首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mosquito stage of Plasmodium berghei was cultivated in vitro, with special attention to ookinete transformation into early oocyst. The ookinetes were obtained by in vitro culture of gametocytes taken from infected mice, purified by density gradient of metrizoic acid or a lymphocyte separation medium, and incubated either in acellular culture or in co-cultivations with mosquito cells. In acellular culture, the ookinetes were found to aggregate with each other and transformed from banana to round shapes. Their inner pellicular membranes and subpellicular microtubules partially disappeared, indicating that development to early oocyst had occurred. Co-cultivation wtih Aedes albopictus cells (C6/36 clone) revealed that ookinetes transformed into early oocyst in the medium, or invaded the cells and then transformed to early oocysts within the cell cytoplasm as well. However all of these transformed cells failed to develop further, i.e., neither deposition of the oocyst capsule nor nuclear division was observed. Many ookinetes which failed to penetrate the Aedes cells were phagocytized within three days of culture. A significant difference between invaded and transformed oocysts and phagocytized ookinetes was seen in that the former lacked vacuole membrane. Co-cultivation with Toxorhynchites amboinensis cells (TRA-284-SFG clone) permitted transformation of ookinetes into early oocysts in the medium as in the acellular culture, but no ookinete invasion nor phagocytosis by the cell was observed.  相似文献   

2.
ABSTRACT. The mosquito stage of Plasmodium berghei was cultivated in vitro, with special attention to ookinete transformation into early oocyst. The ookinetes were obtained by in vitro culture of gametocytes taken from infected mice, purified by density gradient of metrizoic acid or a lymphocyte separation medium, and incubated either in acellular culture or in co-cultivations with mosquito cells. In acellular culture, the ookinetes were found to aggregate with each other and transformed from banana to round shapes. Their inner pellicular membranes and subpellicular microtubules partially disappeared, indicating that development to early oocyst had occurred. Co-cultivation with Aedes albopictus cells (C6/36 clone) revealed that ookinetes transformed into early oocyst in the medium, or invaded the cells and then transformed to early oocysts within the cell cytoplasm as well. However, all of these transformed cells failed to develop further, i.e. neither deposition of the oocyst capsule nor nuclear division was observed. Many ookinetes which failed to penetrate the Aedes cells were phagocytized within three days of culture. A significant difference between invaded and transformed oocysts and phagocytized ookinetes was seen in that the former lacked vacuole membrane. Co-cultivation with Toxorhynchites amboinensis cells (TRA-284-SFG clone) permitted transformation of ookinetes into early oocysts in the medium as in the acellular culture, but no ookinete invasion nor phagocytosis by the cell was observed.  相似文献   

3.
Plasmodium gallinaceum ookinetes adhered to Aedes aegypti midgut epithelia when purified ookinetes and isolated midguts were combined in vitro. Ookinetes preferentially bound to the microvillated luminal surface of the midgut, and they seemed to interact with three types of structures on the midgut surface. First, they adhered lo and migrated through a network-like matrix, which we have termed microvilli-associated network, that covers the surface of the microvilli. This network forms on the luminal midgut surface in response to blood or protein meals. Second, the ookinetes bound directly to the microvilli on the surface of the midgut and were occasionally found immersed in the thick microvillar layer. Third, the ookinetes associated with accumulations of vesicular structures found interspersed between the microvillated cells of the midgut. The origin of these vesicular structures is unknown, but they correlated with the surface of midgut cells invaded by ookinetes as observed by TEM. After binding to the midgut. ookinetes underwent extensive morphological changes: they frequently developed one or more annular constrictions, and their surface roughened considerably, suggesting that midgut components remain bound to the parasite surface. Our observations suggest that, in a natural infection, the ookinete interacts in a sequential manner with specific components of the midgut surface. Initial binding to the midgut surface may activate the ookinete and cause morphological changes in preparation for invasion of the midgut cells.  相似文献   

4.
Plasmodium parasites cause malaria in mammalian hosts and are transmitted by Anopheles mosquitoes. Activated gametocytes in the mosquito midgut egress from erythrocytes followed by fertilization and zygote formation. Zygotes differentiate into motile invasive ookinetes, which penetrate the midgut epithelium before forming oocysts beneath the basal lamina. Ookinete development and traversal across the mosquito midgut wall are major bottlenecks in the parasite life cycle. In ookinetes, surface proteins and proteins stored in apical organelles have been shown to be involved in parasite-host interactions. A group of ookinete proteins that are predicted to have such functions are named PSOPs (putative secreted ookinete protein). PSOP1 is possibly involved in migration through the midgut wall, and here its subcellular localization was examined in ookinetes by immunoelectron microscopy. PSOP1 localizes to the micronemes of Plasmodium yoelii and Plasmodium berghei ookinetes, indicating that it is stored and possibly apically secreted during ookinete penetration through the mosquito midgut wall.  相似文献   

