首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
It is generally believed that cellular chaperones facilitate the folding of virus capsid proteins, or that capsid proteins fold spontaneously. Here we show that p73, the major capsid protein of African swine fever virus (ASFV) failed to fold and aggregated when expressed alone in cells. This demonstrated that cellular chaperones were unable to aid the folding of p73 and suggested that ASFV may encode a chaperone. An 80-kDa protein encoded by ASFV, termed the capsid-associated protein (CAP) 80, bound to the newly synthesized capsid protein in infected cells. The 80-kDa protein was released following conformational maturation of p73 and dissociated before capsid assembly. Coexpression of the 80-kDa protein with p73 prevented aggregation and allowed the capsid protein to fold with kinetics identical to those seen in infected cells. CAP80 is, therefore, a virally encoded chaperone that facilitates capsid protein folding by masking domains exposed by the newly synthesized capsid protein, which are susceptible to aggregation, but cannot be accommodated by host chaperones. It is likely that these domains are ultimately buried when newly synthesized capsid proteins are added to the growing capsid shell.  相似文献   

2.
During the cytoplasmic maturation of African swine fever virus (ASFV) within the viral factories, the DNA-containing core becomes wrapped by two shells, an inner lipid envelope and an outer icosahedral capsid. We have previously shown that the inner envelope is derived from precursor membrane-like structures on which the capsid layer is progressively assembled. In the present work, we analyzed the origin of these viral membranes and the mechanism of envelopment of ASFV. Electron microscopy studies on permeabilized infected cells revealed the presence of two tightly apposed membranes within the precursor membranous structures as well as polyhedral assembling particles. Both membranes could be detached after digestion of intracellular virions with proteinase K. Importantly, membrane loop structures were observed at the ends of open intermediates, which suggests that the inner envelope is derived from a membrane cisterna. Ultraestructural and immunocytochemical analyses showed a close association and even direct continuities between the endoplasmic reticulum (ER) and assembling virus particles at the bordering areas of the viral factories. Such interactions become evident with an ASFV recombinant that inducibly expresses the major capsid protein p72. In the absence of the inducer, viral morphogenesis was arrested at a stage at which partially and fully collapsed ER cisternae enwrapped the core material. Together, these results indicate that ASFV, like the poxviruses, becomes engulfed by a two-membraned collapsed cisterna derived from the ER.  相似文献   

3.
C Cobbold  J T Whittle    T Wileman 《Journal of virology》1996,70(12):8382-8390
African swine fever (ASF) virus is a large enveloped DNA virus assembled in the cytoplasm of cells. In this study, the membrane compartments involved in the envelopment of ASF virus were investigated. A monoclonal antibody recognizing p73, the major structural protein of ASF virus, was generated to analyze the binding of p73 to membranes during the assembly of the virus. Approximately 50% of the intracellular pool of p73 associated with membranes as a peripheral membrane protein. Binding was rapid and complete within 15 min of synthesis. Subcellular membrane fractionation showed that newly synthesized p73 molecules cosedimented with endoplasmic reticulum (ER) membranes and remained associated with the ER during a 2-h chase. A similar distribution on gradients was recorded for p17, a structural membrane protein of ASF virus. The results suggested that the ER was involved in the assembly of ASF virus. A protease protection assay demonstrated a time-dependent envelopment of the membrane bound, but not cytosolic, pool of p73. Envelopment of p73 took place 1 h after binding to membranes and was completed 1 h before the first detection of p73 in virions secreted from cells. Envelopment was unaffected by brefeldin A and monensin, drugs that block membrane transport between the ER and Golgi. Taken together the results provide evidence for the binding of ASF virus structural proteins to a specific membrane compartment and implicate a role for the ER in the assembly and envelopment of ASF virus.  相似文献   

4.
The assembly of African swine fever virus (ASFV) at the cytoplasmic virus factories commences with the formation of precursor membranous structures, which are thought to be collapsed cisternal domains recruited from the surrounding endoplasmic reticulum (ER). This report analyzes the role in virus morphogenesis of the structural protein p54, a 25-kDa polypeptide encoded by the E183L gene that contains a putative transmembrane domain and localizes at the ER-derived envelope precursors. We show that protein p54 behaves in vitro and in infected cells as a type I membrane-anchored protein that forms disulfide-linked homodimers through its unique luminal cysteine. Moreover, p54 is targeted to the ER membranes when it is transiently expressed in transfected cells. Using a lethal conditional recombinant, vE183Li, we also demonstrate that the repression of p54 synthesis arrests virus morphogenesis at a very early stage, even prior to the formation of the precursor membranes. Under restrictive conditions, the virus factories appeared as discrete electron-lucent areas essentially free of viral structures. In contrast, outside the assembly sites, large amounts of aberrant zipper-like structures formed by the unprocessed core polyproteins pp220 and pp62 were produced in close association to ER cisternae. Altogether, these results indicate that the transmembrane structural protein p54 is critical for the recruitment and transformation of the ER membranes into the precursors of the viral envelope.  相似文献   

