首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pyrenoid material of micromonas squamata Manton & Parke was obtained free of cell and subcellular particle conamination by differential centrifugation of brei from osmoically lysed cells. The isolated pyrenoid particles were characterized by transmission and scanning electron microscopy. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of pyrenoid extracts revealed a compled polypeptide composition with major components of 12, 54 and 66 kilodalton mol wt. Whole pyrenoids possessed the enzymatic properties of ribulose diphosphate carboxylase and fixed carbon dioxide with specific activity 10 times greaer than that of a pyrenoid-free high speed supenaant fracion of cell brei. Energy dispersive X-ray microanalysis revealed he presence of copper in masses of cryo-impacted pyrenoid material. Ultrastrucural cytochemistry was employed o determine he chemical nature of the reserve carbohydrate shell. Also, the pyrenoid of the intact cell was characterized by transmission electron microscopy.  相似文献   

2.
N. W. Kerby  L. V. Evans 《Planta》1978,142(1):91-95
In order to isolate high yields of pyrenoids from the brown alga Pilayella littoralis it is necessary to pretreat them with 0.1% HgCl2 in sea water for 3 h. Without this pretreatment there is a substantial loss of pyrenoid ground substance and yields are low. Pyrenoid fractions of high purity have been obtained using silica sol gradients. A partial characterization has shown the pyrenoid to be proteinaceous and lacking chlorophyll. SDS polyacrylamide gel electrophoresis has shown that the majority of protein present is accounted for by two polypeptides which resemble the large and small subunits of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39).Abbreviations DTT dithiothreitol - HEPES N-2-hydroxyethylniperazine N1-2-ethanesulfonic acid - PEG polyethylene glycol - PVPP polyvinylpolypyrrolidone - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecyl sulphate  相似文献   

3.
Summary The pyrenoid is a protein complex in the chloroplast stroma of eukaryotic algae. After the treatment with mercury chloride, pyrenoids were isolated by sucrose density gradient centrifugation from cell-wall less mutant cells, CW-15, as well as wild type cells, C-9, of unicellular green algaChlamydomonas reinhardtii. Pyrenoids were characterized as a fraction whose protein/chlorophyll ratio was very high, and also examined by Nomarski differential interference microscopy. Most of the components consisted of 55 kDa and 16 kDa polypeptides (11) which were immunologically identified as the large and small subunit of RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) protein, respectively. Some minor polypeptides were also detected. Substantial amount of RuBisCO protein is present as a particulate form in the pyrenoid in addition to the soluble form in algal chloroplast stroma.Abbreviations BPB bromophenol blue - DAB 3,3-diaminobenzidine - DTT dithiothreitol - ELISA enzyme-linked immunosorbent assay - High-CO2 cells cells grown under air enriched with 4% CO2 - Low-CO2 cells cells grown under ordinary air (containing 0.04% CO2) - NP-40 nonionic detergent (Nonidet) P-40 - PAGE polyacrylamide gel electrophoresis - PAP peroxidase-antiperoxidase conjugate - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SDS sodium dodecylsulfate  相似文献   

4.
The pyrenoid structure of Trebouxia, a photobiont of two lichen species, Umbilicaria cinereorufescens (Schaer.) Frey and Parmelia sulcata Taylor, was investigated. In both lichen species, the pyrenoid of the photobiont exhibited straight, unbranched, long or short tubules. In the first lichen species, multiple pyrenoids were observed occasionally, while in the second one, homogeneous masses, called protein bodies, appeared between the thylakoids. These protein bodies were previously observed in some other species of the family Umbilicariaceae. Serial sections from single pyrenoids showed that tubules of the Impressa-type pyrenoid were closely associated with pyrenoglobuli. The three-dimensional reconstruction of a complete chloroplast of a P. sulcata algal cell showed that the protein bodies were spatially separate structures. Immunolocalization techniques to detect the presence of ribulose-bisphosphate carboxylase (Rubisco) in the chloroplast showed that this enzyme was present primarily in the pyrenoid matrix. When protein bodies were present in the chloroplast, Rubisco appeared to be localized in these structures. The presence of pyrenoid satellites and protein bodies with reactivity to anti-Rubisco may be related to the nutritional conditions of the thalli.  相似文献   

