首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Ion channels are a large family of >400 related proteins representing >1% of our genetic endowment; however, ion-channel diseases reflect a relatively new category of inborn error. They were first recognized in 1989, with the discovery of cystic fibrosis transmembrane conductance regulator, and rapidly advanced as positional and functional studies converged in the dissection of components of the action potential of excitable tissues. Although it remains true that diseases of excitable tissue still most clearly illustrate this family of disease, ion-channel disorders now cover the gamut of medical disciplines, causing significant pathology in virtually every organ system, producing a surprising range of often unanticipated symptoms, and providing valuable targets for pharmacological intervention. Many of the features shared among the monogenic ion-channel diseases provide a general framework for formulating a foundation for considering their intrinsically promising role in polygenic disease. Since an increasingly important approach to the identification of genes underlying polygenic disease is to identify "functional candidates" within a critical region and to test their disease association, it becomes increasingly important to appreciate how these ion-channel mechanisms can be implicated in pathophysiology.  相似文献   

3.
Approximately 40% of epilepsy has a complex genetic basis with an unknown number of susceptibility genes. The effect of each susceptibility gene acting alone is insufficient to account for seizure phenotypes, but certain numbers or combinations of variations in susceptibility genes are predicted to raise the level of neuronal hyperexcitability above a seizure threshold for a given individual in a given environment. Identities of susceptibility genes are beginning to be determined, initially by translation of knowledge gained from gene discovery in the monogenic epilepsies. This entrée into idiopathic epilepsies with complex genetics has led to the experimental validation of susceptibility variants in the first few susceptibility genes. The genetic architecture so far emerging from these results is consistent with what we have designated as a polygenic heterogeneity model for the epilepsies with complex genetics.  相似文献   

4.
The 1986 Cold Spring Harbor Symposium was on the subject of human genetics; it was the first symposium at Cold Spring Harbor on this topic since 1964. In the opening remarks for the conference, Walter F. Bodmer first summarized the progress in this field since 1964. He then described what is presently known about the functional complexity of the human genome and discussed the case for a definitive characterization and sequencing of the human genome. The following is an abridged and slightly adapted version of this talk; it is reproduced courtesy of the Cold Spring Harbor Laboratory © 1987.  相似文献   

5.
Journal of Plant Research - Plant organs are repetitively generated at the shoot apical meristem (SAM) in recognizable patterns. This phenomenon, known as phyllotaxis, has long fascinated...  相似文献   

6.
The decrease in new drug applications and approvals over the past several years results from an underlying crisis in drug target identification and validation. Model organisms are being used to address this problem, in combination with novel approaches such as the International HapMap Project. What has been underappreciated is that discovery of new drug targets can also be revived by traditional Mendelian genetics. A large fraction of the human gene repertoire remains phenotypically uncharacterized, and is likely to encode many unanticipated and novel phenotypes that will be of interest to pharmaceutical and biotechnological drug developers.  相似文献   

7.
Podder S  Ghosh TC 《Genomics》2011,97(4):200-204
Functional redundancy by gene duplication appears to be a common phenomenon in biological system and hence understanding its underlying mechanism deserves much attention. Here, we investigated the differences between functional compensation of monogenic and polygenic disease genes which are unexplored till date. We found that the competence of functional buffering varies in the order of non-disease genes>monogenic disease genes>polygenic disease genes. This fact has been explained by the sequence identity, expression profile similarity, shared interaction partners and cellular locations between duplicated pairs. Moreover, we observed an inverse relationship between backup capacity and the non-synonymous substitution rate of disease and non-disease genes while the opposite trend is found for their corresponding paralogs. Logistic regression analysis among sequence identity, sharing of expression profile, interaction partners and cellular locations with backup capacity between duplicated pairs demonstrated that the sharing of expression profile is the most dominant regulator of backup capacity.  相似文献   

8.
Microbial biofilms: from ecology to molecular genetics.   总被引:28,自引:0,他引:28  
Biofilms are complex communities of microorganisms attached to surfaces or associated with interfaces. Despite the focus of modern microbiology research on pure culture, planktonic (free-swimming) bacteria, it is now widely recognized that most bacteria found in natural, clinical, and industrial settings persist in association with surfaces. Furthermore, these microbial communities are often composed of multiple species that interact with each other and their environment. The determination of biofilm architecture, particularly the spatial arrangement of microcolonies (clusters of cells) relative to one another, has profound implications for the function of these complex communities. Numerous new experimental approaches and methodologies have been developed in order to explore metabolic interactions, phylogenetic groupings, and competition among members of the biofilm. To complement this broad view of biofilm ecology, individual organisms have been studied using molecular genetics in order to identify the genes required for biofilm development and to dissect the regulatory pathways that control the plankton-to-biofilm transition. These molecular genetic studies have led to the emergence of the concept of biofilm formation as a novel system for the study of bacterial development. The recent explosion in the field of biofilm research has led to exciting progress in the development of new technologies for studying these communities, advanced our understanding of the ecological significance of surface-attached bacteria, and provided new insights into the molecular genetic basis of biofilm development.  相似文献   