5.
The mechanisms involved in the construction of the icosahedral capsid of the African swine fever virus (ASFV) particle are not well understood at present. Capsid formation requires protein p72, the major capsid component, but other viral proteins are likely to play also a role in this process. We have examined the function of the ASFV structural protein pB438L, encoded by gene B438L, in virus morphogenesis. We show that protein pB438L associates with membranes during the infection, behaving as an integral membrane protein. Using a recombinant ASFV that inducibly expresses protein pB438L, we have determined that this structural protein is essential for the formation of infectious virus particles. In the absence of the protein, the virus assembly sites contain, instead of icosahedral particles, large aberrant tubular structures of viral origin as well as bilobulate forms that present morphological similarities with the tubules. The filamentous particles, which possess an aberrant core shell domain and an inner envelope, are covered by a capsid-like layer that, although containing the major capsid protein p72, does not acquire icosahedral morphology. This capsid, however, is to some extent functional, as the filamentous particles can move from the virus assembly sites to the plasma membrane and exit the cell by budding. The finding that, in the absence of protein pB438L, the viral particles formed have a tubular structure in which the icosahedral symmetry is lost supports a role for this protein in the construction or stabilization of the icosahedral vertices of the virus particle.  相似文献   

6.
Enwrapment by membrane cisternae has emerged recently as a mechanism of envelopment for large enveloped DNA viruses, such as herpesviruses, poxviruses, and African swine fever (ASF) virus. For both ASF virus and the poxviruses, wrapping is a multistage process initiated by the recruitment of capsid proteins onto membrane cisternae of the endoplasmic reticulum (ER) or associated ER-Golgi intermediate membrane compartments. Capsid assembly induces progressive bending of membrane cisternae into the characteristic shape of viral particles, and envelopment provides virions with two membranes in one step. We have used biochemical assays for ASF virus capsid recruitment, assembly, and envelopment to define the cellular processes important for the enwrapment of viruses by membrane cisternae. Capsid assembly on the ER membrane, and envelopment by ER cisternae, were inhibited when cells were depleted of ATP or depleted of calcium by incubation with A23187 and EDTA or the ER calcium ATPase inhibitor, thapsigargin. Electron microscopy analysis showed that cells depleted of calcium were unable to assemble icosahedral particles. Instead, assembly sites contained crescent-shaped and bulbous structures and, in rare cases, empty closed five-sided particles. Interestingly, recruitment of the capsid protein from the cytosol onto the ER membrane did not require ATP or an intact ER calcium store. The results show that following recruitment of the virus capsid protein onto the ER membrane, subsequent stages of capsid assembly and enwrapment are dependent on ATP and are regulated by the calcium gradients present across the ER membrane cisternae.  相似文献   

7.
Assembly of African swine fever virus: role of polyprotein pp220.   总被引:7,自引:5,他引:2       下载免费PDF全文
Polyprotein processing is a common strategy of gene expression in many positive-strand RNA viruses and retroviruses but not in DNA viruses. African swine fever virus (ASFV) is an exception because it encodes a polyprotein, named pp220, to produce several major components of the virus particle, proteins p150, p37, p34, and p14. In this study, we analyzed the assembly pathway of ASFV and the contribution of the polyprotein products to the virus structure. Electron microscopic studies revealed that virions assemble from membranous structures present in the viral factories. Viral membranes became polyhedral immature virions after capsid formation on their convex surface. Beneath the lipid envelope, two distinct domains appeared to assemble consecutively: first a thick protein layer that we refer to as core shell and then an electron-dense nucleoid, which was identified as the DNA-containing domain. Immunofluorescence studies showed that polyprotein pp220 is localized in the viral factories. At the electron microscopic level, antibodies to pp220 labeled all identifiable forms of the virus from the precursor viral membranes onward, thus indicating an early role of the polyprotein pp220 in ASFV assembly. The subviral localization of the polyprotein products, examined on purified virions, was found to be the core shell. In addition, quantitative studies showed that the polyprotein products are present in equimolar amounts in the virus particle and account for about one-fourth of its total protein content. Taken together, these results suggest that polyprotein pp220 may function as an internal protein scaffold which would mediate the interaction between the nucleoid and the outer layers similarly to the matrix proteins of other viruses.  相似文献   