5.
The fine structure of the pyrenoid in the mature vegetative cell of Tetracystis excentrica Brown and Bold is described. During zoosporogenesis, the pyrenoid undergoes regression, and the ultrastructure of this process is described in detail. The ground substance undergoes dissolution, and reticulate fibrillar structures appear as well as intruding chloroplast thylakoids. Pyrenoid-associated starch plates diminish, and quantities of starch not associated with the pyrenoid are produced. New pyrenoids appear late in the division cycle after all other major organelles associated with the motile cell have been formed. Zoospore pyrenoids develop in thylakoid-free spaces of the chloroplast which are similar to the DNA-containing regions. The new pyrenoid ground substance, which is loosely fibrillar, arises in close proximity to starch grains which may be formed in the stroma. Then the zoospore pyrenoid produces 2 hemispherical starch plates identical to those in the mature vegetative cell. Zoospore pyrenoids lack the 2 convoluted thylakoids between the starch plates and the ground substance characteristic of those in the mature vegetative cell. Instead, the thylakoids are identical to those of the chloroplast at first, and then develop into a convoluted state in the vegetative cell. Cytochemical tests for DNA, RNA, and protein were made for the cytoplasm, nucleus, nucleolus, and pyrenoid. Conclusive evidence is presented for the presence of RNA in the cytoplasm and nucleolus, DNA in the nucleus, and protein in the pyrenoid. The tests did not conclusively demonstrate the presence or absence of DNA and RNA in the pyrenoid; however, they suggested that small amounts of both DNA and RNA may be present.  相似文献   

6.
几种藻类蛋白核的超微结构研究   总被引:4,自引:1,他引:3  
应用电镜及免疫电镜技术对莱茵藻、小球藻、条浒苔和紫菜等藻类的叶绿体蛋白核的超微结构及主要组成成分进行了观察和研究。结果显示:不同藻类的蛋白核结构不同,显示了藻类蛋白核的多样性。蛋白核为球形或椭圆形,由蛋白质组成。莱茵藻、小球藻和条浒苔的蛋白核外围被淀粉鞘所包围,而紫菜的蛋白核外围无淀粉鞘而直接被叶绿体的类囊体所包围。淀粉鞘由淀粉组成,淀粉鞘的厚薄与藻体藻龄及增养状态有关系。在蛋白核中央,一般都具有由类囊体形成的孔道,使蛋白核与外界联系,小球藻和条浒苔蛋白核具有1条纵向孔道,而莱茵藻和紫菜为多条孔道。金相免疫技术检测结果显示Rubisco和Rubisco活化酶均在蛋白核及淀粉鞘区域中定位,表明蛋白核具有光合作用功能.  相似文献   

7.
The distribution of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the chloroplasts of the unicellular green alga Chlamydomonas reinhardtii Dangeard was examined using cryotechnique and conventional fixation for immunogold electron microscopy. Both methods provided essentially identical results, although somewhat higher densities of gold particles indicating Rubisco molecules were recognized in the pyrenoids of cryofixed cells. The gold particles were highly concentrated in the pyrenoid matrix within the chloroplasts. Even when considering the vast difference in volume between the pyrenoid and the rest of the Chloroplast, more than 99% of the total Rubisco labeling in the chloroplast was calculated to be present in the pyrenoid matrix. High localization of Rubisco in the pyrenoid matrix was also recognized regardless of cell age, based on immunofluorescence microscopy of the same en bloc samples. These results are inconsistent with a recent immunocytochemical study employing cryotechnique in which more than 90% of the total Rubisco was recognized in the thylakoid region (thylakoid membranes and stroma) of C. reinhardtii cells. Rubisco highly localized in the pyrenoid matrix may take part in active photosynthetic CO2 fixation and/or the CO2 concentrating mechanism .  相似文献   

