首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IGF-I and IGF-II are thought to be unique in their ability to promote muscle cell differentiation. Murine C2 myoblasts differentiate when placed into low serum media (LSM), accompanied by increased IGF-II and IGF binding protein-5 (IGFBP-5) production. Addition of 20 ng/ml TNF alpha on transfer into LSM blocked differentiation, IGF-II and IGFBP-5 secretion and induced apoptosis. We, therefore, wished to assess whether IGFs could protect against the effects of TNF alpha. Neither inhibition of differentiation or induction of apoptosis was rescued by co-incubation with IGF-I or IGF-II. A lower dose of TNF alpha (1 ng/ml) while not inducing apoptosis still inhibited myoblast differentiation by 56% +/- 12, (P < 0.001), indicating that induction of apoptosis is not the sole mechanism by which TNF alpha inhibits myoblast differentiation. Addition of IGF-I or IGF-II alone reduced differentiation by 49% +/- 15 and 33% +/- 20, respectively, (P < 0.001), although neither induced apoptosis. For muscle cells to differentiate, they must arrest in G0. We established that addition of IGF-I, IGF-II or TNF alpha to the myoblasts promoted proliferation. The myoblasts could not exit the cell cycle as efficiently as controls and differentiation was thus reduced. Unexpectedly, co-incubation of IGF-I or IGF-II with 1 ng/ml TNF alpha enhanced the inhibition of differentiation and induced apoptosis. In the absence of apoptosis we show an association between IGF-induced inhibition of differentiation and increased IGFBP-5 secretion. These results indicate that the effects of the IGFs on muscle may depend on the cytokine environment. In the absence of TNF alpha, the IGFs delay differentiation and promote myoblast proliferation whereas in the presence of TNF alpha the IGFs induce apoptosis.  相似文献   

2.
Insulin-like growth factor binding protein (IGFBP)-3 effects proliferation and differentiation of numerous cell types by binding to insulin-like growth factors (IGF) and attenuating their activity or by directly affecting cells in an IGF-independent manner. Consequently, IGFBPs produced by specific cells may affect their differentiation and proliferation. In this study we show that embryonic porcine myogenic cells, unlike murine muscle cell lines, produce significant quantities of a binding protein immunologically identified as IGFBP-3. Nonfusing cells subcultured from highly fused porcine myogenic cell cultures do not produce detectable IGFBP-3 protein or mRNA, thus suggesting the IGFBP-3 is produced by muscle cells in the porcine myogenic cell cultures. Treatment of porcine myogenic cultures with 20 ng of IGF-I or 20 ng of Des (1-3) IGF-I/ml serum-free media for 24 h results in a threefold reduction in the level of IGFBP-3 in conditioned media. This reduction is not affected by cell density over a sixfold range. Additionally, treatment for 24 h with 20 ng of IGF-I/ml media results in a sevenfold decrease in the steady-state level of IGFBP-3 mRNA. This IGF-I-induced decrease in IGFBP-3 mRNA level appears to be relatively unique to myogenic cells. IGF-I treatment also causes a fourfold increase in the steady-state level of myogenin mRNA. This increase in myogenin mRNA suggests that, as expected, IGF-I treatment accelerates differentiation of myogenic cells. The simultaneous decrease in IGFBP-3 mRNA and protein that accompanies IGF-I-induced myogenin expression suggests that differentiation of myogenic cells may be preceded or accompanied by decreased production of IGFBP-3.  相似文献   