5.
Zygotes of Plasmodium gallinaceum, fertilized in vitro and fed to Aedes aegypti mosquitoes through a membrane, formed oocysts only when a substance in the cytoplasm of uninfected erythrocytes was present. The relation between erythrocyte volume and infectivity was linear (1:1.2) up to a 50% hematocrit. The intraerythrocytic substance was both nondialyzable and poorly soluble in plasma. By carboxymethyl cellulose chromatography, cytoplasmic constituents eluted at pH 8.6 supported the same infection as control blood did; but higher and lower pH eluates supported none. Dialyzable factors present in the plasma, but absent from M199, enhanced infection but were not essential. Zygotes developed normally to ookinetes in the gut of plasma-fed mosquitoes, or when cultured in plasma or M199. Ookinetes from culture formed normal oocysts when fed to mosquitoes in blood or when injected with M199 into the hemocoels of unfed females. Mosquitoes fed infected blood containing lima bean or soybean trypsin inhibitor were unable to digest the erythrocytes and, although normal ookinetes developed, no oocysts formed. It appears from this and histological evidence that an erythrocyte substance, released by mosquito digestion, is needed for ookinete invasion of the gut epithelium.  相似文献   

6.
The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take‐up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co‐adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote‐to‐ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage.  相似文献   

7.
Plasmodium berghei ookinetes were cultured from hamster blood as described previously (Kurtti and Munderloh, 1986). An average of 7.3 X 10(6) ookinetes was harvested from each ml of blood. Ookinetes were purified by centrifugation on first a 40% and then a 36% Percoll gradient. The final preparation comprised 32.8% of the ookinetes initially obtained, and contained 3.3 other parasite stages or blood cells per ookinete. Unpurified and purified ookinetes were resuspended in hamster blood and fed to Anopheles stephensi. There was a strong linear correlation between the concentration of purified or unpurified ookinetes and the number of oocysts formed. With unpurified ookinetes, a maximum was reached when preparations containing 1 X 10(7) ookinetes/ml were fed, and feeding preparations containing a higher concentration did not produce more oocysts. Sporozoites were found in the salivary glands of mosquitoes fed ookinetes by days 14 (unpurified) or 15 (purified) PI. Approximately 5 times as many purified as unpurified ookinetes were required to produce each oocyst.  相似文献   

8.
Plasmodium parasites are fertilized in the mosquito midgut and develop into motile zygotes, called ookinetes, which invade the midgut epithelium. Here we show that a calcium-dependent protein kinase, CDPK3, of the rodent malarial parasite (Plasmodium berghei) is produced in the ookinete stage and has a critical role in parasite transmission to the mosquito vector. Targeted disruption of the CDPK3 gene decreased ookinete ability to infect the mosquito midgut by nearly two orders of magnitude. Electron microscopic analyses demonstrated that the disruptant ookinetes could not access midgut epithelial cells by traversing the layer covering the cell surface. An in vitro migration assay showed that these ookinetes lack the ability to migrate through an artificial gel, suggesting that this defect caused their failure to access the epithelium. In vitro migration assays also suggested that this motility is induced in the wild type by mobilization of intracellular stored calcium. These results indicate that a signalling pathway involving calcium and CDPK3 regulates ookinete penetration of the layer covering the midgut epithelium. Because humans do not possess CDPK family proteins, CDPK3 is a good target for blocking malarial transmission to the mosquito vector.  相似文献   

9.
Sidén-Kiamos I  Louis C 《Parasitology》2008,135(12):1355-1362
Ookinetes are the motile and invasive stages of Plasmodium parasites in the mosquito host. Here we explore the role of intracellular Ca2+ in ookinete survival and motility as well as in the formation of oocysts in vitro in the rodent malaria parasite Plasmodium berghei. Treatment with the Ca2+ ionophore A23187 induced death of the parasite, an effect that could be prevented if the ookinetes were co-incubated with insect cells before incubation with the ionophore. Treatment with the intracellular calcium chelator BAPTA/AM resulted in increased formation of oocysts in vitro. Calcium imaging in the ookinete using fluorescent calcium indicators revealed that the purified ookinetes have an intracellular calcium concentration in the range of 100 nm. Intracellular calcium levels decreased substantially when the ookinetes were incubated with insect cells and their motility was concomitantly increased. Our results suggest a pleiotropic role for intracellular calcium in the ookinete.  相似文献   

