首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The effect of age on skeletal muscle anaerobic energy metabolism was investigated in adult (11 mo) and aged (25 mo) Fischer 344 rats. Hindlimb skeletal muscles innervated by the sciatic nerve were stimulated to contract with trains of supramaximal impulses (100 ms, 80 Hz) at a train rate of 1 Hz for 60 s, with an occluded circulation. Soleus, plantaris, and red and white gastrocnemius (WG) were sampled from control and stimulated limbs. All muscle masses were reduced with age (9-13%). Peak isometric tensions, normalized per gram of wet muscle, were lower throughout the stimulation in the aged animals (28%). The potential for anaerobic ATP provision was unaltered with age in all muscles, because resting high-energy phosphates and glycogen contents were similar to adult values. Anaerobic ATP provision during stimulation was unaltered by aging in soleus, plantaris, and red gastrocnemius muscles. In the WG, containing mainly fast glycolytic (FG) fibers, ATP and phosphocreatine contents were depleted less in aged muscle. In situ glycogenolysis and glycolysis were 90.0 +/- 4.8 and 69.3 +/- 2.6 mumol/g dry muscle (dm) in adult WG and reduced to 62.3 +/- 6.9 and 51.5 +/- 5.5 mumol/g dm, respectively, in aged WG. Consequently, total anaerobic ATP provision was lower in aged WG (224.5 +/- 20.9 mumol/g dm) vs. adult (292.6 +/- 7.6 mumol/g dm) WG muscle. In summary, the decreased tetanic tension production in aged animals was associated with a decreased anaerobic energy production in FG fibers. Reduced high-energy phosphate use and a greater energy charge potential after stimulation suggested that the energy demand was reduced in aged FG fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The purpose of this study was to evaluate disuse atrophy of skeletal muscle using a hind-limb suspension model, with special reference to energy metabolism. Twenty-four Sprague-Dawley rats were divided into four groups: control group (C), hind-limb suspended for 3 days (HS-3), for 7 days (HS-7) and for 14 days (HS-14). The gastrocnemius-plantaris-soleus (GPS) muscles in each group were subjected to the following measurements. After a 2-min rest, contraction of the GPS muscles was induced by electrical stimulation of the sciatic nerve at 0.25 Hz for 10 min, then the frequency was increased to 0.5 and 1.0 Hz every 10 min. During the stimulation, twitch forces were recorded by a strain gauge, and 31P-MRS was performed simultaneously. Maximum tension was measured at the muscle contraction induced at 0.25 Hz; the wet weight of the whole and each muscle in the GPS muscles was also measured. From the 31P-MR spectra during muscle contraction, the oxidative capacity was calculated and compared among the groups. The weights of the whole GPS muscles in C, HS-3, HS-7 and HS-14, were 2.66 +/- 0.09, 2.39 +/- 0.21, 2.34 +/- 0.21 and 2.18 +/- 0.14 (g) respectively. Thus, the muscle mass significantly decreased with time (p < 0.05). Among the GPS muscles, the decrease in weight of the soleus muscle was especially remarkable; in the HS-14 group its weight decreased to 60% of that in the C group. We evaluated maximum tension and oxidative capacity as the muscle function. The maximum tensions in C, HS-3, HS-7 and HS-14 were 519 +/- 43, 446 +/- 66, 450 +/- 23 and 465 +/- 29 (g), respectively. This was significantly greater in the C group than in any other groups, however there were no significant differences among the three HS groups. The oxidative capacity during muscle contraction in the C group was higher than in any HS group and it did not further decrease even if the suspension of the limbs was prolonged beyond 3 days. The present study showed that in disuse atrophy, muscle mass and muscle function did not change simultaneously. Thus, it is necessary to develop countermeasures to prevent muscle atrophy and muscle function deterioration independently.  相似文献   