9.
Autism spectrum disorders(ASD) are a pervasive neurodevelopmental disease characterized by deficits in social interaction and nonverbal communication, as well as restricted interests and stereotypical behavior. Genetic changes/heritability is one of the major contributing factors, and hundreds to thousands of causative and susceptible genes, copy number variants(CNVs), linkage regions, and micro RNAs have been associated with ASD which clearly indicates that ASD is a complex genetic disorder. Here, we will briefly summarize some of the high-confidence genetic changes in ASD and their possible roles in their pathogenesis.  相似文献   

10.
11.
12.
Rhamnolipids are biosurfactants with a wide range of industrial applications that entered into the market a decade ago. They are naturally produced by Pseudomonas aeruginosa and some Burkholderia species. Occasionally, some strains of different bacterial species, like Pseudomonas chlororaphis NRRL B-30761, which have acquired RL-producing ability by horizontal gene transfer, have been described. P. aeruginosa, the ubiquitous opportunistic pathogenic bacterium, is the best rhamnolipids producer, but Pseudomonas putida has been used as heterologous host for the production of this biosurfactant with relatively good yields. The molecular genetics of rhamnolipids production by P. aeruginosa has been widely studied not only due to the interest in developing overproducing strains, but because it is coordinately regulated with the expression of different virulence-related traits by the quorum-sensing response. Here, we highlight how the research of the molecular mechanisms involved in rhamnolipid production have impacted the development of strains that are suitable for industrial production of this biosurfactant, as well as some perspectives to improve these industrial useful strains.  相似文献   

13.
14.
Mental retardation (MR) is a developmental brain disorder characterized by impaired cognitive performance and adaptive skills that affects 1–2% of the population. During the last decade, a large number of genes have been cloned that cause MR upon mutation in humans. The causal role of these genes provides an excellent starting point to investigate the cellular, neurobiological and behavioral alterations and mechanisms responsible for the cognitive impairment in mentally retarded persons. However, studies on Down syndrome (DS) reveal that overexpression of a cluster of genes and various forms of MR that are caused by single-gene mutations, such as fragile X (FraX), Rett, Coffin-Lowry, Rubinstein–Taybi syndrome and non-syndromic forms of MR, causes similar phenotypes. In spite of the many differences in the manifestation of these forms of MR, evidence converges on the proposal that MR is primarily due to deficiencies in neuronal network connectivity in the major cognitive centers in the brain, which secondarily results in impaired information processing. Although MR has been largely regarded as a brain disorder that cannot be cured, our increased understanding of the abnormalities and mechanisms underlying MR may provide an avenue for the development of therapies for MR. In this review, we discuss the neurobiology underlying MR, with a focus on FraX and DS  相似文献   

15.
16.
赵晖  张永超  张永清 《遗传》2015,37(9):845-854
自闭症谱系障碍(Autism spectrum disorder, ASD)是一类常见神经发育疾病,以社会交往障碍、刻板重复行为与狭隘的兴趣为主要临床特征。在过去40年间,ASD患病率呈不断上升趋势,因而日益受到人们关注。近年来由于大规模外显子测序的应用,发现了许多新的ASD易感基因。这些易感基因富集在几个共同的遗传信号通路中,参与突触形成和染色质重构等。最新的动物模型研究表明,ASD的发病机制包括神经突触可塑性异常和神经回路兴奋性-抑制性平衡紊乱。本文从ASD遗传病因的高度异质性、众多致病基因突变影响的共同生物学过程以及遗传诊断方法和药物研发的进展等几个方面进行了综述,以期帮助人们深入了解ASD的遗传基础和转化研究现状。  相似文献   

17.
18.
Sleep disorders are very prevalent and represent an emerging worldwide epidemic. However, research into the molecular genetics of sleep disorders remains surprisingly one of the least active fields. Nevertheless, rapid progress is being made in several prototypical disorders, leading recently to the identification of the molecular pathways underlying narcolepsy and familial advanced sleep-phase syndrome. Since the first reports of spontaneous and induced loss-of-function mutations leading to hypocretin deficiency in human and animal models of narcolepsy, the role of this novel neurotransmission pathway in sleep and several other behaviors has gained extensive interest. Also, very recent studies using an animal model of familial advanced sleep-phase syndrome shed new light on the regulation of circadian rhythms.  相似文献   

19.
20.
While the methodology for the mapping of Mendelian disorders is well established, the practical and theoretical steps required for successful gene identification in a complex trait are still difficult to predict. A number of analytical models and simulations based on repetitive drawings from predefined statistical distributions are available. To supplement these analytical models, we developed an integrated simulation approach by directly simulating entire populations under a disease model based on epidemiological data. Random mating, nonoverlapping populations and the absence of differential fitness were assumed. Samples were drawn from these homogeneous and heterogeneous populations and analyzed with established analysis tools. We investigated the properties of linkage and association studies in inflammatory bowel disease - modeled as a six-locus polygenic disorder - as an example of this approach. In nonparametric linkage studies, lod scores varied widely, with the median required sample size depending on the locus-specific relative sibling risk. A fine mapping resolution <4 cM was found to require nonparametric lod scores >10. Family-based association studies (TDT test) and case-control studies showed a similar sensitivity and can identify risk loci in populations with moderate levels of linkage disequilibrium in sample sizes of 500-800 triplets. Case-control association studies were prone to false-positive results if applied in heterogeneous populations, with the false-positive rate increasing with sample size because population heterogeneity is detected with increasing power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号