8.
African swine fever virus (ASFV) protein pB602L has been described as a molecular chaperone for the correct folding of the major capsid protein p72. We have studied the function of protein pB602L during the viral assembly process by using a recombinant ASFV, vB602Li, which inducibly expresses the gene coding for this protein. We show that protein pB602L is a late nonstructural protein, which, in contrast with protein p72, is excluded from the viral factory. Repression of protein pB602L synthesis inhibits the proteolytic processing of the two viral polyproteins pp220 and pp62 and leads to a decrease in the levels of protein p72 and a delocalization of the capsid protein pE120R. As shown by electron microscopy analysis of cells infected with the recombinant virus vB602Li, the viral assembly process is severely altered in the absence of protein pB602L, with the generation of aberrant "zipper-like" structures instead of icosahedral virus particles. These "zipper-like" structures are similar to those found in cells infected under restrictive conditions with the recombinant virus vA72 inducibly expressing protein p72. Immunoelectron microscopy studies show that the abnormal forms generated in the absence of protein pB602L contain the inner envelope protein p17 and the two polyproteins but lack the capsid proteins p72 and pE120R. These findings indicate that protein pB602L is essential for the assembly of the icosahedral capsid of the virus particle.  相似文献   

9.
The virion host shutoff (Vhs) protein (UL41) is a minor component of herpes simplex virus virions which, following penetration, accelerates turnover of host and viral mRNAs. Infected cells contain 58-kDa and 59.5-kDa forms of Vhs, which differ in the extent of phosphorylation, yet only a 58-kDa polypeptide is incorporated into virions. In pulse-chase experiments, the primary Vhs translation product comigrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with the 58-kDa virion polypeptide, and could be chased to 59.5 kDa. While both 59.5-kDa and 58-kDa forms were found in nuclear and cytoplasmic fractions, the 59.5-kDa form was significantly enriched in the nucleus. Both forms were associated with intranuclear B and C capsids, yet only the 58-kDa polypeptide was found in enveloped cytoplasmic virions. A 58-kDa form, but not the 59.5-kDa form, was found in L particles, noninfectious particles that contain an envelope and tegument but no capsid. The data suggest that virions contain two populations of Vhs that are packaged by different pathways. In the first pathway, the primary translation product is processed to 59.5 kDa, is transported to the nucleus, binds intranuclear capsids, and is converted to 58 kDa at some stage prior to final envelopment. The second pathway does not involve the 59.5-kDa form or interactions between Vhs and capsids. Instead, the primary translation product is phosphorylated to the 58-kDa virion form and packaged through interactions with other tegument proteins in the cytoplasm or viral envelope proteins at the site of final envelopment.  相似文献   

10.
We report here the construction of a triply fluorescent-tagged herpes simplex virus 1 (HSV-1) expressing capsid protein VP26, tegument protein VP22, and envelope protein gB as fusion proteins with monomeric yellow, red, and cyan fluorescent proteins, respectively. The recombinant virus enabled us to monitor the dynamics of these capsid, tegument, and envelope proteins simultaneously in the same live HSV-1-infected cells and to visualize single extracellular virions with three different fluorescent emissions. In Vero cells infected by the triply fluorescent virus, multiple cytoplasmic compartments were found to be induced close to the basal surfaces of the infected cells (the adhesion surfaces of the infected cells on the solid growth substrate). Major capsid, tegument, and envelope proteins accumulated and colocalized in the compartments, as did marker proteins for the trans-Golgi network (TGN) which has been implicated to be the site of HSV-1 secondary envelopment. Moreover, formation of the compartments was correlated with the dynamic redistribution of the TGN proteins induced by HSV-1 infection. These results suggest that HSV-1 infection causes redistribution of TGN membranes to form multiple cytoplasmic compartments, possibly for optimal secondary envelopment. This is the first real evidence for the assembly of all three types of herpesvirus proteins-capsid, tegument, and envelope membrane proteins-in TGN.  相似文献   

