首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An antisense oligo-2'-O-methylribonucleotide having alternating methylphosphonate/phosphodiester linkages, 1676, whose sequence is complementary to the apical stem-loop of HIV-1 TAR RNA, was prepared to determine its effects on Tat protein-TAR interaction and Tat-mediated gene transactivation in cell culture. This oligomer and its all-phosphodiester analogue, 1707, were shown to: (1) bind to TAR at 37 degrees C with K(d)'s in the low nM concentration range; (2) inhibit Tat-TAR complex formation; and (3) inhibit expression of a chloramphenicol reporter gene under control of the HIV LTR in HeLa HL3T1 cells in culture.  相似文献   

2.
Methylphosphonate-modified oligo-2'-O-methylribonucleotides 15-20 nucleotides (nt) in length were prepared whose sequences are complementary to the 5' and 3' sides of the upper hairpin of HIV trans-acting response element (TAR) RNA. These anti-TAR oligonucleotides (ODNs) form stable hairpins whose melting temperatures (Tm) range from 55 degrees C to 80 degrees C. Despite their rather high thermal stabilities, the hairpin oligo-2'-O-methylribonucleotides formed very stable complexes with TAR RNA, with dissociation constants in the nanomolar concentration range at 37 degrees C. The affinities of the hairpin oligomers for TAR RNA were influenced by the positions of the methylphosphonate linkages. The binding affinity was reduced approximately 17-fold by the presence of two methylphosphonate linkages in the TAR loop complementary region (TLCR) of the oligomer, whereas methylphosphonate linkages outside this region increased binding affinity approximately 3-fold. The configurations of the methylphosphonate linkages in the TLCR also affected binding affinity, with the RpRp isomer showing significantly higher binding than the SpSp isomer. In addition to serving as probes of the interactions between the oligomer and TAR RNA, the presence of the methylphosphonate linkages in combination with the hairpin structure increases the resistance of these oligomers to degradation by exonucleases found in mammalian serum. The combination of high binding affinity and nuclease resistance of the hairpin ODNs containing methylphosphonate linkages suggests their potential utility as antisense compounds.  相似文献   

3.
Y Zhou  P O Ts'o 《Nucleic acids research》1996,24(14):2652-2659
A synthetic method was developed for the synthesis of oligodeoxyribonucleotides and oligodeoxyribonucleoside methylphosphonates comprised exclusively of the fluorescent 2-pyrimidinone base for the first time. The method utilized the solid-phase 2-cyanoethylphosphoramidite and methylphosphonamidite chemistry for internucleotide couplings and a baselabile oxalyl linkage to anchor the oligomers onto the CPG support. Cleavage of the oligomers from the support was effected by a short treatment of the support with 5% ammonium hydroxide in methanol at room temperature, without any degradation of the base-sensitive 2-pyrimidinone residues or the base-sensitive methylphosphonate backbone.  相似文献   

4.
5.
HIV TAR: an RNA enhancer?   总被引:42,自引:0,他引:42  
P A Sharp  R A Marciniak 《Cell》1989,59(2):229-230
  相似文献   

6.
7.
8.
We report nearly complete assignment for all 1H, 13C, 31P, and 15N resonances in the 30-nucleotide stem-loop HIV-2 TAR RNA located at the 5′ end of all viral mRNAs.  相似文献   

9.
10.
11.
Stretching DNA and RNA to probe their interactions with proteins   总被引:7,自引:0,他引:7  
When interacting with a single stretched DNA, many proteins modify its end-to-end distance. This distance can be monitored in real time using various micromanipulation techniques that were initially used to determine the elastic properties of bare nucleic acids and their mechanically induced structural transitions. These methods are currently being applied to the study of DNA enzymes such as DNA and RNA polymerases, topoisomerases and structural proteins such as RecA. They permit the measurement of the probability distributions of the rate, processivity, on-time, affinity and efficiency for a large variety of DNA-based molecular motors.  相似文献   

12.

Background

Retroviruses have a diploid genome and recombine at high frequency. Recombinant proviruses can be generated when two genetically different RNA genomes are packaged into the same retroviral particle. It was shown in several studies that recombinant proviruses could be generated in each round of HIV-1 replication, whereas the recombination rates of SNV and Mo-MuLV are 5 to 10-fold lower. The reason for these differences is not clear. One possibility is that these retroviruses may differ in their ability to copackage genomic RNAs produced at different chromosomal loci.

Results

To investigate whether there is a difference in the efficiency of heterodimer formation when two proviruses have the same or different chromosomal locations, we introduced two different Mo-MuLV-based retroviral vectors into the packaging cell line using either the cotransfection or sequential transfection procedure. The comparative study has shown that the frequency of recombination increased about four-fold when the cotransfection procedure was used. This difference was not associated with possible recombination of retroviral vectors during or after cotransfection and the ratios of retroviral virion RNAs were the same for two variants of transfection.

