首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The actin depolymerizing factor (ADF)/cofilin family of proteins interact with actin monomers and filaments in a pH-sensitive manner. When ADF/cofilin binds F-actin it induces a change in the helical twist and fragmentation; it also accelerates the dissociation of subunits from the pointed ends of filaments, thereby increasing treadmilling or depolymerization. Using site-directed mutagenesis we characterized the two actin-binding sites on human cofilin. One target site was chosen because we previously showed that the villin head piece competes with ADF for binding to F-actin. Limited sequence homology between ADF/cofilin and the part of the villin headpiece essential for actin binding suggested an actin-binding site on cofilin involving a structural loop at the opposite end of the molecule to the alpha-helix already implicated in actin binding. Binding through the alpha-helix is primarily to monomeric actin, whereas the loop region is specifically involved in filament association. We have characterized the actin binding properties of each site independently of the other. Mutation of a single lysine residue in the loop region abolishes binding to filaments, but not to monomers. Using the mutation analogous to the phosphorylated form of cofilin (S3D), we show that filament binding is inhibited at physiological ionic strength but not under low salt conditions. At low ionic strength, this mutant induces both the twist change and fragmentation characteristic of wild-type cofilin, but does not activate subunit dissociation. The results suggest a two-site binding to filaments, initiated by association through the loop site, followed by interaction with the adjacent subunit through the "helix" site at the opposite end of the molecule. Together, these interactions induce twist and fragmentation of filaments, but the twist change itself is not responsible for the enhanced rate of actin subunit release from filaments.  相似文献   

2.
The binding sites for actin depolymerising factor (ADF) and cofilin on G-actin have been mapped by competitive chemical cross-linking using deoxyribonuclease I (DNase I), gelsolin segment 1 (G1), thymosin beta4 (Tbeta4), and vitamin D-binding protein (DbP). To reduce ADF/cofilin induced actin oligomerisation we used ADP-ribosylated actin. Both vitamin D-binding protein and thymosin beta4 inhibit binding by ADF or cofilin, while cofilin or ADF and DNase I bind simultaneously. Competition was observed between ADF or cofilin and G1, supporting the hypothesis that cofilin preferentially binds in the cleft between sub-domains 1 and 3, similar to or overlapping the binding site of G1. Because the affinity of G1 is much higher than that of ADF or cofilin, even at a 20-fold excess of the latter, the complexes contained predominantly G1. Nevertheless, cross-linking studies using actin:G1 complexes and ADF or cofilin showed the presence of low concentrations of ternary complexes containing both ADF or cofilin and G1. Thus, even with monomeric actin, it is shown for the first time that binding sites for both G1 and ADF or cofilin can be occupied simultaneously, confirming the existence of two separate binding sites. Employing a peptide array with overlapping sequences of actin overlaid by cofilin, we have identified five sequence stretches of actin able to bind cofilin. These sequences are located within the regions of F-actin predicted to bind cofilin in the model derived from image reconstructions of electron microscopical images of cofilin-decorated filaments. Three of the peptides map to the cleft region between sub-domains 1 and 3 of the upper actin along the two-start long-pitch helix, while the other two are in the DNase I loop corresponding to the site of the lower actin in the helix. In the absence of any crystal structures of ADF or cofilin in complex with actin, these studies provide further information about the binding sites on F-actin for these important actin regulatory proteins.  相似文献   

3.
Actin-depolymerizing-factor (ADF)/cofilins have emerged as key regulators of cytoskeletal dynamics in cell motility, morphogenesis, endocytosis, and cytokinesis. The activities of ADF/cofilins are regulated by membrane phospholipid PI(4,5)P2 in vitro and in cells, but the mechanism of the ADF/cofilin-PI(4,5)P2 interaction has remained controversial. Recent studies suggested that ADF/cofilins interact with PI(4,5)P2 through a specific binding pocket, and that this interaction is dependent on pH. Here, we combined systematic mutagenesis with biochemical and spectroscopic methods to elucidate the phosphoinositide-binding mechanism of ADF/cofilins. Our analysis revealed that cofilin does not harbor a specific PI(4,5)P2-binding pocket, but instead interacts with PI(4,5)P2 through a large, positively charged surface of the molecule. Cofilin interacts simultaneously with multiple PI(4,5)P2 headgroups in a cooperative manner. Consequently, interactions of cofilin with membranes and actin exhibit sharp sensitivity to PI(4,5)P2 density. Finally, we show that cofilin binding to PI(4,5)P2 is not sensitive to changes in the pH at physiological salt concentration, although the PI(4,5)P2-clustering activity of cofilin is moderately inhibited at elevated pH. Collectively, our data demonstrate that ADF/cofilins bind PI(4,5)P2 headgroups through a multivalent, cooperative mechanism, and suggest that the actin filament disassembly activity of ADF/cofilin can be accurately regulated by small changes in the PI(4,5)P2 density at cellular membranes.  相似文献   

