrophic signaling after alpha(1)-AR stimulation. Pretreatment of ARVM with the ROS scavenger Mn(III)terakis(1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP) completely inhibited the alpha(1)-AR-stimulated activation of Ras-MEK1/2-ERK1/2. Direct addition of H(2)O(2) or the superoxide generator menadione activated ERK1/2, which is also prevented by MnTMPyP pretreatment. We found that ARVM express gp91(phox), p22(phox), p67(phox), and p47(phox), four major components of NAD(P)H oxidase, and that alpha(1)-AR-stimulated ERK1/2 activation was blocked by four structurally unrelated inhibitors of NAD(P)H oxidase [diphenyleneiodonium, phenylarsine oxide, 4-(2-aminoethyl)benzenesulfonyl fluoride, and cadmium]. Conversely, inhibitors for other potential ROS-producing systems, including mitochondrial electron transport chain, nitric oxide synthase, xanthine oxidase, and cyclooxygenase, had no effect on alpha(1)-AR-stimulated ERK1/2 activation. Taken together, our results show that ventricular myocytes express components of an NAD(P)H oxidase that appear to be involved in alpha(1)-AR-stimulated hypertrophic signaling via ROS-mediated activation of Ras-MEK1/2-ERK1/2.  相似文献   

13.
Previously, tamoxifen (TAM) has been shown to induce apoptosis through elevation of intracellular Ca2+ in HepG2 human hepatoblastoma cells. In this study we investigated the role of reactive oxygen species (ROS) in the TAM-induced apoptosis, and interrelationship between intracellular Ca2+ and ROS. TAM induced a slow and sustained increase in intracellular ROS level. An antioxidant, N-acetylcysteine significantly inhibited both ROS production and apoptosis induced by TAM, suggesting that ROS may play an essential role in the TAM-induced apoptosis. In a time frame ROS generation followed intracellular Ca2+ increase, and the extracellular and intracellular Ca2+ chelation with EGTA and BAPTA/AM, respectively, completely inhibited the TAM-induced ROS production, indicating that intracellular Ca2+ may mediate the ROS generation. Inhibitors of NAD(P)H oxidase, diphenylene iodonium, phenylarsine oxide and neopterine, significantly blocked the TAM-induced ROS generation and apoptosis, implying that this oxidase may act as a source enzyme for the production of ROS. These results suggest that non-phagocytic NAD(P)H oxidase may play a novel role as a mediator of the apoptosis associated with intracellular Ca2+ in HepG2 cells.  相似文献   

14.
One reason why pancreatic cancer is so aggressive and unresponsive to treatments is its resistance to apoptosis. We report here that reactive oxygen species (ROS) are a prosurvival, antiapoptotic factor in pancreatic cancer cells. Human pancreatic adenocarcinoma MIA PaCa-2 and PANC-1 cells generated ROS, which was stimulated by growth factors (serum, insulin-like growth factor I, or fibroblast growth factor-2). Growth factors also stimulated membrane NAD(P)H oxidase activity in these cells. Both intracellular ROS and NAD(P)H oxidase activity were inhibited by antioxidants tiron and N-acetylcysteine and the inhibitor of flavoprotein-dependent oxidases, diphenylene iodonium, but not by inhibitors of various other ROS-generating enzymes. Using Rho(0) cells deficient in mitochondrial DNA, we showed that a nonmitochondrial NAD(P)H oxidase is a major source of growth factor-induced ROS in pancreatic cancer cells. Among proteins that have been implicated in NAD(P)H oxidase activity, MIA PaCa-2 and PANC-1 cells do not express the phagocytic gp91(phox) subunit but express several nonphagocytic oxidase (NOX) isoforms. Transfection with Nox4 antisense oligonucleotide inhibited NAD(P)H oxidase activity and ROS production in MIA PaCa-2 and PANC-1 cells. Inhibiting ROS with the antioxidants, Nox4 antisense, or MnSOD overexpression all stimulated apoptosis in pancreatic cancer cells as measured by internucleosomal DNA fragmentation, phosphatidylserine externalization, cytochrome c release, and effector caspase activation. The results show that growth factor-induced ROS produced by NAD(P)H oxidase (probably Nox4) protect pancreatic cancer cells from apoptosis. This mechanism may play an important role in pancreatic cancer resistance to treatment and thus represent a novel therapeutic target.  相似文献   