11.
Andrés G  Alejo A  Salas J  Salas ML 《Journal of virology》2002,76(24):12473-12482
African swine fever virus (ASFV), a complex enveloped DNA virus, expresses two polyprotein precursors, pp220 and pp62, which after proteolytic processing give rise to several major components of the virus particle. We have analyzed the structural role of polyprotein pp62, the precursor form of mature products p35 and p15, in virus morphogenesis. Densitometric analysis of one- and two-dimensional gels of purified virions showed that proteins p35 and p15, as well as the pp220-derived products, are present in equimolecular amounts in the virus particle. Immunoelectron microscopy revealed that the pp62-derived products localize at the core shell, a matrix-like domain placed between the DNA-containing nucleoid and the inner envelope, where the pp220-derived products are also localized. Pulse-chase experiments indicated that the processing of both polyprotein precursors is concomitant with virus assembly. Furthermore, using inducible ASFV recombinants, we show that pp62 processing requires the expression of the pp220 core precursor, whereas the processing of both precursors pp220 and pp62 is dependent on expression of the major capsid protein p72. Interestingly, when p72 expression is blocked, unprocessed pp220 and pp62 polyproteins assemble into aberrant zipper-like elements consisting of an elongated membrane-bound protein structure reminiscent of the core shell. Moreover, the two polyproteins, when coexpressed in COS cells, interact with each other to form zipper-like structures. Together, these findings indicate that the mature products derived from both polyproteins, which collectively account for about 30% of the virion protein mass, are the basic components of the core shell and that polyprotein processing represents a maturational process related to ASFV morphogenesis.  相似文献   

12.
During mitosis, the nuclear envelope merges with the endoplasmic reticulum (ER), and nuclear pore complexes are disassembled. In a current model for reassembly after mitosis, the nuclear envelope forms by a reshaping of ER tubules. For the assembly of pores, two major models have been proposed. In the insertion model, nuclear pore complexes are embedded in the nuclear envelope after their formation. In the prepore model, nucleoporins assemble on the chromatin as an intermediate nuclear pore complex before nuclear envelope formation. Using live-cell imaging and electron microscope tomography, we find that the mitotic assembly of the nuclear envelope primarily originates from ER cisternae. Moreover, the nuclear pore complexes assemble only on the already formed nuclear envelope. Indeed, all the chromatin-associated Nup107-160 complexes are in single units instead of assembled prepores. We therefore propose that the postmitotic nuclear envelope assembles directly from ER cisternae followed by membrane-dependent insertion of nuclear pore complexes.  相似文献   

13.
14.
An antiserum was raised against the African swine fever virus (ASFV)-encoded ubiquitin-conjugating enzyme (UBCv1) and used to demonstrate by Western blotting (immunoblotting) and immunofluorescence that the enzyme is present in purified extracellular virions, is expressed both early and late after infection of cells with ASFV, and is cytoplasmically located. Antiubiquitin serum was used to identify novel ubiquitin conjugates present during ASFV infections. This antiserum stained virus factories late after infection, suggesting that virion proteins may be ubiquitinated. This possibility was confirmed by Western blotting, which identified three major antiubiquitin-immunoreactive proteins with molecular masses of 5, 18, and 58 kDa in purified extracellular virions. The 18-kDa protein was solubilized from virions at relatively low concentrations of the detergent n-octyl-beta-D-glucopyranoside, indicating that it is externally located and is possibly in the virus capsid. The 18-kDa protein was purified, and N-terminal amino acid sequencing confirmed that the protein was ubiquitinated and was ASFV encoded. The ASFV gene encoding this protein (PIG1) was sequenced, and the encoded protein expressed in an Escherichia coli expression vector. Recombinant PIG1 was ubiquitinated in the presence of E. coli expressed UBCv1 in vitro. These results suggest that PIG1 may be a substrate for UBCv1. The predicted molecular masses of the PIG1 protein and recombinant ubiquitinated protein were larger than the 18-kDa molecular mass of the ubiquitinated protein present in virions. Therefore, during viral replication, a precursor protein may undergo limited proteolysis to generate the ubiquitinated 18-kDa protein.  相似文献   

15.
16.
Analysis of the fate of HIV-1 envelope protein gp160 (Env) has shown that newly synthesized proteins may be degraded within the biosynthetic pathway and that this degradation may take place in compartments other than the lysosomes. The fate of newly synthesized Env was studied in living BHK-21 cells with the recombinant vaccinia virus expression system. We found that gp160 not only undergoes physiological endoproteolytic cleavage, producing gp120, but is also degraded, producing proteolytic fragments of 120 kDa to 26 kDa in size, as determined by SDS/PAGE in non reducing conditions. Analysis of the 120-kDa proteolytic fragment, and comparison with gp120, showed that it is composed of peptides linked by disulfides bonds and lacks the V3-loop epitope and the C-terminal domain of gp120 (amino acids 506-516). A permeabilized cell system, with impaired transport of labeled Env from the endoplasmic reticulum (ER) to Golgi compartments, was developed to determine the site of degradation and to define some biochemical characteristics of the intracellular degradation process. In the semipermeable BHK-21 cells, there was: (a) no gp120 production (b), a progressive decrease in the amount of newly synthesized gp160 and a concomitant increase in the amount of a 120-kDa proteolytic fragment. This fragment had the same biochemical characteristics as the 120-kDa proteolytic fragment found in living nonpermeabilized cells, and (c) susceptibility of the V3 loop. This degradation process occurred in the ER, as shown by both biochemical and indirect immunofluorescence analysis. Furthermore, there was evidence that changes in redox state are involved in the ER-dependent envelope degradation pathway because adding reducing agents to permeabilized cells caused dose-dependent degradation of the 120-kDa proteolytic fragment and of the remaining gp160 glycoprotein. Thus our results provide direct evidence that regulated degradation of the HIV-1 envelope glycoprotein may take place in the ER of infected cells.  相似文献   