4.
We studied the effect of mutations in an alpha-helical region of actophorin (residues 91-108) on F-actin and PIP(2) binding. As in cofilin, residues in the NH(2)-terminal half of this region are involved in F-actin binding. We show here also that basic residues in the COOH-terminal half of the region participate in this interaction whereby we extend the previously defined actin binding interface [Lappalainen, P., et al. (1997) EMBO J. 16, 5520-5530]. In addition, we demonstrate that some of the lysines in this alpha-helical region in actophorin are implicated in PIP(2) binding. This indicates that the binding sites of F-actin and PIP(2) on actophorin overlap, explaining the mutually exclusive binding of these ligands. The Ca(2+)-dependent F-actin binding of a number of actophorin mutants (carrying a lysine to glutamic acid substitution at the COOH-terminal positions of the actin binding helical region) may mimic the behavior of members of the gelsolin family. In addition, we show that PIP(2) binding, but not actin binding, of actophorin is strongly enhanced by a point mutation that leads to a reinforcement of the positive electrostatic potential of the studied alpha-helical region.  相似文献   

5.
ADF/cofilins are abundant actin binding proteins critical to the survival of eukaryotic cells. Most ADF/cofilins bind both G and F-actin, sever the filaments and accelerate their treadmilling. These effects are linked to rearrangements of interprotomer contacts, changes in the mean twist, and filament destabilization by ADF/cofilin. Paradoxically, it was reported that under certain in vitro and in vivo conditions cofilin may stabilize actin filaments and nucleate their formation. Here, we show that yeast cofilin and human muscle cofilin (cofilin-2) accelerate the nucleation and elongation of ADP-F-actin and stabilize such filaments. Moreover, cofilin rescues the polymerization of the assembly incompetent tethramethyl rhodamine (TMR)-actin and T203C/C374S yeast mutant actin. Filaments of cofilin-decorated TMR-actin and unlabeled actin are indistinguishable, as revealed by electron microscopy and three-dimensional reconstruction. Our data suggest that ADF/cofilins play an active role in establishing new interprotomer interfaces in F-actin that substitute for disrupted (as in TMR-actin and mutant actin) or weakened (as in ADP-actin) longitudinal contacts in filaments.  相似文献   

6.
Structural effects of yeast cofilin on skeletal muscle and yeast actin were examined in solution. Cofilin binding to native actin was non-cooperative and saturated at a 1:1 molar ratio, with K(d)相似文献   

7.
Coronin is a conserved actin-binding protein that co-functions with ADF/cofilin and Arp2/3 complex to govern cellular actin dynamics. Despite emerging roles for coronin in a range of physiological processes and disease states, a detailed understanding of the molecular interactions of coronin with actin and other binding partners has been lacking. Here, we performed a systematic mutational analysis of surfaces on the yeast coronin β-propeller domain, which binds to F-actin and is conserved in all coronin family members. We generated 21 mutant alleles and analyzed their biochemical effects on actin binding and ADF/cofilin activity. Conserved actin-binding residues mapped to a discrete ridge stretching across one side of the β-propeller. Mutants defective in actin binding showed loss of synergy with ADF/cofilin in severing filaments, diminished localization to actin structures in vivo, and loss of coronin overexpression growth defects. In addition, one allele showed normal actin binding but impaired functional interactions with ADF/cofilin. Another allele showed normal actin binding but failed to cause coronin overexpression defects. Together, these results indicate that actin binding is critical for many of the biochemical and cellular functions of coronin and that the β-propeller domain mediates additional functional interactions with ADF/cofilin and possibly other ligands. Conservation of the actin-binding surfaces across distant species and in all three major classes of coronin isoforms suggests that the nature of the coronin-actin association may be similar in other family members.  相似文献   