10.
When malaria parasites enter to mosquitoes, they fertilize and differentiate to zygotes and ookinetes. The motile ookinetes cross the midgut cells and arrive to the basement membranes where they differentiate into oocysts. The midgut epithelium is thus a barrier for ookinetes to complete their life cycle in the mosquitoes. The ookinetes develop gliding motility to invade midgut cells successfully, but the molecular mechanisms behind are poorly understood. Here, we identified a single molecule with guanylate cyclase domain and N-terminal P-type ATPase like domain in the rodent malaria parasite Plasmodium berghei and named it PbGCbeta. We demonstrated that transgenic parasites in which the PbGCbeta gene was disrupted formed normal ookinetes but failed to produce oocyst. Confocal microscopic analysis showed that the disruptant ookinetes remained on the surface of the microvilli. The disruptant ookinetes showed severe defect in motility, resulting in failure of parasite invasion of the midgut epithelium. When the disruptant ookinetes were cultured in vitro, they transformed into oocysts and sporozoites. These results demonstrate that PbGCbeta is essential for ookinete motility when passing through the midgut cells, but not for further development of the parasites.  相似文献   

11.
Malaria ookinetes invade midgut epithelial cells of the mosquito vector from the bloodmeal in the lumen of the mosquito midgut, but the cellular interactions of ookinetes with the mosquito vector remain poorly described. We describe here a novel morphology of Plasmodium gallinaceum ookinetes in which the central portion of the ookinete is an elongated narrow tube or stalk joining the anterior and posterior portions of the parasite. We propose that the previously undescribed stalkform ookinete may be an adaptation to facilitate parasite locomotion through the cytoplasm of mosquito midgut epithelial cells.  相似文献   

12.
Abstract Present understanding of the development of sexual stages of the human malaria parasites Plasmodium vivax and P.falciparum in the Anopheles vector is reviewed, with particular reference to the role of the mosquito midgut in establishing an infection. The sexual stages of the parasite, the gametocytes, are formed in human erythrocytes. The changes in temperature and pH encountered by the gametocyte induce gametogenesis in the lumen of the midgut. Macromolecules derived from mosquito tissue and second messenger pathways regulate events leading to fertilization. In An.tessellatus the movement of the ookinete from the lumen to the midgut epithelium is linked to the release of trypsin in the midgut and the peritrophic matrix is not a firm barrier to this movement. The passage of the P. vivax ookinete through the peritrophic matrix may take place before the latter is fully formed. The late ookinete development in P.falciparum requires chitinase to facilitate penetration of the peritrophic matrix. Recognition sites for the ookinetes are present on the midgut epithelial cells. N-acetyl glucosamine residues in the oligosaccharide side chains of An.tessellatus midgut glycoproteins and peritrophic matrix proteoglycan may function as recognition sites for P.vivax and P.falciparum ookinetes. It is possible that ookinetes penetrating epithelial cells produce stress in the vector. Mosquito molecules may be involved in oocyst development in the basal lamina, and encapsulation of the parasite occurs in vectors that are refractory to the parasite. Detailed knowledge of vector-parasite interactions, particularly in the midgut and the identification of critical mosquito molecules offers prospects for manipulating the vector for the control of malaria.  相似文献   

13.
Malaria transmission depends on the parasites' successful invasion of the mosquito. This is achieved by the ookinete, a motile zygote that forms in the blood bolus after the mosquito takes an infectious blood meal. The ookinete invades the midgut epithelium and strongly attaches to the basal lamina, differentiating into an oocyst that produces the vertebrate-invasive sporozoites. Despite their importance, the ookinete and the oocyst are the least studied stages of the parasite. Much of what we know about the ookinete comes from in vitro experiments, which are hindered by the concomitant contamination with blood cells and other parasite stages. Although methods to purify them exist, they vary in terms of yield, costs, and difficulty to perform. A method for ookinete purification taking advantage of their adhesive properties was herein developed. The method consists of covering any culture-suitable surface with extracellular matrix gel, after which the ookinete culture is incubated on the gel to allow for ookinete attachment. The contaminant cells are then simply washed away. This procedure results in purer and less stressed ookinete preparations, which, by the nature of the method, are ready for oocyst production. Furthermore, it allows for micro-purifications using only 1 μl of blood, opening the possibility to make axenic ookinete cultures without sacrificing mice  相似文献   