3.
The effects of acetazolamide (Acz)-induced carbonic anhydrase inhibition (CAI) on muscle intracellular thresholds (T) for intracellular pH (pH(i)) and inorganic phosphate-to-phosphate creatine ratio (P(i)/PCr) and the plasma lactate (La(-)) threshold were examined in nine adult male subjects performing forearm wrist flexion exercise to fatigue. Exercise consisted of raising and lowering (1-s contraction, 1-s relaxation) a cylinder whose volume increased at a rate of 200 ml/min. The protocol was performed during control (Con) and after 45 min of CAI with Acz (10 mg/kg body wt iv). T(pH(i)) and T(P(i)/PCr), determined using (31)P-labeled magnetic resonance spectroscopy (MRS), were similar in Acz (722 +/- 50 and 796 +/- 75 mW, respectively) and Con (855 +/- 211 and 835 +/- 235 mW, respectively). The pH(i) was similar at end-exercise (6.38 +/- 0.10 Acz and 6.43 +/- 0.22 Con), but pH(i) recovery was slowed in Acz. In a separate experiment, blood was sampled from a deep arm vein at the elbow for determination of plasma lactate concentration ([La(-)](pl)) and T(La(-)). [La(-)](pl) was lower (P < 0.05) in Acz than Con (3.7 +/- 1.7 vs. 5.0 +/- 1.7 mmol/l) at end-exercise and in early recovery, but T(La(-)) was higher (1,433 +/- 243 vs. 1,041 +/- 414 mW, respectively). These data suggest that the lower [La(-)](pl) seen with CAI was not due to a delayed onset or rate of muscle La(-) accumulation but may be related to impaired La(-) removal from muscle.  相似文献   

4.
5.
The purpose of this study was to determinewhether hypohydration reduces skeletal muscle endurance and whetherincreased H+ andPi might contribute to performancedegradation. Ten physically active volunteers (age 21-40 yr)performed supine single-leg, knee-extension exercise to exhaustion in a1.5-T whole body magnetic resonance spectroscopy (MRS) system wheneuhydrated and when hypohydrated (4% body wt).31P spectra were collected at arate of one per second at rest, exercise, and recovery, and weregrouped and averaged to represent 10-s intervals. The desired hydrationlevel was achieved by having the subjects perform 2-3 h ofexercise in a warm room (40°C dry bulb, 20% relative humidity)with or without fluid replacement 3-8 h before the experiment.Time to fatigue was reduced (P < 0.05) by 15% when the subjects were hypohydrated [213 ± 12 vs. 251 ± 15 (SE) s]. Muscle strength was generally notaffected by hypohydration. Muscle pH andPi/-ATP ratio were similarduring exercise and at exhaustion, regardless of hydration state. The time constants for phosphocreatine recovery were also similar betweentrials. In summary, moderate hypohydration reduces muscle endurance,and neither H+ norPi concentration appears to berelated to these reductions.

  相似文献   

6.
An isolated perfused rat hindquarter preparation was used to examine the utilization of endogenous triacylglycerol (TG) during 20 min of electrical stimulation. The sciatic nerve was stimulated with maximal tetanic trains at 0.5 Hz. The isometric tension generated by the gastrocnemius-plantaris-soleus muscle group was recorded, and muscle samples were taken pre- and poststimulation. Twenty minutes of stimulation significantly reduced endogenous TG from 6.78 +/- 0.84 to 4.64 +/- 0.64 mumol X g dry wt-1 (32%) in the red gastrocnemius muscle and from 7.70 +/- 0.61 to 6.66 +/- 0.80 mumol X g dry wt-1 (13.5%) in the plantaris muscle. Although TG content decreased by 16% in the soleus (28.2 +/- 5.0 to 23.8 +/- 4.4 mumol X g-1), the change was not significant. Stimulation had no effect on white gastrocnemius TG concentration (6.84 +/- 1.22 to 6.25 +/- 1.41 mumol X g-1). Thus oxidation of TG occurred primarily in muscles with a large proportion of fast-twitch oxidative-glycolytic fibers. Calculations from measurements of muscle energy stores and fuel uptake indicated that up to 62% of the aerobic energy was provided by endogenous TG. Carbohydrate oxidation contributed up to 28% and the remaining 10% may be accounted for by the oxidation of exogenous free fatty acids originating in the perfusate or from hindquarter adipose tissue. The magnitude of the fall in TG concentration in a given muscle was inversely related to the fall in glycogen concentration.  相似文献   