17.
18.
In erythroleukemia cells infected with the polycythemia strain of the Friend virus complex, erythropoietin could be cross-linked mainly to a protein of 63 kDa when using disuccinimidyl suberate. In contrast, erythropoietin in other erythroleukemia cells cross-linked to two proteins of 85 and 100 kDa. When native erythropoietin receptor complexes were immunoprecipitated, the 63-kDa erythropoietin-cross-linked protein could be precipitated both by antibodies directed against the intracellular part of the cloned chain of the erythropoietin receptor and by antibodies directed against the envelope proteins of the Friend virus. However, after denaturation of the complexes, the 63-kDa protein was only precipitated by antibodies directed against the envelope proteins of the Friend virus. Enzymatic deglycosylation confirmed that erythropoietin was cross-linked with the envelope protein of the defective virus and bidimensional diagonal gel electrophoresis analyses showed that some of the erythropoietin cross-linked envelope proteins were dimerized by disulfide bonds. Thus, the main erythropoietin-receptor complex in the plasma membrane of these cells consisted of a molecule of the cloned chain of the erythropoietin receptor noncovalently associated with one or two disulfide-bonded molecule(s) of the envelope protein of the defective virus. Moreover, our results also showed that the viral envelope protein associated with the cloned chain of the erythropoietin receptor at a site distinct from the erythropoietin binding site.  相似文献   

19.
Two pools of the glycoprotein VP7 were detected in the endoplasmic reticulum (ER) of SA11 rotavirus-infected cells. One portion of the newly synthesized protein with VP3 composed the virus outer capsid, while the rest remained associated with the membrane. The two populations could be separated biochemically by fluorocarbon extraction or by immunological methods which used two classes of antibodies. A monoclonal antibody with neutralizing activity recognized VP7 only as displayed on intact virus particles, while a polyclonal antiserum precipitated predominantly the unassembled ER form of the protein and precipitated virus-assembled VP7 poorly. Virus-associated VP7 was localized by immunofluorescence to small punctate structures, presumably corresponding to accumulated virus particles, and to regions of the ER surrounding viroplasmic inclusions, whereas the membrane-associated molecules were distributed in an arborizing reticular pattern throughout the ER. VP3 and the nonstructural glycoprotein NCVP5 displayed a localization similar to that of virus-associated VP7. Intracellular virus particles were isolated from infected cells to determine the kinetics of assembly of VP7 and of the other structural proteins into virions. It was found that incorporation of the inner capsid proteins into single-shelled particles occurred rapidly, while VP7 and VP3 appeared in mature double-shelled particles with a lag time of 10 to 15 min. In addition, the alpha-mannosidase processing kinetics of virus-associated VP7 oligosaccharides showed a 15-min lag compared with that of the membrane-associated form, suggesting that the latter is the precursor to virion VP7. This lag may represent the time required for virus budding and outer capsid assembly.  相似文献   

20.
Virus-like particles (VLPs) are formed by the self-assembly of envelope and/or capsid proteins from many viruses. Some VLPs have been proven successful as vaccines, and others have recently found applications as carriers for foreign antigens or as scaffolds in nanoparticle biotechnology. However, production of VLP was usually impeded due to low water-solubility of recombinant virus capsid proteins. Previous studies revealed that virus capsid and envelope proteins were often posttranslationally modified by SUMO in vivo, leading into a hypothesis that SUMO modification might be a common mechanism for virus proteins to retain water-solubility or prevent improper self-aggregation before virus assembly. We then propose a simple approach to produce VLPs of viruses, e.g., foot-and-mouth disease virus (FMDV). An improved SUMO fusion protein system we developed recently was applied to the simultaneous expression of three capsid proteins of FMDV in E. coli. The three SUMO fusion proteins formed a stable heterotrimeric complex. Proteolytic removal of SUMO moieties from the ternary complexes resulted in VLPs with size and shape resembling the authentic FMDV. The method described here can also apply to produce capsid/envelope protein complexes or VLPs of other disease-causing viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号