首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chloramphenicol resistance of Streptococcus haemolyticus, Streptococcus pneumoniae and Streptococcus faecalis isolated from clinical materials was proved to be due to an inactivating enzyme produced by these bacteria. The inactivated products of chloramphenicol were identified as 1-acetoxy, 3-acetoxy and 1,3-diacetoxy derivatives by thin-layer chromatography and infrared spectroscopy. The responsible enzyme was thus confirmed to be chloramphenicol acetyltransferase. The enzyme was inducible. It was partially purified by ammonium sulfate precipitation, DEAE-cellulose chromatography and gel filtration on Sephadex G-150. The enzymes obtained from S. haemolyticus, S. pneumoniae and S. faecalis have been compared with the conclusion that they are identical with respect to molecular weight (approximately 75,000-80,000), optimum pH and heat stability.  相似文献   

2.
Staphylococcus aureus and Staphylococcus epidermidis are major human pathogens of increasing importance due to the dissemination of antibiotic-resistant strains. Evidence suggests that the ability to form matrix-encased biofilms contributes to the pathogenesis of S. aureus and S. epidermidis. In this study, we investigated the functions of two staphylococcal biofilm matrix polymers: poly-N-acetylglucosamine surface polysaccharide (PNAG) and extracellular DNA (ecDNA). We measured the ability of a PNAG-degrading enzyme (dispersin B) and DNase I to inhibit biofilm formation, detach preformed biofilms, and sensitize biofilms to killing by the cationic detergent cetylpyridinium chloride (CPC) in a 96-well microtiter plate assay. When added to growth medium, both dispersin B and DNase I inhibited biofilm formation by both S. aureus and S. epidermidis. Dispersin B detached preformed S. epidermidis biofilms but not S. aureus biofilms, whereas DNase I detached S. aureus biofilms but not S. epidermidis biofilms. Similarly, dispersin B sensitized S. epidermidis biofilms to CPC killing, whereas DNase I sensitized S. aureus biofilms to CPC killing. We concluded that PNAG and ecDNA play fundamentally different structural roles in S. aureus and S. epidermidis biofilms.  相似文献   

3.
NMR spectroscopy has proved to be a valuable tool in the study of the interactions between enzymes and their substrates. The kinds of structural and dynamic information which can be obtained are illustrated by studies of three enzymes involved in drug metabolism. Cytochromes P450 play a crucial role in metabolism of a wide range of exogenous chemicals. NMR has been used to measure distances from the haem iron of the cytochrome to protons of the bound substrate, leading to detailed structural models for the enzyme-substrate complexes. The other two enzymes, chloramphenicol acetyltransferase and β-lactamase, are responsible for bacterial resistance to specific antibiotics. In chloramphenicol acetyltransferase, NMR has been used to determine the conformation of coenzyme A bound to the enzyme, while in the case of β-lactamase the pK of a specific lysine residue at the active site has been determined, providing valuable information on the catalytic mechanism. Special issue dedicated to Dr. Herman Bachelard.  相似文献   

4.
Staphylococcus epidermidis (S.epidermidis) plays important protective roles by directly producing or by stimulating hosts to produce antimicrobial peptides (AMPs) against pathogenic infections. Although several AMPs from S.epidermidis have been identified, molecules that stimulate hosts to produce AMPs remain largly unknown. Here we demonstrate that a new lipopeptide (named LP01) purified from S.epidermidis culture media has a unique structure with heneicosanoic acid (21 carbons) binding to lysine11 of a peptide chain. In vitro LP01 increased the expression of β-defensin 2(hBD2) and hBD3 in neonatal human epidermal keratinocytes(NHEK), leading to increased capacity of cell lysates to inhibit the growth of S.aureus. In vivo LP01 induced the expression of mouse β-defensin 4(mBD4) to decrease the survival of local S.aureus in skin and systemic S.aureus survival in liver. The induction of beta-defensins by LP01 was dependent on TLR2 as Tlr2-deficient mice had decreased mBD4. Furthermore, knockdown of CD36 decreased the expression of hBD2 and hBD3, and p38 MAPK inhibitor significantly inhibited the expression of hBDs induced by LP01.Taken together, these findings demonstrate that lipopeptide LP01 from normal commensal S.epidermidis increases antimicrobial peptide hBD2 and hBD3 expression via the activation of TLR2/CD36-p38 MAPK, thus enhancing antimicrobial defense against pathogenic infections.  相似文献   

5.
Plasmid-mediated chloramphenicol resistance in Staphylococcus aureus has been shown to involve acetylation of chloramphenicol by an enzyme induced by growth in the presence of the antibiotic and certain analogues. Analysis of the kinetics of induction has been complicated by (i) the intrinsic inhibitory effects of chloramphenicol on induced enzyme synthesis and (ii) the rapid disappearance of inducer after synthesis of the acetylating enzyme. The compound related to d-threo chloramphenicol which lacks a C(3) hydroxyl substituent (3-deoxychloramphenicol) is a potent inducer of chloramphenicol acetyltransferase but is ineffective as an antibiotic and is not a substrate for the enzyme. The availability of such a "gratuitous" inducer has simplified an analysis of the kinetics of induction of chloramphenicol acetyltransferase. The enzyme from induced bacteria has been purified to homogeneity and has been compared with the analogous enzyme present in E. coli which harbors a resistance transfer factor with the chloramphenicol resistance determinant.  相似文献   