3.
Signaling through the IGF-I receptor by locally produced IGF-I or -II is critical for normal skeletal muscle development and repair after injury. In most tissues, IGF action is modulated by IGF binding proteins (IGFBPs). IGFBP-5 is produced by muscle cells, and previous studies have suggested that when overexpressed it may either facilitate or inhibit IGF actions, and thus potentially enhance or diminish IGF-mediated myoblast differentiation or survival. To resolve these contradictory observations and discern the mechanisms of action of IGFBP-5, we studied its effects in cultured muscle cells. Purified wild-type (WT) mouse IGFBP-5 or a variant with diminished extracellular matrix binding (C domain mutant) each prevented differentiation at final concentrations as low as 3.5 nm, whereas analogs with reduced IGF binding (N domain mutant) were ineffective even at 100 nm. None of the IGFBP-5 variants altered cell number. An IGF-I analog (R(3)IGF-I) with diminished affinity for IGFBPs promoted full muscle differentiation in the presence of IGFBP-5(WT), showing that IGFBP-5 interferes with IGF-dependent signaling pathways in myoblasts. When IGFBP-5(WT) or variants were overexpressed by adenovirus-mediated gene transfer, concentrations in muscle culture medium reached 500 nm, and differentiation was inhibited, even by IGFBP-5(N). As 200 nm of purified IGFBP-5(N) prevented activation of the IGF-I receptor by 10 nm IGF-II as effectively as 2 nm of IGFBP-5(WT), our results not only demonstrate that IGFBP-5 variants with reduced IGF binding affinity impair muscle differentiation by blocking IGF actions, but underscore the need for caution when labeling effects of IGFBPs as IGF independent because even low-affinity analogs may potently inhibit IGF-I or -II if present at high enough concentrations in biological fluids.  相似文献   

4.
Summary The current study was designed to examine the effects of muscle and fat stem cell coculture on the secretion of insulinlike growth factor (IGF)-I and -II and IGF binding proteins (IGFBP) by these cells. Two sheep satellite cell strains with negligible or high potential for differentiation (10A and 01, respectively) were placed in coculture with 3T3-L1 preadipocytes using a filter support to separate the two cell types. Media conditioned by the cells grown alone or in coculture were analyzed for IGFs by RIA or IGFBPs by ligand blotting. The numbers of satellite cells and preadipocytes declined throughout the 5-d culture period, although coculture slowed the 3T3-L1 decline but hastened the satellite cell decline. The satellite cell strains and 3T3-L1 cells secreted small amounts of IGF-I (≤2 ng/ml) and IGF-II (<10 ng/ml) over the 5-d culture period. Coculture did not increase the amount of IGF-I and -II in conditioned media. The lowly differentiating 10A cells secreted barely detectable amounts of the low molecular weight IGFBP-3 subunit (34 kDa), IGFBP-2 (28 kDa), and IGFBP-4 (18 kDa). Coculture of 10A and 3T3-L1 cells potentiated secretion of IGFBP-2 and-3. Strain 01, which readily differentiates, secreted high levels of both IGFBP-3 subunits (34 and 39 kDa) and IGFBP-2 (28 kDa), as well as significant amounts of the 18 kDa IGFBP-4. Coculture did not alter IGFBP secretion of 01 cells. This study showed that while IGF-I and -II levels in media conditioned by sheep satellite cell strains are low and relatively invariant, the intensity and complexity of IGFBP patterns increases with time in culture and with the potential for differentiation of the satellite cell strains. Coculture with preadipocytes appeared to potentiate IGFBP secretion while reducing satellite cell viability.  相似文献   

5.
6.
The insulin-like growth factors (IGFs) I and II exert pleiotropic effects on diverse cell types through interaction with specific high affinity cell surface receptors and with locally produced binding proteins. In skeletal muscle and in myoblast cell lines, the functions of IGF-I and -II are complex. Both growth factors appear capable of stimulating cellular proliferation and differentiation, as well as exerting insulin-like effects on intermediary metabolism. We have demonstrated recently that the expression of IGF-II and its receptor is induced during the terminal differentiation of the myoblast cell line, C2, and have suggested that IGF-II may be an autocrine growth factor in these cells (Tollefsen, S.E., Sadow, J.L., and Rotwein, P. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 1543-1547). We now have examined this cell line for expression of other components involved in IGF signaling. The synthesis of IGF-I is low during myoblast proliferation; IGF-I mRNA can be detected only through use of a sensitive solution hybridization assay. Typical IGF-I receptors can be measured in myoblasts, whereas IGF binding proteins cannot be detected in proliferating cells or in conditioned culture medium. During myogenic differentiation, IGF-I mRNA levels increase transiently by 6-10-fold within 48-72 h. The expression of IGF-I mRNA is accompanied by a 2.5-fold accumulation of IGF-I in the culture medium. IGF-I receptors also increase transiently, doubling by 48 h after the onset of differentiation. By contrast, secretion of a Mr 29,000 IGF binding protein is induced 30-fold to 100 ng/ml within 16 h and continues to increase throughout differentiation. These studies demonstrate that several components critical to IGF action are produced in a fusing skeletal muscle cell line in a differentiation-dependent manner and suggest that both IGF-I and IGF-II may be autocrine factors for muscle.  相似文献   