8.
The single, basal pyrenoids of Gonium quadratum Pringsheim ex Nozaki and G. pectorale Müller (Goniaceae, Chlorophyta) differed in appearance when vegetative colonies were cultured photoheterotrophically in medium containing sodium acetate. Chloroplasts of G. quadratum had distinct pyrenoids when grown in medium without major carbon compounds. However, the pyrenoids degenerated and were markedly reduced in size when such cells were inoculated into a medium containing 400 mg·L?1 of sodium acetate. No pyrenoids were visible under the light microscope; however, with electron microscopy small pyrenoids and electron-dense bodies were visible within the degenerating chloroplasts, which had only single layers of thylakoid lamellae at the periphery. The chloroplasts subsequently developed distinct pyrenoids and several layers of thylakoid lamellae as the culture aged. In contrast, vegetative cells of G. pectorale always showed distinct pyrenoids when cells were inoculated into medium containing sodium acetate, sodium pyruvic acid, sodium lactate, and/or yeast extract. Therefore, we propose two terms, “unstable pyrenoids” and “stable pyrenoids,” for pyrenoids of G. quadratum and G. pectorale, respectively. Chloroplasts of the colonial green flagellates should thus be examined under various culture conditions in order to determine whether their pyrenoids are unstable or stable when pyrenoids are used as taxonomic indicators. Immunogold electron microscopy showed that the ratios of gold particle density of ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) between pyrenoid matrix and chloroplast stroma in G. quadratum grown in medium with or without sodium acetate were lower than those of G. pectorale. Heavy labeling by anti-RuBisCO was observed in both the electron-dense bodies and pyrenoid matrix of G. quadratum. This is the first electron microscopic demonstration of degeneration and development of both pyrenoids and thylakoid lamellae in the chloroplast as a function of culture condition in green algae.  相似文献   

9.
Pyrenoid proteins and ribulose-1,5-bisphosphate carboxylase-oxygenase(RuBisCO) in the green alga Bryopsis maxima were purified tohigh degrees and their peptide compositions were studied bySDS-polyacrylamide gel electrophoresis. RuBisCO had a largesubunit of 50 kDa and a small one of 16 kDa. The apparent molecularweight of the purified RuBisCO was estimated as 460 kDa by gelfiltration. Pyrenoid proteins had two major polypeptides: 52kDa and 17 kDa. The peptide map of the 52 kDa pyrenoid polypeptidecoincided well with that of the large subunit of RuBisCO, stronglysuggesting that the major component of the pyrenoid of thisalga was RuBisCO. We attempted to survey the distribution ofRuBisCO in the chloroplasts. The results suggested that muchof the RuBisCO of Bryopsis maxima was localized in the pyrenoid.The pyrenoid also contained more than 10 minor polypeptidesnot found in the RuBisCO fraction. The minor polypeptides comprisedabout 15% of the total pyrenoid protein and differed from thepolypeptides of the thylakoid membranes and from those foundin the starch grains surrounding the pyrenoid. (Received February 3, 1984; Accepted July 21, 1984)  相似文献   