6.
Transformation of Staphylococcus aureus by heterologous plasmids   总被引:5,自引:0,他引:5  
Plasmids isolated from Bacillus subtilis and Staphylococcus epidermidis were transformed into Staphylococcus aureus. Heterologous transformation was susceptible to restriction in S. aureus but could be performed in restriction-negative mutants or in heat-treated host bacteria. Three plasmids isolated from S. epidermidis were transformed into S. aureus with this technique and characterized. Two of them, pTE109 and pCE109, appear to be similar to two tet and cml plasmids previously isolated from S. aureus. The third, pPE109, carries penicillin and cadmium resistance and shows a restriction enzyme pattern which differs from known penicillinase plasmids in S. aureus.  相似文献   

7.

Background

Staphylococcus epidermidis and S. aureus have been identified as the most common bacteria responsible for sub-clinical and overt breast implant infections and their ability to form biofilm on the implant as been reported as the essential factor in the development of this type of infections. Biofilm formation is a complex process with the participation of several distinct molecules, whose relative importance in different clinical settings has not yet been fully elucidated. To our knowledge this is the first study aimed at characterizing isolates causing breast peri-implant infections.

Results

Thirteen S. aureus and seven S. epidermidis causing breast peri-implant infections were studied.Using the broth microdilution method and the E-test, the majority of the strains were susceptible to all antibiotics tested. Methicillin resistance was detected in two S. epidermidis. All strains had different RAPD profiles and were able to produce biofilms in microtitre plate assays but, while all S. aureus carried and were able to express icaA and icaD genes, this was only true for one S. epidermidis. Biofilm development was glucose- and NaCl-induced (5 S. aureus and 1 S. epidermidis) or glucose-induced (the remaining strains). Proteinase K and sodium metaperiodate treatment had different effects on biofilms dispersion revealing that the strains studied were able to produce chemically different types of extracellular matrix mediating biofilm formation.All S. aureus strains harboured and expressed the atlA, clfA, FnA, eno and cna genes and the majority also carried and expressed the sasG (10/13), ebpS (10/13) genes.All S. epidermidis strains harboured and expressed the atlE, aae, embp genes, and the majority (six strains) also carried and expressed the fbe, aap genes.Genes for S. aureus capsular types 5 and 8 were almost equally distributed. The only leukotoxin genes detected were lukE/lukD (6/13).

Conclusions

S. aureus and S. epidermidis breast peri-implant infections are caused by heterogeneous strains with different biofilm development mechanisms.Since the collagen adhesin (cna) gene is not ubiquitously distributed among S. aureus, this protein could have an important role in the cause of breast peri-implant infections.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-015-0368-x) contains supplementary material, which is available to authorized users.  相似文献   

8.
Staphylococcus epidermidis, a commensal of humans, secretes Esp protease to prevent Staphylococcus aureus biofilm formation and colonization. Blocking S. aureus colonization may reduce the incidence of invasive infectious diseases; however, the mechanism whereby Esp disrupts biofilms is unknown. We show here that Esp cleaves autolysin (Atl)-derived murein hydrolases and prevents staphylococcal release of DNA, which serves as extracellular matrix in biofilms. The three-dimensional structure of Esp was revealed by x-ray crystallography and shown to be highly similar to that of S. aureus V8 (SspA). Both atl and sspA are necessary for biofilm formation, and purified SspA cleaves Atl-derived murein hydrolases. Thus, S. aureus biofilms are formed via the controlled secretion and proteolysis of autolysin, and this developmental program appears to be perturbed by the Esp protease of S. epidermidis.  相似文献   

9.
We examined the bacterial aerobic nasal flora of 216 healthy volunteers to identify potential competitive interactions among different species, with special emphasis on the influence of staphylococcal agr alleles. The Staphylococcus aureus colonization rate correlated negatively with the rate of colonization by Corynebacterium spp. and non-aureus staphylococci, especially S. epidermidis, suggesting that both Corynebacterium spp. and S. epidermidis antagonize S. aureus colonization. Most of the S. aureus and S. epidermidis isolates were agr typed by a PCR method. Only one S. aureus agr (agrSa) allele was detected in each carrier. Multiple logistic regression of the two most prevalent agrSa alleles (agr-1Sa and agr-2Sa) and the three S. epidermidis agr (agrSe) alleles showed a specific influence of the agr system. The results of this model did not support conclusions drawn from previous in vitro agr-specific cross-inhibition experiments. Our findings suggest that the agr alleles, which are strongly linked to the bacterial genetic background, may simply be associated with common biological properties—including mediators of bacterial interference—in the strains that bear them.  相似文献   