7.
The insulin-like growth factor (IGF) system is a key regulator of cell growth, survival and differentiation, and these functions are co-modulated by other growth factors including fibroblast growth factor-2 (FGF-2). To investigate IGF/FGF interactions in neuronal cells, we employed neuroblastoma cells (SK-N-MC). In serum free conditions proliferation of the SK-N-MC cells was promoted by IGF-I (25 ng/ml), but blunted by FGF-2 (50 ng/ml). IGF-I-induced proliferation was abolished in the presence of FGF-2 even when IGF-I was used at 100 ng/ml. In addition to our previously described FGF-2 induced proteolytic cleavage of IGFBP-2, we found that FGF-2 increased IGFBP-6 levels in conditioned medium (CM) without affecting IGFBP-6 mRNA abundance. Modulation of IGFBP-2 and -6 levels were not significant mechanisms involved in the blockade of IGF-I action since the potent IGF-I analogues [QAYL]IGF-I and des(1-3)IGF-I (minimal IGFBP affinity) were unable to overcome FGF-2 inhibition of cell proliferation. FGF-2 treated cells showed morphological differentiation expressing the TUJ1 neuronal marker while cells treated with IGF-I alone showed no morphological change. When IGF-I was combined with FGF-2, however, cell morphology was indistinguishable from that seen with FGF-2 alone. FGF-2 inhibited proliferation and enhanced differentiation was also associated with a 70% increase in cell death. Although IGF-I alone was potently anti-apoptotic (60% decreased), IGF-I was unable to prevent apoptosis when administrated in combination with FGF-2. Gene-array analysis confirmed FGF-2 activation of the intrinsic and extrinsic apoptotic pathways and blockade of IGF anti-apoptotic signaling. FGF-2, directly and indirectly, overcomes the proliferative and anti-apoptotic activity of IGF-I by complex mechanisms, including enhancement of differentiation and apoptotic pathways, and inhibition of IGF-I induced anti-apoptotic signalling. Modulation of IGF binding protein abundance by FGF-2 does not play a significant role in inhibition of IGF-I induced mitogenesis.  相似文献   

8.
9.
Several cell types have been shown to secrete insulin-like growth factor binding proteins (IGF-BP) in vitro. Since IGF-BP influences cell responsiveness to IGF, three muscle cell types were investigated to determine if they produced IGF-BP and to identify factors that regulate IGF-BP secretion. Porcine smooth muscle cells (pSMC), rat L6 skeletal muscle cells, and mouse BC3H-1 myocytes were used. IGF-BP activity in serum-free conditioned media was quantitated with a polyethylene glycol precipitation method. All three cell types secreted IGF-BP activity into the medium. Insulin was a potent stimulant of IGF-BP secretion for each cell type. Specifically, 1 microgram/ml insulin increased the IGF-BP concentration in conditioned media from 10.5 +/- 1.3 to 15.0 +/- 1.5 ng/ml in confluent L6 myotubes, from 42.5 +/- 11.1 to 90.5 +/- 9.8 ng/ml in confluent BC3H-1 cells, and from 2.1 +/- 0.1 to 3.8 +/- 0.1 ng/ml in confluent pSMC. L6 myotubes required more insulin (8 micrograms/ml) to achieve a half-maximal stimulation of IGF-BP secretion than confluent pSMC, differentiation deficient L6.DD cells or BC3H-1 cells, where half-maximal stimulation occurred between 125 and 300 ng/ml. L6 myoblasts were 40-fold more sensitive to insulin stimulation of IGF-BP secretion than L6 myotubes. IGF-I, although it interferes with the assay and thereby lowers the amount of detectable IGF-BP, stimulated the secretion of IGF-BP from all three cell types. Dexamethasone, (10(-7) M) decreased IGF-BP secretion into the media by approximately 50% for all three cell types. Affinity cross-linking and ligand blotting of 125I-IGF-I to conditioned media from each cell type showed (IGF-BP)-(IGF-I) complexes with molecular weights ranging 32-40 kDa (24-32 kDa for IGF-BP and 7.5 kDa for IGF-I). Insulin stimulated cell proliferation for both L6 myoblasts and BC3H-1 myocytes. This cell proliferative response was associated with an increase in IGF-BP secretion/cell in response to insulin. In contrast dexamethasone decreased L6 myoblast proliferation and decreased IGF-BP secretion/cell. We conclude that IGF-BP is secreted by each muscle cell type and that the state of cellular differentiation or quiescence influences its basal and insulin-stimulated secretion. Insulin and IGF-I are stimulators of IGF-BP secretion, whereas dexamethasone inhibits IGF-BP secretion. Because these hormones control muscle cell growth and differentiation, the IGF-BP may play an important regulatory role in these processes.  相似文献   