8.
Actin depolymerizing factor (ADF)/cofilin changes the twist of actin filaments by binding two longitudinally associated actin subunits. In the absence of an atomic model of the ADF/cofilin-F-actin complex, we have identified residues in ADF/cofilin that are essential for filament binding. Here, we have characterized the C-terminal tail of UNC-60B (a nematode ADF/cofilin isoform) as a novel determinant for its association with F-actin. Removal of the C-terminal isoleucine (Ile152) by carboxypeptidase A or truncation by mutagenesis eliminated F-actin binding activity but strongly enhanced actin depolymerizing activity. Replacement of Ile152 by Ala had a similar but less marked effect; F-actin binding was weakened and depolymerizing activity slightly enhanced. Truncation of both Arg151 and Ile152 or replacement of Arg151 with Ala also abolished F-actin binding and enhanced depolymerizing activity. Loss of F-actin binding in these mutants was accompanied by loss or greatly decreased severing activity. All of the variants of UNC-60B interacted with G-actin in an indistinguishable manner from wild type. Cryoelectron microscopy showed that UNC-60B changed the twist of F-actin to a similar extent to vertebrate ADF/cofilins. Helical reconstruction and structural modeling of UNC-60B-F-actin complex reveal how the C terminus of UNC-60B might be involved in one of the two actin-binding sites.  相似文献   

9.
ADF/cofilins are actin binding proteins that bind actin close to both the N- and C-termini (site 1), and we have found a second cofilin binding site (site 2) centered around helix 112-125 [Renoult, C., Ternent, D., Maciver, S.K., Fattoum, A., Astier, C., Benyamin, Y. & Roustan, C. (1999) J. Biol. Chem. 274, 28893-28899]. We proposed a model in which ADF/cofilin intercalated between subdomains 1 and 2 of two longitudinally associated actin monomers within the actin:cofilin cofilament, explaining the change in twist that ADF/cofilins induce in the filament [McGough, A. Pope, B., Chiu, W. & Weeds, A. (1998) J. Cell Biol. 138, 771-781]. Here, we have determined the fuller extent of the cofilin footprint on site 1 of actin. Site 1 is primarily the G-actin binding site. Experiments with both peptide mimetics and fluorescently labeled cofilin suggest that site 2 only becomes available for cofilin binding within the filament, possibly due to motion between subdomains 1 and 2 within an actin monomer. We have detected motion between subdomains 1 and 2 of G-actin by FRET induced by cofilin, to reveal the second cofilin-binding site. This motion may also explain how cofilins inhibit the nucleotide exchange of actin, and why the actin:cofilin complex is polymerizable without dissociation.  相似文献   

10.
Actin depolymerizing factor (ADF)/cofilins are essential regulators of actin turnover in eukaryotic cells. These multifunctional proteins facilitate both stabilization and severing of filamentous (F)-actin in a concentration-dependent manner. At high concentrations ADF/cofilins bind stably to F-actin longitudinally between two adjacent actin protomers forming what is called a decorative interaction. Low densities of ADF/cofilins, in contrast, result in the optimal severing of the filament. To date, how these two contrasting modalities are achieved by the same protein remains uncertain. Here, we define the proximate amino acids between the actin filament and the malaria parasite ADF/cofilin, PfADF1 from Plasmodium falciparum. PfADF1 is unique among ADF/cofilins in being able to sever F-actin but do so without stable filament binding. Using chemical cross-linking and mass spectrometry (XL-MS) combined with structure reconstruction we describe a previously overlooked binding interface on the actin filament targeted by PfADF1. This site is distinct from the known binding site that defines decoration. Furthermore, total internal reflection fluorescence (TIRF) microscopy imaging of single actin filaments confirms that this novel low affinity site is required for F-actin severing. Exploring beyond malaria parasites, selective blocking of the decoration site with human cofilin (HsCOF1) using cytochalasin D increases its severing rate. HsCOF1 may therefore also use a decoration-independent site for filament severing. Thus our data suggest that a second, low affinity actin-binding site may be universally used by ADF/cofilins for actin filament severing.  相似文献   