Conclusions

The results of this study indicate that a mechanism exists to enable the preferential copackaging of Mo-MuLV genomic RNA molecules that are transcribed on the same DNA template. The properties of Mo-MuLV genomic RNAs transport, processing or dimerization might be responsible for this preference. The data presented in this report can be useful when designing methods to study different aspects of replication and recombination of a diploid retroviral genome.  相似文献   

13.
Methylphosphotriester DNA and RNA are of great interest to investigate their hybridization affinity with natural DNA and RNA with respect to their physical and biological properties. The results are compared with related modified oligonucleotides. Specific attention will be given to the development of recent antiretroviral nucleosides focused on their molecular conformation and the mechanistic aspects based on the physical properties of phosphorus in a trigonal bipyramidal configuration corresponding with in vitro and in vivo kinetics.  相似文献   

14.
Surface plasmon resonance (BIACORE) was used to determine the kinetic values for formation of the HIV TAR–TAR* (‘kissing hairpin’) RNA complex. The TAR component was also synthesized with the modified nucleoside 2-thiouridine at position 7 in the loop and the kinetics and equilibrium dissociation constants compared with the unmodified TAR hairpin. The BIACORE data show an equilibrium dissociation constant of 1.58 nM for the complex containing the s2U modified TAR hairpin, which is 8-fold lower than for the parent hairpin (12.5 nM). This is a result of a 2-fold faster ka (4.14 × 105 M–1 s–1 versus 2.1 × 105 M–1 s–1) and a 4-fold slower kd (6.55 × 10–4 s–1 versus 2.63 × 10–3 s–1). 1H NMR imino spectra show that the secondary structure interactions involved in complex formation are retained in the s2U-modified complex. Magnesium has been reported to significantly stabilize the TAR–TAR* complex and we found that Mn2+ and Ca2+ are also strongly stabilizing, while Mg2+ exhibited the greatest effect on the complex kinetics. The stabilizing effects of 2-thiouridine indicate that this base modification may be generally useful as an antisense RNA modification for oligonucleotide therapeutics which target RNA loops.  相似文献   

15.
PKR (double-stranded RNA-dependent protein kinase) is an important component of host defense to virus infection. Binding of dsRNA to two dsRBDs (double-stranded RNA binding domains) of PKR modulates its own kinase activation. How structural features of natural target RNAs, such as bulges and loops, have an effect on the binding to two dsRBDs of PKR still remains unclear. By using ITC and NMR, we show here that both the bulge and loop of TAR RNA are necessary for the high affinity binding to dsRBD1-dsRBD2 of PKR with 1:1 stoichiometry. The binding site for the dsRBD1-dsRBD2 spans from upper bulge to lower stem of the TAR RNA, based on chemical shift mapping. The backbone resonances in the 40 kDa TAR.dsRBD1-dsRBD2 were assigned. NMR chemical shift perturbation data suggest that the beta1-beta2 loop of the dsRBD1 interacts with the TAR RNA, whereas that of the dsRBD2 is less involved in the TAR RNA recognition. In addition, the residues of the interdomain linker between the dsRBD1 and the dsRBD2 also show large chemical perturbations indicating that the linker is involved in the recognition of TAR RNA. The results presented here provide the biophysical and spectroscopic basis for high-resolution structural studies, and show how local RNA structural features modulate recognition by dsRBDs.  相似文献   

16.
17.
18.
19.
In order to enhance the efficacy of small antisense molecules, we examined a series of antisense oligonucleotides derivatized with functional groups designed to enable them to hydrolyze their RNA target. Solid phase synthetic methods were used to prepare imidazole-derivatized antisense oligo-2'-O-methylribonucleotides. Upon binding, these oligonucleotides create internal bulged bases in the target RNA that serve as sites for hydrolysis. We observed that an oligonucleotide derivatized with a side chain containing two imidazole groups was capable of hydrolyzing 58% of its RNA target when incubated with the target for 48 hours at 37°C and physiological pH.  相似文献   

20.
The HIV-1 transactivation response (TAR) element-Tat interaction is a potentially valuable target for treating HIV infection, but efforts to develop TAR-binding antiviral drugs have not yet yielded a successful candidate for clinical development. In this work, we describe a novel approach toward screening fragments against RNA that uses a chemical probe to target the Tat-binding region of TAR. This probe fulfills two critical roles in the screen: by locking the RNA into a conformation capable of binding other fragments, it simultaneously allows the identification of proximal binding fragments by ligand-based NMR. Using this approach, we have discovered six novel TAR-binding fragments, three of which were docked relative to the probe-RNA structure using experimental NMR restraints. The consistent orientations of functional groups in our data-driven docked structures and common electrostatic properties across all fragment leads reveal a surprising level of selectivity by our fragment-sized screening hits. These models further suggest linking strategies for the development of higher-affinity lead compounds for the inhibition of the TAR-Tat interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号