10.
Human intestinal smooth muscle cells in culture produce insulin-like growth factor-I (IGF-I), IGF binding protein-3 (IGFBP-3), IGFBP-4, and IGFBP-5, which can modulate the effects of IGF-I on growth. This study examined the role of IGFBP-4 on IGF-I-induced growth and the mechanisms regulating IGFBP-4 levels. IGFBP-4 inhibited IGF-I-induced [(3)H]thymidine incorporation. IGFBP-4 mRNA levels were not altered by IGF-I. IGF-I caused a concentration-dependent activation of an endogenous IGFBP-4 protease, resulting in time-dependent degradation of intact IGFBP-4 into inactive fragments. Protease activity was measured in a cell-free assay using smooth muscle cell conditioned medium containing the IGFBP-4 protease. The protease was inhibited by EDTA and benzamidine. Protease activity was highest in proliferating cells and lowest in postconfluent cells. The role of endogenous IGF-I in regulating IGFBP-4 degradation was confirmed by the ability of an IGF-I antagonist to inhibit IGF-I-activated IGFBP-4 proteolysis in intact cells. We conclude that in human intestinal smooth muscle cells levels of secreted IGFBP-4 are determined by the confluence-dependent production of a cation-dependent serine protease that is activated by endogenous IGF-I.  相似文献   

11.
The modulation of insulin-like growth factor-binding protein (IGFBP) secretion is an important variable affecting muscle cell metabolism, proliferation, and differentiation. We have previously shown that secretion of IGFBP-4 and IGFBP-5 by L6 and BC3H-1 muscle cells was stimulated by treatment with either insulin, IGF-I, or IGF-II. Herein, these cells were used to further identify mechanisms involved in controlling IGFBP secretion. Agents that elevate intracellular cAMP concentrations (dcAMP, forskolin, isoproterenol, and prostaglandin [PGE1]) increase secretion of IGFBP-4 and IGFBP-5 from L6 cells. Similar increases in IGFBP secretion were found by treatment with either insulin, IGF-I, or dcAMP. The effects of dcAMP and either insulin or IGF-I were additive, but the effects of insulin and IGF-I were not additive. These results suggest that insulin/IGF-I and dcAMP are acting via distinct mechanisms to stimulate IGFBP secretion. Indomethacin, which blocks endogenous prostaglandin synthesis, and progesterone, which decreases intracellular cAMP levels, decreased IGFBP-4 and IGFBP-5 secretion. IGFBP-5 secretion by BC3H-1 cells was increased by either insulin or IGF-I. Agents which elevate intracellular cAMP concentrations did not increase IGFBP-5 secretion. Additionally, these agents were not synergistic with either insulin or IGF-I. However, indomethacin and progesterone depressed IGFBP-5 secretion by BC3H-1 cells. In summary, there appear to be at least two intracellular signaling mechanisms controlling IGFBP-4 and IGFBP-5 secretion by L6 and BC3H-1 muscle cells. IGFBP secretion by L6 cells is stimulated by both insulin/IGF-I and cAMP-dependent pathways, whereas IGFBP-5 secretion by BC3H-1 cells is stimulated only by the insulin/IGF pathway. IGFBP secretion by both cell lines can be decreased by agents which depress cAMP levels. Our results suggest that two divergent but synergistic pathways modulate IGFBP production and these mechanisms can potentially modulate IGF activity during muscle cell proliferation and differentiation. J. Cell. Physiol. 174:293–300, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
13.
OBJECTIVE: To investigate the role of the insulin-like growth factors (IGF) system during the differentiation of human pulp-derived fibroblasts (HPF). METHODS: Primary HPF were cultured for 24 days in DMEM medium with IGF-I or IGF-II (50 ng/ml each). Cell growth and morphology, alkaline phosphatase (ALP) activity, the concentration of free deoxypyridinoline (DPD), IGF-I, -II, IGFBP-2 and -3 were studied. The number of (125)I-IGF-I binding sites was estimated by Scatchard analysis. RESULTS: Light-microscopically visible nodules emerged during differentiation. Simultaneously, the ALP activity increased steadily between days 8 and 24, while the DPD concentration decreased by about 50%. The HPF produced high concentrations of IGF-II (2.00-1.30 microg/10(6) cells) but low IGF-I, IGFBP-2. IGFBP-2 was not changed, IGFBP-3 increased by 65% during differentiation. The number of IGF binding sites increased from 8,500 +/- 55 per cell (day 8) up to 22,000 +/- 570 (day 24). CONCLUSION: The increasing number of IGF-binding sites accompanied by alterations in the biochemical bone markers during the differentiation of HPF suggests an autocrine/paracrine role for the IGFs in the formation of dentinal hard tissue.  相似文献   