15.
Summary. Owing to their chemical reactivity, radicals have cytocidal properties. Destruction of cells by irradiation-induced radical formation is one of the most frequent interventions in cancer therapy. An alternative to irradiation-induced radical formation is in principle drug-induced formation of radicals, and the formation of toxic metabolites by enzyme catalysed reactions. Although these developments are currently still in their infancy, they nevertheless deserve consideration. There are now numerous examples known of conventional anti-cancer drugs that may at least in part exert cytotoxicity by induction of radical formation. Some drugs, such as arsenic trioxide and 2-methoxy-estradiol, were shown to induce programmed cell death due to radical formation. Enzyme-catalysed radical formation has the advantage that cytotoxic products are produced continuously over an extended period of time in the vicinity of tumour cells. Up to now the enzymatic formation of toxic metabolites has nearly exclusively been investigated using bovine serum amine oxidase (BSAO), and spermine as substrate. The metabolites of this reaction, hydrogen peroxide and aldehydes are cytotoxic. The combination of BSAO and spermine is not only able to prevent tumour cell growth, but prevents also tumour growth, particularly well if the enzyme has been conjugated with a biocompatible gel. Since the tumour cells release substrates of BSAO, the administration of spermine is not required. Combination with cytotoxic drugs, and elevation of temperature improves the cytocidal effect of spermine metabolites. The fact that multidrug resistant cells are more sensitive to spermine metabolites than their wild type counterparts makes this new approach especially attractive, since the development of multidrug resistance is one of the major problems of conventional cancer therapy.  相似文献   

16.
17.
Cellular swelling triggers the activation of Cl(-) channels (volume-sensitive outwardly rectifying (VSOR) Cl(-) channels) in many cell types. Ensuing regulatory volume decrease has been considered the primary function of these channels. However, Cl(-) channels, which share functional properties with volume-sensitive Cl(-) channels, have been shown to be involved in other physiological processes, including cell proliferation and apoptosis, raising the question of their physiological roles and the signal transduction pathways involved in their activation. Here we report that exogenously applied H(2)O(2) elicited VSOR Cl(-) channel activation. Furthermore, activation of these channels was found to be coupled to NAD(P)H oxidase activity. Also, epidermal growth factor, known to increase H(2)O(2) production, activated Cl(-) channels with properties identical to swelling-sensitive Cl(-) channels. It is concluded that NAD(P)H oxidase-derived H(2)O(2) is the common signal transducing molecule that mediates the activation of these ubiquitously expressed anion channels under a variety of physiological conditions.  相似文献   

18.
Angiogenesis, a process of new blood vessel growth, contributes to various pathophysiologies such as cancer, diabetic retinopathy and atherosclerosis. Accumulating evidence suggests that cardiovascular diseases are associated with increased oxidative stress in blood vessels. Reactive oxygen species (ROS) such as superoxide and H2O2 cause blood vessels to thicken, produce inflammation in the vessel wall, and thus are regarded as "risk factors" for vascular disease, whereas ROS also act as signaling molecules in many aspects of growth factor-mediated physiological responses. Recent reports suggest that ROS play an important role in angiogenesis; however, its underlying molecular mechanisms remain unknown. Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating endothelial cell (EC) proliferation and migration primarily through the receptor tyrosine kinase VEGF receptor2 (Flk1/KDR). VEGF binding initiates tyrosine phosphorylation of KDR, which results in activation of downstream signaling enzymes including ERK1/2, Akt and eNOS, which contribute to angiogenic-related responses in EC. Importantly, the major source of ROS in EC is a NAD(P)H oxidase and EC express all the components of phagocytic NAD(P)H oxidase including gp91phox, p22phox, p47phox, p67phox and the small G protein Rac1. We have recently demonstrated that ROS derived from NAD(P)H oxidase are critically important for VEGF signaling in vitro and angiogenesis in vivo. Furthermore, a peptide hormone, angiotensin II, a major stimulus for vascular NAD(P)H oxidase, also plays an important role in angiogenesis. Because EC migration and proliferation are primary features of the process of myocardial angiogenesis, we would like to focus on the recent progress that has been made in the emerging area of NAD(P)H oxidase-derived ROS-dependent signaling in ECs, and discuss the possible roles in angiogenesis. Understanding these mechanisms may provide insight into the components of NAD(P)H oxidase as potential therapeutic targets for treatment of angiogenesis-dependent diseases such as cancer and atherosclerosis and for promoting myocardial angiogenesis in ischemic heart diseases.  相似文献   