11.
Cofilin, a member of the actin-depolymerizing factor (ADF)/cofilin family of proteins, is a key regulator of actin dynamics. Cofilin binds to monomer (G-) and filamentous (F-) actin, severs the filaments, and increases their turnover rate. Electron microscopy studies suggested cofilin interactions with subdomains 2 and 1/3 on adjacent actin protomers in F-actin. To probe for the presence of a cryptic cofilin binding site in subdomain 2 in G-actin, we used transglutaminase-mediated cross-linking, which targets Gln41 in subdomain 2. The cross-linking proceeded with up to 85% efficiency with skeletal alpha-actin and WT yeast actin, yielding a single product corresponding to a 1:1 actin-cofilin complex but was strongly inhibited in Q41C yeast actin (in which Q41 was substituted with cysteine). LC-MS/MS analysis of the proteolytic fragments of this complex mapped the cross-linking to Gln41 on actin and Gly1 on recombinant yeast cofilin. The actin-cofilin (AC) heterodimer was purified on FPLC for analytical ultracentrifugation and electron microscopy analysis. Sedimentation equilibrium and velocity runs revealed oligomers of AC in G-actin buffer. In the presence of excess cofilin, the covalent AC heterodimer bound a second cofilin, forming a 2:1 cofilin/actin complex, as revealed by sedimentation results. Under polymerizing conditions the cross-linked AC formed mostly short filaments, which according to image reconstruction were similar to uncross-linked actin-cofilin filaments. Although a majority of the cross-linking occurs at Gln41, a small fraction of the AC cross-linked complex forms in the Q41C yeast actin mutant. This secondary cross-linking site was sequenced by MALDI-MS/MS as linking Gln360 in actin to Lys98 on cofilin. Overall, these results demonstrate that the region around Gln41 (subdomain 2) is involved in a weak binding of cofilin to G-actin.  相似文献   

12.
Human actin-depolymerizing factor (ADF) and cofilin are pH-sensitive, actin-depolymerizing proteins. Although 72% identical in sequence, ADF has a much higher depolymerizing activity than cofilin at pH 8. To understand this, we solved the structure of human cofilin using nuclear magnetic resonance and compared it with human ADF. Important sequence differences between vertebrate ADF/cofilins were correlated with unique structural determinants in the F-actin-binding site to account for differences in biochemical activities of the two proteins. Cofilin has a short beta-strand at the C terminus, not found in ADF, which packs against strands beta3/beta4, changing the environment around Lys96, a residue essential for F-actin binding. A salt bridge involving His133 and Asp98 (Glu98 in ADF) may explain the pH sensitivity of human cofilin and ADF; these two residues are fully conserved in vertebrate ADF/cofilins. Chemical shift perturbations identified residues that (i) differ in their chemical environments between wild type cofilin and mutants S3D, which has greatly reduced G-actin binding, and K96Q, which does not bind F-actin; (ii) are affected when G-actin binds cofilin; and (iii) are affected by pH change from 6 to 8. Many residues affected by G-actin binding also show perturbation in the mutants or in response to pH. Our evidence suggests the involvement of residues 133-138 of strand beta5 in all of the activities examined. Because residues in beta5 are perturbed by mutations that affect both G-actin and F-actin binding, this strand forms a "boundary" or "bridge" between the proposed F- and G-actin-binding sites.  相似文献   

13.
Cofilin is an actin depolymerizing protein found widely distributed in animals and plants. We have used electron cryomicroscopy and helical reconstruction to identify its binding site on actin filaments. Cofilin binds filamentous (F)-actin cooperatively by bridging two longitudinally associated actin subunits. The binding site is centered axially at subdomain 2 of the lower actin subunit and radially at the cleft between subdomains 1 and 3 of the upper actin subunit. Our work has revealed a totally unexpected (and unique) property of cofilin, namely, its ability to change filament twist. As a consequence of this change in twist, filaments decorated with cofilin have much shorter ‘actin crossovers' (~75% of those normally observed in F-actin structures). Although their binding sites are distinct, cofilin and phalloidin do not bind simultaneously to F-actin. This is the first demonstration of a protein that excludes another actin-binding molecule by changing filament twist. Alteration of F-actin structure by cofilin/ADF appears to be a novel mechanism through which the actin cytoskeleton may be regulated or remodeled.  相似文献   