14.
Wasting of muscle and fat during cachexia exceeds that explained by reduced food intake alone. This wasting may result from an imbalanced cytokine environment, which could lead to increased protein catabolism. Supporting this, tumor necrosis factor-alpha (TNF-alpha) is raised in several animal models of cachectic muscle wasting. Therefore, we assessed the effects of TNF-alpha and its second messenger, ceramide, on the proliferation, differentiation, and survival of murine C2 skeletal myoblasts. Because insulin-like growth factor binding protein-5 (IGFBP-5) and insulin-like growth factor-II (IGF-II) are potent regulators of myoblast proliferation and differentiation, we monitored the ability of exogenous TNF-alpha to manipulate this system. Fibroblast growth factor (FGF) ceramide, or TNF-alpha suppressed differentiation of C2 cells compared with controls. All treatments suppressed IGF-II production but only TNF-alpha blocked IGFBP-5 secretion. TNF-alpha increased apoptotic cell death, which otherwise remained basal (low serum differentiation medium (LSM), FGF) or low (ceramide). Suppression of both IGFBP-5 and IGF-II secretion may explain why of all triggers tested, only TNF-alpha not only blocked differentiation, but also promoted cell death. This suggests a fundamental role of IGFBP-5 for maintaining muscle survival. Supporting this hypothesis, no increase in apoptosis was seen in IGFBP-5 cDNA tranfected C2 cells after TNF-alpha treatment. In summary, the IGF system is essential for maintaining skeletal muscle cell survival and differentiation, and its suppression by TNF-alpha is fundamental regarding muscle wasting, and may be associated in vivo with cancer cachexia.  相似文献   

15.
IGF-I is mitogenic for the bovine mammary epithelial cell line MAC-T. In addition, IGF-I specifically upregulates IGFBP-3 synthesis in these cells. To investigate this effect on cell growth and IGF-I responsiveness, cell lines were developed that constitutively express IGFBP-3. MAC-T cells transfected with IGFBP-3 (+BP3) or vector alone (Mock) grew similarly over 7 days in 10 or 1% fetal calf serum. Basal DNA synthesis was lower (70%) in +BP3 cells compared to Mock cells. However, DNA synthesis was increased by IGF-I (1-50 ng/ml) relative to untreated controls to a greater extent in +BP3 cells compared to Mock cells. IGF-I (20 ng/ml) increased DNA synthesis 11- and threefold in +BP3 and Mock cells, respectively. Additionally, +BP3 cells were more sensitive to the lower concentrations of IGF-I (1-5 ng/ml). In contrast, preincubation of Mock cells with exogenous IGFBP-3 did not enhance responsiveness or sensitivity to IGF-I. Basal DNA synthesis was unaffected by either an IGF neutralizing antibody or exogenous IGFBP3, indicating the differences observed between +BP3 and Mock cells were not attributable to sequestration of endogenous IGF-I by IGFBP-3. There were no differences between +BP3 and Mock cells in IGF-I receptor number or affinity. DNA synthesis was also increased in +BP3 cells, compared to controls, in response to 5 microg/ml insulin and 2.5 ng/ml Long R(3)IGF-I, indicating that the potentiated response did not require an interaction with IGFBP-3. These results suggest that IGF-I regulation of IGFBP-3 represents a regulatory loop, the function of which is to increase IGF-I bioactivity, using a mechanism that does require an IGF-I-IGFBP-3 interaction.  相似文献   