14.
The ookinete is the key determinant of infection within the mosquito vector, yet there are few population studies of ookinetes in nature. This investigation compared different techniques used to estimate ookinete densities in mosquitoes. Laboratory-reared Anopheles dirus mosquitoes were fed on gametocytemic blood drawn from 7 Plasmodium vivax patients at a malaria clinic in Mae Sot, Thailand. At 20-26 hr, bloodmeals were excised. Three techniques were evaluated, i.e., hemacytometer counts under phase-contrast microscope, Giemsa staining of bloodmeal smears, and immunofluorescent staining with a monoclonal antibody specific against the 25-kDa antigen expressed on the surface of P. vivax zygotes and ookinetes. Additional mosquitoes were dissected at day 10 for oocysts. The hemacytometer method was the simplest and quickest method but lacked precision at low ookinete densities. Immunofluorescent staining was the most sensitive, accurate, and the only method that enabled unequivocal detection of zygotes. Bloodmeals contained a mixture of zygotes, retorts, and mature ookinetes, indicating that postzygotic development of P. vivax in A. dirus was asynchronous. The conversion efficiency of zygotes/ookinetes to oocysts varied among patients and was independent of zygote-ookinete density, suggesting that variations in host blood composition, e.g., antibodies, drugs, etc., may influence the success of zygote-ookinete development.  相似文献   

15.
ABSTRACT We observed Plasmodium gallinaceum ookinetes in both intracellular and intercellular positions in the midgut epithelium of the mosquito Aedes aegypti. After epithelial cell invasion intracellular ookinetes lacked a parasitophorous vacuolar membrane and were surrounded solely by their own pellicle. Thus, the ookinete in the midgut epithelium of the mosquito differs from erythrocytic and hepatic stages in that the parasite in the vertebrate host is surrounded by a vacuole. The midgut epithelial cytoplasm around the apical end of invading ookinetes was replaced by fine granular material deprived of normal organelles. Membranous structure was observed within the fine granular area. Most ookinetes were seen intracellularly on the luminal side and intercellularly on the haemocoel side of the midgut epithelial cells. These observations suggest that the ookinete first enters into the midgut epithelial cell, then exits to the space between the epithelial cells and moves to the basal lamina where the ookinete develops to the oocyst.  相似文献   

16.
We developed a method for the in vitro production of mature Plasmodium vivax ookinetes. Gametocytemic blood was collected from 98 P. vivax-infected patients reporting to malaria clinics in Maesod and Maekasa Districts, Tak Province, Thailand. Briefly, gametogenesis was induced using xanthurenic acid and parasites were separated by density gradient centrifugation and then cultured in RPMI-1640, pH 7.8-8.2. At the same time that blood was collected, 200 Anopheles dirus mosquitoes were allowed to feed on each patient. Mosquito midguts were removed 2-36 hr postfeeding, and gut contents were smeared onto glass slides, as were cultured samples from varying time points. Slides were stained with Giemsa, and the in vitro and mosquito development of ookinetes compared. Mature ookinetes were produced in 48.0% (47/98) of in vitro cultures, with a total yield ranging from 10 to 248,500 (mean = 15,523, median = 600) ookinetes produced per 5 ml blood. The temporal development and the morphology of the P. vivax ookinetes produced in vitro was similar to that observed in the A. dirus mosquitoes. The method that we describe is simple, can be used at remote sites without sophisticated equipment, and yields high numbers of clean ookinetes. This method of producing mature P. vivax ookinetes will be a useful tool for studies on ookinetes in P. vivax endemic regions.  相似文献   

17.
CTRP is essential for mosquito infection by malaria ookinetes   总被引:18,自引:0,他引:18       下载免费PDF全文
The malaria parasite suffers severe population losses as it passes through its mosquito vector. Contributing factors are the essential but highly constrained developmental transitions that the parasite undergoes in the mosquito midgut, combined with the invasion of the midgut epithelium by the malaria ookinete (recently described as a principal elicitor of the innate immune response in the Plasmodium-infected insect). Little is known about the molecular organization of these midgut-stage parasites and their critical interactions with the blood meal and the mosquito vector. Elucidation of these molecules and interactions will open up new avenues for chemotherapeutic and immunological attack of parasite development. Here, using the rodent malaria parasite Plasmodium berghei, we identify and characterize the first microneme protein of the ookinete: circumsporozoite- and TRAP-related protein (CTRP). We show that transgenic parasites in which the CTRP gene is disrupted form ookinetes that have reduced motility, fail to invade the midgut epithelium, do not trigger the mosquito immune response, and do not develop further into oocysts. Thus, CTRP is the first molecule shown to be essential for ookinete infectivity and, consequently, mosquito transmission of malaria.  相似文献   