7.
8.
During voluntary contractions, the skeletal muscle of healthy older adults often fatigues less than that of young adults, a result that has been explained by relatively greater reliance on muscle oxidative metabolism in the elderly. Our aim was to investigate whether this age-related fatigue resistance was eliminated when oxidative metabolism was minimized via ischemia induced by cuff (220 mmHg). We hypothesized that 1) older men (n = 12) would fatigue less than young men (n = 12) during free-flow (FF) contractions; 2) both groups would fatigue similarly during ischemia; and 3) reperfusion would reestablish the fatigue resistance of the old. Subjects performed 6 min of intermittent, maximal voluntary isometric contractions of the ankle dorsiflexors under FF and ischemia-reperfusion (IR) conditions. Ischemia was maintained for the first 3 min of contractions, followed by rapid cuff deflation and reperfusion for 3 additional minutes of contractions. Central activation, peripheral activation, and muscle contractile properties were measured at 3 and 6 min of contractions. Older men fatigued less than young men during FF (P 相似文献   

9.
Five women and 3 men (29.8 +/- 1.4 yr) performed dynamic knee-extension exercise inside a magnetic resonance system (means +/- SE). Two trials were performed 7-14 days apart, consisting of a 4- to 5-min exhaustive exercise bout. To determine quadriceps cost of contraction, brief static and dynamic contractions were performed pre- and postexercise. (31)P spectra were used to determine pH and relative concentrations of P(i), phosphocreatine (PCr), and betaATP. Subjects consumed 0.3 g. kg(-1). day(-1) of a placebo (trial 1) or creatine (trial 2) for 5 days before each trial. After creatine supplementation, resting DeltaPCr increased from 40.7 +/- 1.8 to 46. 6 +/- 1.1 mmol/kg (P = 0.04) and PCr during exercise declined from -29.6 +/- 2.4 to -34.1 +/- 2.8 mmol/kg (P = 0.02). Muscle static (DeltaATP/N) and dynamic (DeltaATP/J) costs of contraction were unaffected by creatine supplementation as well as were ATP, P(i), pH, PCr resynthesis rate, and muscle strength and endurance. DeltaATP/J and DeltaATP/N were greatest at the onset of the exercise protocol (P < 0.01). In summary, creatine supplementation increased muscle PCr concentration, which did not affect muscle ATP cost of contraction.  相似文献   

10.
The effect of skeletal muscle glycogen content on in situ glycogenolysis during short-term tetanic electrical stimulation was examined. Rats were randomly assigned to one of three conditions: normal (N, stimulated only), supercompensated (S, stimulated 21 h after a 3-h swim), and fasted (F, stimulated after a 20-h fast). Before stimulation, glycogen contents in the white (WG) and red gastrocnemius (RG) and soleus (SOL) muscles were increased by 13-25% in S and decreased by 15-27% in F compared with N. Hindlimb blood flow was occluded 60 s before stimulation to produce a predominantly anaerobic environment. Muscles were stimulated with trains of supramaximal impulses (100 ms at 80 Hz) at a rate of 1 Hz for 60 s. Muscle glycogenolysis was measured from the decrease in glycogen content and estimated from the accumulation of glycolytic intermediates in the closed system. The resting glycogen content had no effect on measured or estimated glycogenolysis in all muscles studied. Average glycogenolysis in the WG, RG, and SOL muscles was 98.4 +/- 4.3, 60.9 +/- 4.0, and 11.2 +/- 3.6 mumol glucosyl U/g dry muscle, respectively. Hindlimb tension production was similar across conditions. The results suggest that in vivo glycogen phosphorylase activity in skeletal muscle is not regulated by the content of its substrate glycogen (range 80-165 mumol/g) during short-term tetanic stimulation in an anaerobic environment.  相似文献   

11.
12.
Recent data obtained from Rana temporaria sartorius muscles during an isometric tetanus indicate that the time-course of phosphocreatine (PC) splitting cannot account for the total energy (heat + work) liberation (Gilbert et al. 1971. J. Physiol. (Lond.) 218:)63). As this conclusion is important to an understanding of the chemical energetics of contraction, similar experments were performed on unpoisoned, oxygenated Rana pipiens sartorius muscles. The muscles were tetanized (isometrically) at 0 degrees C for 0.6, 1, or 5 s; metabolism was rapidly arrested by freezing the muscles with a specially designed hammer apparatus, and the frozen muscles were chemically analyzed. Comparable myothermal measurments were made on frogs from the same batch. Results of these experiments indicate: (a) The energy liberation parallels the PC and ATP breakdown with a proportionality constant of 10.7 kcal/mol; (b) comparably designed experiments with sartorius muscles of R. temporaria revealed that the ratio of energy liberation to PC splitting was significantly greater than that observed in R. pipiens sartorius muscles; (c) there is no systematic difference between experiments in which metabolism was arrested by the hammer apparatus and others using a conventional immersion technique.  相似文献   