16.
Insulin-like growth factor binding proteins (IGFBPs) affect the biological activity of IGF-I in several cell types, including cultured muscle cells. Additionally, at least one of the IGFBPs, IGFBP-3, has been shown to have IGF-independent effects on cell proliferation. Numerous studies have shown that immortalized muscle cell lines produce various IGFBPs, but to date no muscle cell line has been reported to produce IGFBP-3 protein or mRNA. Unlike muscle cell lines, primary cultures of porcine embryonic myogenic cells express IGFBP-3 mRNA and secrete a protein that is immunologically identifiable as IGFBP-3. Additionally, steady-state IGFBP-3 levels change significantly during differentiation. Here we report that differentiation of porcine myogenic cells in an IGFBP-3-free medium is accompanied by reduced steady-state IGFBP-3 mRNA levels. Steady-state levels of IGFBP-3 mRNA decreased approximately sevenfold (P < .05) during differentiation and then increased to predifferentiation levels once differentiation was complete. Addition of TGF-beta1 (0.5 ng/ml) to porcine myogenic cultures suppressed fusion and resulted in a sevenfold increase in steady-state IGFBP-3 mRNA and a 1.8-fold increase in IGFBP-3 protein levels as compared to untreated control cultures (P < .05). Results suggest that alterations in IGFBP-3 mRNA and protein may play a role in differentiation of porcine embryonic muscle cells.  相似文献   

17.
AIMS: The aim of our in vitro studies was to understand the role of leptin and the insulin-like growth factor I/insulin-like growth factor protein (IGF/IGFBP) system in controlling human ovarian function. METHODS: We studied the action of leptin (0, 1, 10, or 100 ng/ml) and immunoneutralization of IGF-I using specific antiserum (0.1%) on the release of progesterone (P), estradiol (E), oxytocin (OT), IGF-I, IGFBP-3, and prostaglandins F (PGF) by these cells using radioimmunoassay/immunoradiometric assay. RESULTS: It was found that leptin stimulated the secretion of OT, IGFBP-3, and PGF. It suppressed the secretion of E and IGF-I, but not P, into the medium. The addition of antiserum against IGF-I decreased IGF-I output, increased P, OT, IGFBP-3, and PGF secretion, and had no effect on E release. Immunoneutralization of IGF-I also prevented or reversed the effects of leptin on P, E, IGF-I, IGFBP-3, PGF, but not on OT. CONCLUSIONS: These observations (1) demonstrate that leptin directly controls the secretory activity of human ovarian cells, (2) confirm the involvement of IGF-I in the regulation of ovarian cells, and (3) suggest an inter-relationship between leptin and the IGF/IGFBP system in the control of these functions and the involvement of IGF/IGFBP system in mediating leptin action on the ovary.  相似文献   

18.
AIMS: The impact of growth hormone (GH) and prednisolone on the GH/insulin-like growth factor (IGF) axis with special emphasis on IGF binding protein-3 (IGFBP-3) proteolysis was studied in 8 healthy adults in a double-blind cross-over study with four periods: (1) placebo; (2) s.c. GH 0.1 IU/kg/day; (3) oral prednisolone 50 mg/day, and (4) co-administration of GH and prednisolone. METHODS: Each treatment period lasted for 4 days followed by a washout period of 10 days. We measured IGF-I, IGF-II, IGFBP-1, IGFBP-2, IGFBP-3 by immunoassays, IGFBP-3 by Western ligand blotting (WLB) and finally in vitro IGFBP-3 proteolysis by a (125)I-IGFBP-3 degradation assay. RESULTS: IGF-I levels increased by 99% during GH administration and 67% during co-administration of GH and prednisolone (p < 0.0005), whereas no significant change was seen during prednisolone alone. IGFBP-1 levels decreased 55% during the prednisolone period (p < 0.002), but the between period changes were not significant (p < 0.1). IGFBP-2 decreased 33% during co-administration of GH and prednisolone (p < 0.002). IGFBP-3 increased 12% during GH and 7% during co-administration of GH and prednisolone (p < 0.003 and p < 0.03 compared to placebo, respectively), whereas prednisolone alone induced no significant changes. IGFBP-3 measured by WLB did not change significantly, neither did IGFBP-3 proteolysis. CONCLUSIONS: Prednisolone administration induces only minimal changes in circulating components of the IGF axis and is not accompanied by alterations in IGFBP-3 proteolysis. This indicates that the metabolic effects of glucocorticoids do not depend on serum IGF-I.  相似文献   