19.
Angiogenesis, a process of new blood vessel growth, contributes to various pathophysiologies such as cancer, diabetic retinopathy and atherosclerosis. Accumulating evidence suggests that cardiovascular diseases are associated with increased oxidative stress in blood vessels. Reactive oxygen species (ROS) such as superoxide and H2O2 cause blood vessels to thicken, produce inflammation in the vessel wall, and thus are regarded as “risk factors” for vascular disease, whereas ROS also act as signaling molecules in many aspects of growth factor-mediated physiological responses. Recent reports suggest that ROS play an important role in angiogenesis; however, its underlying molecular mechanisms remain unknown. Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating endothelial cell (EC) proliferation and migration primarily through the receptor tyrosine kinase VEGF receptor2 (Flk1/KDR). VEGF binding initiates tyrosine phosphorylation of KDR, which results in activation of downstream signaling enzymes including ERK1/2, Akt and eNOS, which contribute to angiogenic-related responses in EC. Importantly, the major source of ROS in EC is a NAD(P)H oxidase and EC express all the components of phagocytic NAD(P)H oxidase including gp91phox, p22phox, p47phox, p67phox and the small G protein Rac1. We have recently demonstrated that ROS derived from NAD(P)H oxidase are critically important for VEGF signaling in vitro and angiogenesis in vivo. Furthermore, a peptide hormone, angiotensin II, a major stimulus for vascular NAD(P)H oxidase, also plays an important role in angiogenesis. Because EC migration and proliferation are primary features of the process of myocardial angiogenesis, we would like to focus on the recent progress that has been made in the emerging area of NAD(P)H oxidase-derived ROS-dependent signaling in ECs, and discuss the possible roles in angiogenesis. Understanding these mechanisms may provide insight into the components of NAD(P)H oxidase as potential therapeutic targets for treatment of angiogenesis-dependent diseases such as cancer and atherosclerosis and for promoting myocardial angiogenesis in ischemic heart diseases. (Mol Cell Biochem 264: 85–97, 2004)  相似文献   

20.
Recently, it has been shown that the exogenous addition of hydrogen peroxide (H(2)O(2)) increases endothelial nitric oxide (NO(.)) production. The current study is designed to determine whether endogenous levels of H(2)O(2) are ever sufficient to stimulate NO(.) production in intact endothelial cells. NO(.) production was detected by a NO(.)-specific microelectrode or by an electron spin resonance spectroscopy using Fe(2+)-(DETC)(2) as a NO(.)-specific spin trap. The addition of H(2)O(2) to bovine aortic endothelial cells caused a potent and dose-dependent increase in NO(.) release. Incubation with angiotensin II (10(-7) mol) elevated intracellular H(2)O(2) levels, which were attenuated with PEG-catalase. Angiotensin II increased NO(.) production by 2-fold, and this was prevented by Losartan and by PEG-catalase, suggesting a critical role of AT1 receptor and H(2)O(2) in this response(.) In contrast, NO(.) production evoked by either bradykinin or calcium ionophore was unaffected by PEG-catalase. As in bovine aortic endothelial cells, angiotensin II doubled NO(.) production in aortic endothelial cells from C57BL/6 mice but had no effect on NO(.) production in endothelial cells from p47(phox-/-) mice. In contrast, stimulated NO(.) production to a similar extent in endothelial cells from wild-type and p47(phox-/-) mice. In summary, the present study provides direct evidence that endogenous H(2)O(2), derived from the NAD(P)H oxidase, mediates endothelial NO(.) production in response to angiotensin II. Under disease conditions associated with elevated levels of angiotensin II, this response may represent a compensatory mechanism. Because angiotensin II also stimulates O(2)() production from the NAD(P)H oxidase, the H(2)O(2) stimulation of NO(.) may facilitate peroxynitrite formation in response to this octapeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号