13.
The purpose of this investigation was to examine the effect of rhythmic tetanic skeletal muscle contractions on peak muscle perfusion by using spontaneously perfused canine gastrocnemii in situ. Simultaneous pulsatile blood pressures were measured by means of transducers placed in the popliteal artery and vein, and pulsatile flow was measured with a flow-through-type transit-time ultrasound probe placed in the venous return line. Two series of experiments were performed. In series 1, maximal vasodilation of the muscles' vascular beds was elicited by infusing a normal saline solution containing adenosine (29.3 mg/min) and sodium nitroprusside (180 microg/min) for 15 s and then simultaneously occluding both the popliteal artery and vein for 5 min. The release of occlusion initiated a maximal hyperemic response, during which time four tetanic contractions were induced with supramaximal voltage (6-8 V, 0.2-ms stimuli for 200-ms duration at 50 Hz, 1/s). In series 2, the muscles were stimulated for 3 min before the muscle contractions were stopped for a period of 3 s; stimulation was then resumed. The results of series 1 indicate that, although contractions lowered venous pressure, muscle blood flow was significantly reduced from 2,056 +/- 246 to 1,738 +/- 225 ml x kg(-1) x min(-1) when contractions were initiated and then increased significantly to 1,925 +/- 225 ml x kg(-1) x min(-1) during the first 5 s after contractions were stopped. In series 2, blood flow after 3 min of contractions averaged 1,454 +/- 149 ml x kg(-1) x min(-1). Stopping the contractions for 3 s caused blood flow to increase significantly to 1,874 +/- 172 ml x kg(-1) x min(-1); blood flow declined significantly to 1,458 +/- 139 ml x kg(-1) x min(-1) when contractions were resumed. We conclude that the mechanical action of rhythmic, synchronous, maximal isometric tetanic skeletal muscle contractions inhibits peak muscle perfusion during maximal and near-maximal vasodilation of the muscle's vascular bed. This argues against a primary role for the muscle pump in achieving peak skeletal muscle blood flow.  相似文献   

14.
15.
1. The denervated frog sartorius muscle showed a decrease in the energy store more than that in the control. 2. In the caffeine contractures, both the denervated and the innervated muscles showed similar sequential changes in the relative concentration of phosphocreatine (PCr) to beta-adenosine triphosphate (beta-ATP) and inorganic phosphate (Pi) to beta-ATP. Instead, the intracellular pH value of the denervated muscle was lower than that of the control. 3. It is suggested that phosphate metabolism of the denervated muscle during contracture shows little difference from that of the control, nevertheless, the buffering capacity is decreased in the early stage of atrophy.  相似文献   

16.
Muscle ATP turnover, glycogenolytic, and glycolytic rates were estimated to compare the energy cost and glycolytic regulation of 102.4 s of continuous and intermittent stimulation. Quadriceps femoris muscles of male subjects were stimulated at 20 Hz for one continuous contraction (n = 6) or a series of 64 contractions (1.6 s on, 1.6 s off; n = 6). Leg blood flow was occluded and muscle biopsies were obtained at rest and following 51.2 and 102.4 s of contraction time in both conditions. Isometric force production by the activated knee extensors decreased to 55% of initial contraction force with intermittent and 80% of initial contraction force with continuous stimulation following 51.2 s of contraction time. Corresponding ATP turnover rates were 4.49 +/- 0.39 and 3.80 +/- 0.44 mmol.kg dry muscle-1.s-1. When normalized for tension production the respective energy costs of intermittent and continuous contractions were 3.66 +/- 0.47 and 2.64 +/- 0.36 mmol ATP.kg-1.100 N-1. Glycogenolytic rates were identical during the first 51.2 s of stimulation but glycolysis was higher in the intermittent group (1.05 +/- 0.10 vs. 0.86 +/- 0.11 mmol.kg-1.s-1). We suggest that the increased ATP utilization of intermittent contractions is associated with enhanced Ca2+-transport ATPase activity during relaxation and enhanced actomyosin ATPase activity during the early portion of each contraction. Glycolytic rate is dependent on ATP demand and regulated by allosteric modulators of phosphofructokinase and pyruvate kinase which are released or consumed in the reactions associated with contraction.  相似文献   