14.
Toxoplasma gondii ADF (TgADF) belongs to a functional subtype characterized by strong G-actin sequestering activity and low F-actin severing activity. Among the characterized ADF/cofilin proteins, TgADF has the shortest length and is missing a C-terminal helix implicated in F-actin binding. In order to understand its characteristic properties, we have determined the solution structure of TgADF and studied its backbone dynamics from 15N-relaxation measurements. TgADF has conserved ADF/cofilin fold consisting of a central mixed β-sheet comprised of six β-strands that are partially surrounded by three α-helices and a C-terminal helical turn. The high G-actin sequestering activity of TgADF relies on highly structurally and dynamically optimized interactions between G-actin and G-actin binding surface of TgADF. The equilibrium dissociation constant for TgADF and rabbit muscle G-actin was 23.81 nM, as measured by ITC, which reflects very strong affinity of TgADF and G-actin interactions. The F-actin binding site of TgADF is partially formed, with a shortened F-loop that does not project out of the ellipsoid structure and a C-terminal helical turn in place of the C-terminal helix α4. Yet, it is more rigid than the F-actin binding site of Leishmania donovani cofilin. Experimental observations and structural features do not support the interaction of PIP2 with TgADF, and PIP2 does not affect the interaction of TgADF with G-actin. Overall, this study suggests that conformational flexibility of G-actin binding sites enhances the affinity of TgADF for G-actin, while conformational rigidity of F-actin binding sites of conventional ADF/cofilins is necessary for stable binding to F-actin.  相似文献   

15.
A marked pH-dependent interaction with F-actin is an important property of typical members of the actin depolymerizing factor (ADF)/cofilin family of abundant actin-binding proteins. ADF/cofilins tend to bind to F-actin with a ratio of 1 : 1 at pH values around 6.5, and to G-actin at pH 8.0. We have investigated the mechanism for the pH-sensitivity. We found no evidence for pH-dependent changes in the structure of cofilin itself, nor for the interaction of cofilin with G-actin. None of the actin-derived, cofilin-binding peptides that we had previously identified [Renoult, C., Ternent, D., Maciver, S.K., Fattoum, A., Astier, C., Benyamin, Y. & Roustan, C. (1999) J. Biol. Chem. 274, 28893-28899] bound cofilin in a pH-sensitive manner. However, we have detected a conformational change in region 75-105 in the actin subdomain 1 by the use of a peptide-directed antibody. A pH-dependent conformational change has also been detected spectroscopically in a similar peptide (84-103) on binding to cofilin. These results are consistent with a model in which pH-dependent motion of subdomain 1 relative to subdomain 2 (through region 75-105) of actin reveals a second cofilin binding site on actin (centered around region 112-125) that allows ADF/cofilin association with the actin filament. This motion requires salt in addition to low pH.  相似文献   

16.
Actin is one of the most conserved proteins in nature. Its assembly and disassembly are regulated by many proteins, including the family of actin‐depolymerizing factor homology (ADF‐H) domains. ADF‐H domains can be divided into five classes: ADF/cofilin, glia maturation factor (GMF), coactosin, twinfilin, and Abp1/drebrin. The best‐characterized class is ADF/cofilin. The other four classes have drawn much less attention and very few structures have been reported. This study presents the solution NMR structure of the ADF‐H domain of human HIP‐55‐drebrin‐like protein, the first published structure of a drebrin‐like domain (mammalian), and the first published structure of GMF β (mouse). We also determined the structures of mouse GMF γ, the mouse coactosin‐like domain and the C‐terminal ADF‐H domain of mouse twinfilin 1. Although the overall fold of the five domains is similar, some significant differences provide valuable insights into filamentous actin (F‐actin) and globular actin (G‐actin) binding, including the identification of binding residues on the long central helix. This long helix is stabilized by three or four residues. Notably, the F‐actin binding sites of mouse GMF β and GMF γ contain two additional β‐strands not seen in other ADF‐H structures. The G‐actin binding site of the ADF‐H domain of human HIP‐55‐drebrin‐like protein is absent and distorted in mouse GMF β and GMF γ.  相似文献   