10.
The appearances of pyrenoids in the vegetative cells of Volvulina steinii Playfair and V. pringsheimii Starr were observed in detail by light and electron microscopy in relation to the culture age to clarify the taxonomic relationship between the two species. In V. pringsheimii, the pyrenoids were always present in the bottom of the cupshaped chloroplasts and their gross morphology did not vary in relation to the culture age, while those of V. steinii appeared de novo and developed as the culture aged. In 24-h cultures of V. steinii, pyrenoids were not observed in the chloroplasts. In 48-h cultures, a pyrenoid matrix developed apparently de novo in the brim of the cupshaped chloroplast. Subsequently, starch grains appeared around the pyrenoid matrix in 72-h cultures. The volume of the matrix and the associated starch grains increased and tubular channels entered into the pyrenoid matrix in 96-h cultures. In addition, the pyrenoid in the parental chloroplast of V. pringsheimii divided and was distributed to each daughter cell during cell divisions in daughter colony formation, while the parental pyrenoid of V. steinii did not divide and went to one of the daughter cells. Therefore, these two species can be clearly distinguished by the differences in the position of pyrenoids in the cupshaped chloroplasts and stability of pyrenoid appearance in relation to the culture age, as well as in the fate of parental pyrenoids during daughter colony formation.  相似文献   

11.
The fine structure of the ac-20 strain of Chlamydomonas reinhardi is described. Cells grown mixotrophically in the presence of acetate have a highly disordered chloroplast membrane organization and usually lack pyrenoids. Chloroplast ribosome levels are only 5–10% of wild-type levels. Cells grown phototrophically without acetate possess more chloroplast ribosomes and have more normal membrane and pyrenoid organization. Chloroplast ribosome levels rise rapidly when cells are transferred from acetate to minimal medium, whereas membrane reorganization occurs only after a lag. These results, combined with earlier studies of the photosynthetic properties of the mutant strain, suggest that proper membrane organization, Photosystem II activity, and ribulose-1,5-diphosphate carboxylase formation are dependent on the presence of chloroplast ribosomes. Other chloroplast components tested are unaffected by a 10-fold reduction in levels of chloroplast ribosomes.  相似文献   

12.
Abstract— The extracellular and cerebrospinal fluids (ECF) of the chick brain were found to contain a distinctive group of rapidly labeled proteins. Gel staining patterns suggest that most ECF protein bands correspond with components also found in either the homogenized whole brain cytoplasmic fraction or the blood serum. The valine-incorporation profiles of these three fractions, however, were entirely distinctive. Comparisons were carried out using a sensitive double-labeling method, in which ECF proteins from chicks labeled for 1 h with [3H]valine were comigrated on SDS-polyacrylamide gels with the cytoplasmic or serum proteins from a 14C-labeled animal. Analyses of the 3H- and 14C-labeling profiles from these gels showed that certain newly-synthesized proteins are heavily enriched in the ECF relative to the other two fractions. Most prominently, material with an apparent molecular weight of # 17,000 was found to incorporate nearly one-third of all the radioactivity appearing in the ECF proteins, but was not heavily labeled in either the cytoplasmic or serum fractions. The effects of a simple training experience on the pattern of chicks' brain protein synthesis were also examined.  相似文献   

13.
N. W. Kerby  L. V. Evans 《Planta》1981,151(5):469-475
Characterization by peptide mapping and amino acid analysis of the two major pyrenoid polypeptides from the brown alga Pilayella littoralis shows that they are very similar to the subunits of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) from this alga. The observed similarities are discussed in relation to previous pyrenoid protein characterization from members of the Chlorophyceae.Abbreviations DTT dithiothreitol - EDTA Na2 ethylenediamine tetraacetic acid (disodium salt) - PMFS phenylmethylsul-phonylfluoride - PVPP polyvinylpyrrolidone - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - SDS sodium dodecyl sulphate - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - TRIS 2-amino-2-(hydroxymethyl) propane-1,3-diol - TPCK L-1-tosylamido-2-phenylethylchoromethyl ketone  相似文献   