18.
Hamsters blood infected with Plasmodium berghei was cultured in vitro for the development of ookinetes. The ookinetes were separated from blood components, suspended in various defined media and fed to Anopheles stephensi through a membrane. The development of the oocysts and infective sporozoites was recorded. Mosquitoes infected with ookinetes suspended in L15 formulated into L15-B, L15-D (a medium specially modified for this purpose), IPL-41 or 199 media with no proteins added, developed at least as many oocysts as the control mosquitoes fed ookinetes suspended in blood. Ookinetes suspended in the L15-B medium yielded more oocysts than after feeding ookinetes suspended in L15-B with 5% casein. Sporozoites from mosquitoes maintained on blood, L15-B, L15-D, or L15-B with 5% casein were shown to be infective to hamsters. Mosquitoes fed ookinetes suspended in sucrose solutions showed very few oocysts, but the yield was increased when a blood meal was given 2-4 days after the infective meal. Some of the oocysts which had developed from the ookinetes suspended in artificial media were found to have degenerated. The described system could be potentially useful for a study of the interaction between the vector physiology and the parasite. The possible use of the system to learn which media should be developed in the future for in vitro cultivation of oocysts is discussed.  相似文献   

19.
The ookinete is a motile stage in the malaria life cycle which forms in the mosquito blood meal from the zygote. Ookinetes use an acto-myosin motor to glide towards and penetrate the midgut wall to establish infection in the vector. The regulation of gliding motility is poorly understood. Through genetic interaction studies we here describe a signalling module that identifies guanosine 3′, 5′-cyclic monophosphate (cGMP) as an important second messenger regulating ookinete differentiation and motility. In ookinetes lacking the cyclic nucleotide degrading phosphodiesterase δ (PDEδ), unregulated signalling through cGMP results in rounding up of the normally banana-shaped cells. This phenotype is suppressed in a double mutant additionally lacking guanylyl cyclase β (GCβ), showing that in ookinetes GCβ is an important source for cGMP, and that PDEδ is the relevant cGMP degrading enzyme. Inhibition of the cGMP-dependent protein kinase, PKG, blocks gliding, whereas enhanced signalling through cGMP restores normal gliding speed in a mutant lacking calcium dependent protein kinase 3, suggesting at least a partial overlap between calcium and cGMP dependent pathways. These data demonstrate an important function for signalling through cGMP, and most likely PKG, in dynamically regulating ookinete gliding during the transmission of malaria to the mosquito.  相似文献   

20.
The population dynamics of cultured Plasmodium falciparum parasites was examined during their sporogonic development in Anopheles gambiae mosquitoes. Estimates of absolute densities were determined for each life stage, and life tables were constructed for each of 38 experimental infections. Macrogametocyte and ookinete mortalities contributed equally to the overall mortality. On average, there was a 40-fold decrease in parasite numbers in the transition from the macrogametocyte to the ookinete stage, a 69-fold decrease in the transition from ookinete to oocyst stages, and a total net decrease in parasite numbers from macrogametocyte to oocyst stage of 2,754-fold (i.e., multiplicative). There was no relationship between macrogametocyte and ookinete densities due to the inherent variability in fertility among different gametocyte cultures. There was a curvilinear relationship (r2 = 0.66) between ookinete and oocyst densities. Above a threshold of about 30 ookinetes/mosquito, the oocyst yield per ookinete became increasingly greater with increasing ookinete density. There was a linear relationship (r2 = 0.73) between oocyst and sporozoite densities, with an average of 663 salivary gland sporozoites produced per oocyst. Sporozoite production per oocyst was not affected by oocyst density and virtually all oocyst infections resulted in sporozoite infections of the salivery glands. This quantitative study indicates that the sporogony of cultured P. falciparum in laboratory-infected A. gambiae is an inefficient process and that the ookinete is the key transitional stage affecting the probability of vector infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号