17.
The contractile actin cortex is important for diverse fundamental cell processes, but little is known about how the assembly of F-actin and myosin II motors is regulated. We report that depletion of actin depolymerizing factor (ADF)/cofilin proteins in human cells causes increased contractile cortical actomyosin assembly. Remarkably, our data reveal that the major cellular defects resulting from ADF/cofilin depletion, including cortical F-actin accumulation, were largely due to excessive myosin II activity. We identify that ADF/cofilins from unicellular organisms to humans share a conserved activity to inhibit myosin II binding to F-actin, indicating a mechanistic rationale for our cellular results. Our study establishes an essential requirement for ADF/cofilin proteins in the control of normal cortical contractility and in processes such as mitotic karyokinesis. We propose that ADF/cofilin proteins are necessary for controlling actomyosin assembly and intracellular contractile force generation, a function of equal physiological importance to their established roles in mediating F-actin turnover.  相似文献   

18.
Proteins in the actin depolymerizing factor (ADF)/cofilin family are essential for rapid F-actin turnover, and most depolymerize actin in a pH-dependent manner. Complexes of human and plant ADF with F-actin at different pH were examined using electron microscopy and a novel method of image analysis for helical filaments. Although ADF changes the mean twist of actin, we show that it does this by stabilizing a preexisting F-actin angular conformation. In addition, ADF induces a large ( approximately 12 degrees ) tilt of actin subunits at high pH where filaments are readily disrupted. A second ADF molecule binds to a site on the opposite side of F-actin from that of the previously described ADF binding site, and this second site is only largely occupied at high pH. All of these states display a high degree of cooperativity that appears to be an integral part of F-actin.  相似文献   

19.
Twinfilin is an evolutionarily conserved actin monomer-binding protein that regulates cytoskeletal dynamics in organisms from yeast to mammals. It is composed of two actin-depolymerization factor homology (ADF-H) domains that show approximately 20% sequence identity to ADF/cofilin proteins. In contrast to ADF/cofilins, which bind both G-actin and F-actin and promote filament depolymerization, twinfilin interacts only with G-actin. To elucidate the molecular mechanisms of twinfilin-actin monomer interaction, we determined the crystal structure of the N-terminal ADF-H domain of twinfilin and mapped its actin-binding site by site-directed mutagenesis. This domain has similar overall structure to ADF/cofilins, and the regions important for actin monomer binding in ADF/cofilins are especially well conserved in twinfilin. Mutagenesis studies show that the N-terminal ADF-H domain of twinfilin and ADF/cofilins also interact with actin monomers through similar interfaces, although the binding surface is slightly extended in twinfilin. In contrast, the regions important for actin-filament interactions in ADF/cofilins are structurally different in twinfilin. This explains the differences in actin-interactions (monomer versus filament binding) between twinfilin and ADF/cofilins. Taken together, our data show that the ADF-H domain is a structurally conserved actin-binding motif and that relatively small structural differences at the actin interfaces of this domain are responsible for the functional variation between the different classes of ADF-H domain proteins.  相似文献   

20.
Cofilin/ADF, beryllium fluoride complex (BeFx), and phalloidin have opposing effects on actin filament structure and dynamics. Cofilin/ADF decreases the stability of F-actin by enhancing disorder in subdomain 2, and by severing and accelerating the depolymerization of the filament. BeFx and phalloidin stabilize the subdomain 2 structure and decrease the critical concentration of actin, slowing the dissociation of monomers. Yeast cofilin, unlike some other members of the cofilin/ADF family, binds to F-actin in the presence of BeFx; however, the rate of its binding is strongly inhibited by BeFx and decreases with increasing pH. The inhibition of the cofilin binding rate increases with the time of BeFx incubation with F-actin, indicating the existence of two BeFx-F-actin complexes. Cofilin dissociates BeFx from the filament, while BeFx does not bind to F-actin saturated with cofilin, presumably because of the cofilin-induced changes in the nucleotide-binding cleft of F-actin. These changes are apparent from the increase in the fluorescence intensity of F-actin bound epsilon-ADP upon cofilin binding and a decrease in its accessibility to collisional quenchers. BeFx also affects the nucleotide-binding cleft of F-actin, as indicated by an increase in the fluorescence intensity of epsilon-ADP-F-actin. Phalloidin and cofilin inhibit, but do not exclude each other binding to their complexes with F-actin. Phalloidin promotes the dissociation of cofilin from F-actin and slowly reverses the cofilin-induced disorder in the DNase I binding loop of subdomain 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号