首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulatory properties of a 1.4-kilobase promoter fragment of the bean chalcone synthase CHS8 gene were examined by analysis of glucuronidase (GUS) activity in transgenic tobacco containing a CHS8-GUS gene fusion. The promoter was highly active in the root apical meristem and in petals, exclusively in those cells of the inner epidermis that accumulate anthocyanins. The gene fusion was only weakly expressed in other floral organs, mature leaves, and stems. The early stages of seedling development were characterized by an apparent wound induction of the promoter in the endosperm and strong expression in the immature root, which became localized to the apical meristem and perivascular tissue at the root-hypocotyl junction. The promoter became active during lateral root formation in both the new root and damaged tissue of the main root. The gene fusion was also expressed in greening cotyledons and primary leaves but not in the shoot apical meristem. Light modulated expression in the cotyledons and root-shoot junction but had no effect on other aspects of the developmental program. Wounding or fungal elicitor treatment of mature leaves activated the promoter in a well-defined zone adjacent to the stress site. Stress induction occurred in mesophyll and vascular tissues as well as in the epidermis. We conclude that the CHS8 promoter contains cis-elements required to establish temporal and spatial control of flavonoid biosynthesis during development and in response to diverse environmental stimuli.  相似文献   

2.
3.
4.
5.
6.
7.
Previous work has shown that the octopine synthase (ocs) gene encoded by the Agrobacterium tumefaciens Ti-plasmid contains an upstream activating sequence necessary for its expression in plant cells. This sequence is composed of an essential 16-bp palindrome and flanking sequences that modulate the level of expression of the ocs promoter in transgenic tobacco calli. In this study, we have used RNA gel blot analysis of RNA extracted from transgenic tobacco plants to show that the octopine synthase gene is not constitutively expressed in all plant tissues and organs. This tissue-specific pattern of expression is determined, to a large extent, by the 16-bp palindrome. Histochemical analysis, using an ocs-lacZ fusion gene, has indicated that the 16-bp palindrome directs the expression of the ocs promoter in specific cell types in the leaves, stems, and roots of transgenic tobacco plants. This expression is especially strong in the vascular tissue of the leaves, leaf mesophyll cells, leaf and stem guard cells, and the meristematic regions of the shoots and roots. Sequences surrounding the palindrome in the upstream activating sequence restrict the expression of the ocs promoter to fewer cell types, resulting in a reduced level of expression of beta-galactosidase activity in the central vascular tissue of leaves, certain types of leaf trichomes, and the leaf primordia.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Globulins are the most abundant seed storage proteins in cotton and, therefore, their regulatory sequences could potentially provide a good source of seed-specific promoters. We isolated the putative promoter region of cotton -globulin B gene by gene walking using the primers designed from a cotton staged embryo cDNA clone. PCR amplified fragment of 1108 bp upstream sequences was fused to gusA gene in the binary vector pBI101.3 to create the test construct. This was used to study the expression pattern of the putative promoter region in transgenic cotton, Arabidopsis, and tobacco. Histochemical GUS analysis revealed that the promoter began to express during the torpedo stage of seed development in tobacco and Arabidopsis, and during cotyledon expansion stage in cotton. The activity quickly increased until embryo maturation in all three species. Fluorometric GUS analysis showed that the promoter expression started at 12 and 15 dpa in tobacco and cotton, respectively, and increased through seed maturation. The strength of the promoter expression, as reflected by average GUS activity in the seeds from primary transgenic plants, was vastly different amongst the three species tested. In Arabidopsis, the activity was 16.7% and in tobacco it was less than 1% of the levels detected in cotton seeds. In germinating seedlings of tobacco and Arabidopsis, GUS activity diminished until it was completely absent 10 days post imbibition. In addition, absence of detectable level of GUS expression in stem, leaf, root, pollen, and floral bud of transgenic cotton confirmed that the promoter is highly seed-specific. Analysis of GUS activity at individual seed level in cotton showed a gene dose effect reflecting their homozygous or hemizygous status. Our results show that this promoter is highly tissue-specific and it can be used to control transgene expression in dicot seeds.  相似文献   

19.
Functional organization of the cassava vein mosaic virus (CsVMV) promoter   总被引:6,自引:1,他引:5  
Cassava vein mosaic virus (CsVMV) is a pararetrovirus that infects cassava plants in Brazil. A promoter fragment isolated from CsVMV, comprising nucleotides -443 to +72, was previously shown to direct strong constitutive gene expression in transgenic plants. Here we report the functional architecture of the CsVMV promoter fragment. A series of promoter deletion mutants were fused to the coding sequence of uidA reporter gene and the chimeric genes were introduced into transgenic tobacco plants. Promoter activity was monitored by histochemical and quantitative assays of -glucuronidase activity (GUS). We found that the promoter fragment is made up of different regions that confer distinct tissue-specific expression of the gene. The region encompassing nucleotides -222 to -173 contains cis elements that control promoter expression in green tissues and root tips. Our results indicate that a consensus as1 element and a GATA motif located within this region are essential for promoter expression in those tissues. Expression from the CsVMV promoter in vascular elements is directed by the region encompassing nucleotides -178 to -63. Elements located between nucleotides -149 and -63 are also required to activate promoter expression in green tissues suggesting a combinatorial mode of regulation. Within the latter region, a 43 bp fragment extending from nucleotide -141 to -99 was shown to interact with a protein factor extracted from nuclei of tobacco seedlings. This fragment showed no sequence homology with other pararetrovirus promoters and hence may contain CsVMV-specific regulatory cis elements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号