19.
Thyroid stimulating hormone (TSH) is shown to have definite anabolic effects on skeletal metabolism. Previous studies have demonstrated that Insulin-like growth factors (IGF-I and IGF-II) and their six high affinity binding proteins (IGFBPs 1-6) regulate proliferation and differentiation of bone-forming osteoblasts. The current study was intended to determine whether the anabolic effects of TSH on human osteoblastic (SaOS2) cells are mediated through insulin-like growth factor system components. TSH given at 0.01 ng to 10 ng/ml dose levels for 24 and 48 h significantly increased human osteoblastic (SaOS2) cell proliferation and alkaline phosphatase activity, the differentiation marker. TSH significantly increased IGFs (IGF-I and IGF-II) mRNA expression after 6 and 24 h and their protein levels after 24 and 48 h of treatment, respectively. Unlike the IGFs, the IGFBPs responded differently to TSH treatment. Though there were some inconsistencies in the regulation of stimulatory IGF binding protein-3 and -5 by TSH treatment, there was an overall increase at the mRNA abundance and protein levels. Again, the inconsistency persisted at the regulation of the inhibitory IGFBPs 2, 4, and 6 especially at the level of mRNA expression due to TSH treatment, there is an overall decrease in the levels of IGFBP-2, 4, and 6 in the conditioned media (CM) of SaOS2 cell cultures. The IGFBP proteases which control the availability of IGFs are also regulated by hormones. Pregnancy-Associated Plasma Protein-A (PAPP-A) is responsible for the proteolysis of IGFBP-4. TSH treatment significantly unregulated the expression of PAPP-A both at mRNA and protein levels. In conclusion, TSH promotes human osteoblastic (SaOS2) cell proliferation and differentiation by upregulating IGFs and their stimulatory IGF binding proteins and down regulating the inhibitory IGF binding proteins.  相似文献   

20.
Human conditions of elevated interleukin-6 (IL-6) and transgenic mice overexpressing IL-6 have increased proteolytic degradation of insulin-like growth factor binding protein (IGFBP)-3. In addition, IL-6 alters the hepatic expression of insulin-like growth factor-I (IGF-I) and the IGFBPs in vitro. The aim of the present study was to investigate whether moderately elevated IL-6 levels have short-term effects on circulating IGF-I, IGFBP-1 and IGFBP-3 proteolysis in vivo. Healthy men received a 3-h IL-6 (n = 6) or saline (n = 6) infusion and blood samples were collected prior to and up to 8 h after the start of infusion. Free IGF-I, total IGF-I, IGFBP-1, insulin and cortisol were measured using immunoassays. Serum IGFBP-3 proteolysis was analyzed by Western immunoblot and by in vitro degradation of (125)I-IGFBP-3. We found that IL-6 concentrations reaching approximately 100 pg/ml significantly increased IGFBP-1 after the end of infusion in the absence of changes in insulin. In addition, plasma levels of cortisol were increased in response to IL-6 during and after infusion compared to saline. There was no effect of IL-6 on IGFBP-3 proteolysis, total IGF-I or free dissociable IGF-I. These data suggest that moderately elevated levels of IL-6 such as in the post-operative state or after exercise may contribute to increased levels of IGFBP-1. Although this study does not exclude that high levels and/or prolonged exposure to IL-6 may induce IGFBP-3 proteolysis in sepsis or chronic inflammatory disease, it suggests that IL-6 released from exercising skeletal muscle is not directly involved in proteolysis of circulating IGFBP-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号