14.
Summary Chloroplasts of many species of hornworts (Anthocerotae) have a structure that resembles the pyrenoid of green algae but whether these two structures are homologous has not been determined. We utilized immunogold labelling on thin sections to determine the distribution of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the major protein of algal pyrenoids, in sixteen hornwort species with and without pyrenoids. Several species (Phaeoceros laevis, Anthoceros punctatus, A. formosae, A. laminiferus, Folioceros fuciformis, Folioceros sp.,Dendroceros tubercularis, D. japonicus, D. validus, Notothylas orbicularis, N. temperata, andSpaerosporoceros adscendens) have uniplastidic (or primarily uniplastidic) cells with large prominent multiple pyrenoids. In all of these species, the labelling is found exclusively in the pyrenoid and, with the exception of theFolioceros, Dendroceros, andNotothylas species, the labelling is randomly distributed throughout the pyrenoid. In the exceptional species, the pyrenoids have prominent pyrenoglobuli or other inclusions that are unlabelled. InMegaceros flagellaris andM. longispirus, the cells are multiplastidic (with the exception of the apical cell and some epidermal cells) and the chloroplasts lack pyrenoids.Anthoceros fusiformis andPhaeoceros coriaceus have primarily uniplastidic cells but the chloroplasts lack pyrenoids; only an area of stroma in the center of the plastid devoid of starch, reminiscent of a pyrenoid, is found. In all of the species lacking pyrenoids, RuBisCo is found throughout the stroma, including the stromal spaces made by the so-called channel thylakoids. No preferential accumulation of RuBisCo is found in the pyrenoid-like region inA. fusiformis andP. coriaceus. These data indicate that 1) the hornwort pyrenoid is homologous to algal pyrenoids in the presence of RuBisCo; 2) that at least some of the RuBisCo in the pyrenoid must represent an active form of the enzyme; and 3) that, in the absence of pyrenoids, the RuBisCo is distributed throughout the stroma, as in higher plants.Abbreviations RuBisCo ribulose 1,5-bisphosphate carboxylase/oxygenase  相似文献   

15.
Representatives of three genera of anthooerotes were examined: Phaeoceros, Notothylas, and Megaceros. Species of the first two genera were found to exemplify the typical anthocerote plastid condition. This condition is characterized by the presence in each cell of the gametophyte of only a single large chloroplast containing a “multiple” pyrenoid. The genus Megaceros, however, proved to be quite different. In two species of Megaceros the pyrenoid was observed to be composed of a highly subdivided thylakoid system of even greater complexity than the “multiple” pyrenoids of Phaeoceros. In another species only an indistinct “pyrenoid-like” area was noted while in a fourth species no evidence was found for any internal differentiation. Associated with these changes in plastid structure there are corresponding alterations in the number and the size of the chloroplasts. Together they indicate an evolutionary trend away from a primitive, algal-like condition to a more advanced land plant form.  相似文献   

16.
17.
This study was aimed at the characterization of the major storage proteins in Arabidopsis thaliana. Two major protein fractions, i.e., the fraction Ⅰ and Ⅱ proteins, were isolated from the extract of mature seeds of this plant by molecular seive gel filtration chromatography. Various polyacrylarnide gel electrophoretic techniques were used to study the properties and polypeptide compositions of these two protein fractions. In was shown that during the SDS gel electrophoresis, fraction Ⅰ protein was separated into 6 major bands with the mol. was. of 34, 31, 29, 28 and 19-20 kD, respectively, whereas Fraction Ⅱ protein migrated as 3 low mol. wt. bands (10-12 kD) on the same gel. Non-denaturing native gel electrophoresis revealed that fraction Ⅰ was a neutral protein and Fraction Ⅱ was a positively charged basic protein with an isoelectric point (pI) higher than 8.8. Fraction I protein was further separated into at least 16 polypeptides in isoelectric focusing/SDS two-dimensional gel electrophoresis, i.e. each SDS band contained 3-4 polypeptides with the same mol. wt. but different pis. This suggested a more complex polypeptide composition of this protein. The properties of fraction Ⅰ and Ⅱ proteins were in good accordance with that of the 12s and 1.7s storage globulins in seeds of many other dicotyledonous plants, and therefore had been characterized as the two major seed storage proteins in this species. These two storage globulins were shown to be accumulated within a defined period during the late stage of seed development (12-14 DAF) and became predominant protein components in mature seeds. In the mean time, a few points in relation to the polypeptide composition and subunit molecular configuration of the 12s globulin were noted.  相似文献   