17.
18.
The intracellular pH of resting and stimulated muscle was monitored by two independent methods: measurement of pH iniodacetate-treated homogenates of freezeclamped tissue and the absorbance at 550–443 nm of intracellular neutral red dye in vivo. During tetanic stimulation, muscle of phosphorylase kinase-deficient mice shows a transient alkalinization whereas muscle in normal mice becomes more acid under similar conditions. The alkalinization appears to be caused by abnormally rapid AMP deamination associated with adaptation to phosphorylase kinase deficiency.  相似文献   

19.
The mechanomyogram (MMG) is a signal measured by various vibration sensors for slight vibrations induced by muscle contraction, and it reflects the muscle force during electrically induced-contraction or until 60%–70% maximum voluntary contraction, so the MMG is considered an alternative and novel measurement tool for muscle strength. We simultaneously measured the MMG and muscle force in the gastrocnemius (GC), vastus intermedius (VI), and soleus (SOL) muscles of rats. The muscle force was measured by attaching a hook to the tendon using a load cell, and the MMG was measured using a charged-coupled device-type displacement sensor at the middle of the target muscle. The MMG-twitch waveform was very similar to that of the muscle force; however, the half relaxation time and relaxation time (10%), which are relaxation parameters, were prolonged compared to those of the muscle force. The MMG amplitude correlated with the muscle force. Since stimulation frequencies that are necessary to evoke tetanic progression have a significant correlation with the twitch parameter, there is a close relationship between twitch and tetanus in the MMG signal. Therefore, we suggest that the MMG, which is electrically induced and detected by a laser displacement sensor, may be an alternative tool for measuring muscle strength.  相似文献   

20.
Free radicals may contribute to oxidative skeletal muscle fatigue   总被引:10,自引:0,他引:10  
We used mouse soleus in vitro (n = 30) and canine gastrocnemius-plantaris preparations (n = 20) pump-perfused at the animal's blood pressure to establish if free radicals contribute to fatigue in oxidative skeletal muscle. The soleus from each leg contracted for 200 ms (70 Hz) once every minute for 60 min in Hepes buffer gassed with 100% oxygen at 27 degrees C. When contracting in Hepes alone, both muscles fatigued at 0.9 mN/mm2.min over the 60 min. The addition of purines to the bath increased the rate to 1.4 mN/mm2.min and the addition of xanthine oxidase to generate free radicals increased the rate again to 1.9 mN/mm2.min. Thus free radicals appeared to attenuate oxidative skeletal muscle function. Each canine muscle contracted isometrically at 4 Hz for 30 min and then rested for 45 min before contracting for a second 30 min at 4 Hz. In each experiment, we infused saline at 0.76 mL/min into resting muscle and at 1.91 mL/min during the first contraction period. During the remainder of the experiment, we infused, at the same rates, saline (n = 4), 10 microM dimethyl sulfoxide (DMSO) (n = 4) to identify the effect of scavenging hydroxyl radicals, 1 mM allopurinol to establish the effect of blocking xanthine oxidase (n = 4), or 200 microM desferoxamine to determine the effect of chelating iron (n = 4). With saline, the fatigue rate over the 30 min of contractions increased from 5.0 +/- 0.2 to 6.3 +/- 0.5 N/kg.min from the first to the second stimulation period. The fatigue rate was slower in the second period with each of the three experimental substances (DMSO, 5.9 +/- 0.8 to 3.2 +/- 0.3; allopurinol, 7.3 +/- 1.1 to 4.6 +/- 0.6; desferoxamine, 6.8 +/- 0.8 to 4.4 +/- 0.8 N/kg.min). The fatigue rate was the same as control when DMSO was infused only during the second contraction period. Therefore, free radicals appeared to contribute to fatigue in oxidative skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号