18.
The in situ localization of the chloroplast enzymes ribulose-1,5-bisphosphate carboxylase (Rubisco), Rubisco activase, ribose-5-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, aldolase, nitrite reductase, ferredoxin-NADP+ reductase, and H+-ATP synthase was studied by immunoelectron microscopy in Chlamydomonas reinhardtii. Immunogold labeling revealed that, despite Rubisco in the pyrenoid matrix, Calvin cycle enzymes, Rubisco activase, nitrite reductase, ferredoxin-NADP+ reductase, and H+-ATP synthase are associated predominantly with chloroplast thylakoid membranes and the inner surface of the pyrenoid membrane. This is in accord with previous enzyme localization studies in higher plants (K.H. Suss, C. Arkona, R. Manteuffel, K. Adler [1993] Proc Natl Acad Sci USA 90: 5514-5518). Pyrenoid tubules do not contain these enzymes. The pyrenoid matrix consists of Rubisco but is devoid of the other photosynthetic enzymes investigated. Evidence for the occurrence of two Rubisco forms differing in their spatial localization has also been obtained: Rubisco form I appears to be membrane associated like other Calvin cycle components, whereas Rubisco form II is confined to the pyrenoid matrix. It is proposed that enzyme form I represents an active Rubisco when assembled into Calvin cycle enzyme complexes, whereas Rubisco form II may be part of a CO2-concentrating mechanism. Pyrenoidal Calvin cycle complexes are thought to be highly active in CO2 fixation and important for the synthesis of starch around the pyrenoid.  相似文献   

19.
A method is reported for the isolation of a highly purified fraction of urinary bladder membranes containing hexagonal plaques. The method uses zonal centrifugation as the final step of fractionation. The purified fraction was characterized by its electron microscopic morphology, by its enzymatic profile, by quantitative and qualitative analysis of lipids and by the protein pattern obtained by electrophoresis in polyacrylamide sodium dodecyl sulfate gels. The fraction contains 65% lipids and 35% proteins. The major protein component has a molecular weight of 27,000 daltons. Phospholipids are more than the 54% of the total lipid weight. Phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol are the major phospholipids with 50%, 30%, and 7% of the total lipid phosphorus, respectively. The glycolipid fraction is 10% of the total lipid weight and is formed by only two components, both sulfatides. Total cholesterol makes up 36% of the total neutral lipid fraction of which cholesterol esters constitute 6%. Glycoproteins are also found to be present in the fraction.  相似文献   

20.
Plasma membranes of P815 mastocytoma cells contain a set of proteins that remain selectively insoluble upon extraction of the membranes with Triton X-100, and appear to form a membrane skeletal matrix independent of the filamentous cytoskeletal systems. EGTA treatment of the matrix was found to release approximately 25% of the protein as polypeptides of 70, 69, 38, and 36 kD, all of which appear to be peripheral components associated with the cytoplasmic face of the plasma membrane via divalent cation-dependent interactions. About 75% of the total matrix protein was recovered in the EGTA-insoluble fraction. Actin accounted for approximately 5% of the total protein in the EGTA-insoluble fraction. The rest was accounted for by two novel proteins of 20 and 40 kD which, despite their relatively low molecular weights, do not enter SDS PAGE gels. Together these proteins account for approximately 15% of the total plasma membrane protein, and are thus present in much higher amounts than any other characterized protein of nucleated cell plasma membranes. Based on the extensive associations of these proteins to form very large detergent-insoluble structures, we propose that they may be named agorin I, the 20-kD protein, and agorin II, the 40-kD protein, from the Greek agora meaning assembly. The amount and properties of these proteins and the appearance of the EGTA-insoluble material in thin-section electron micrographs indicate that the agorins are the major structural elements of the membrane matrix, and thus of the putative membrane skeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号