10.
Three plasmid-mediated chloramphenicol acetyltransferases isolated from different Haemophilus influenzae strains were purified and characterized. All three enzymes had properties in common with the gram-negative family of chloramphenicol acetyltransferase. The Haemophilus enzymes and the enteric type II enzyme were sensitive to 5,5'-dithiobis(2-nitrobenzoic acid), gave the same elution patterns from a highly substituted resin containing a bound chloramphenicol base, and had similar reactions to antisera. All four differed from each other in subunit molecular weight, enzyme activity, and partial protein digestion patterns. The data suggest that the three Haemophilus enzymes belong to the less common type II group and are related, but is not identical, to each other and to the enteric type II enzyme.  相似文献   

11.
1. Hybrids of the tetrameric enzyme chloramphenicol acetyltransferase (EC 2.3.1.28) were formed in vivo in a strain of Escherichia coli which harbours two different plasmids, each of which normally confers chloramphenicol resistance and specifies an easily distinguished enzyme variant (type I or type III) which is composed of identical subunits. Cell-free extracts of the dual-plasmid strain were found to contain five species of active enzyme, two of which were the homomeric enzymes corresponding to the naturally occurring tetramers of the type-I (beta 4) and type-III (alpha 4) enzymes. The other three variants were judged to be the heteromeric hybrid variants (alpha 3 beta, alpha 2 beta 2, alpha beta 3). 2. The alpha 3 beta and alpha 2 beta 2 hybrids of chloramphenicol acetyltransferase were purified to homogeneity by combining the techniques of affinity and ion-exchange chromatography. The alpha beta 3 variant was not recovered and may be unstable in vitro. 3. The unique lysine residues that could not be modified with methyl acetimidate in each of the native homomeric enzymes were also investigated in the heteromeric tetramers. 4. Lysine-136 remains buried in each beta subunit of the parental (type I) enzyme and in each of the hybrid tetramers. Lysine-38 of each alpha subunit is similarly unreactive in the native type-III chloramphenicol acetyltransferase (alpha 4), but in the alpha 2 beta 2 hybird lysine-38 of each alpha subunit is fully exposed to solvent. Another lysine residue, fully reactive in the alpha 4 enzyme, was observed to be inaccessible to modification in the symmetrical hybrid. The results obtained for the alpha 3 beta enzyme suggest that lysine-38 in two subunits and a different lysine group (that identified in the alpha 2 beta 2 enzyme) in the third alpha subunit are buried. 5. A tentative model for the subunit interactions of chloramphenicol acetyltransferase is proposed on the basis of the results described.  相似文献   

12.

Background

The mecA gene, encoding methicillin resistance in staphylococci, is located on a mobile genetic element called Staphylococcal Cassette Chromosome mec (SCCmec). Horizontal, interspecies transfer of this element could be an important factor in the dissemination of methicillin-resistant S. aureus (MRSA). Previously, we reported the isolation of a closely related methicillin-susceptible Staphylococcus aureus (MSSA), MRSA and potential SCCmec donor Staphylococcus epidermidis isolate from the same patient. Based on fingerprint techniques we hypothesized that the S. epidermidis had transferred SCCmec to the MSSA to become MRSA. The aim of this study was to show that these isolates form an isogenic pair and that interspecies horizontal SCCmec transfer occurred.

Methodology/Results

Whole genome sequencing of both isolates was performed and for the MSSA gaps were closed by conventional sequencing. The SCCmec of the S. epidermidis was also sequenced by conventional methods. The results show no difference in nucleotide sequence between the two isolates except for the presence of SCCmec in the MRSA. The SCCmec of the S. epidermidis and the MRSA are identical except for a single nucleotide in the ccrB gene, which results in a valine to alanine substitution. The main difference with the closely related EMRSA-16 is the presence of SaPI2 encoding toxic shock syndrome toxin and exfoliative toxin A in the MSSA-MRSA pair. No transfer of SCCmec from the S. epidermidis to the MSSA could be demonstrated in vitro.

Conclusion

The MSSA and MRSA form an isogenic pair except for SCCmec. This strongly supports our hypothesis that the MRSA was derived from the MSSA by interspecies horizontal transfer of SCCmec from S. epidermidis O7.1.  相似文献   

13.
A gene encoding a putative DNA helicase from Staphylococcus aureus USA300 was cloned and expressed in Escherichia coli. The protein was purified to over 90% purity by chromatography. The purified enzyme, SauUSI, predominantly cleaves modified DNA containing 5mC and 5-hydroxymethylcytosine. Cleavage of 5mC-modified plasmids indicated that the sites S5mCNGS (S = C or G) are preferentially digested. The endonuclease activity requires the presence of adenosine triphosphate (ATP) or dATP whereas the non-hydrolyzable γ-S-ATP does not support activity. SauUSI activity was inhibited by ethylenediaminetetraacetic acid. It is most active in Mg++ buffers. No companion methylase gene was found near the SauUSI restriction gene. The absence of a cognate methylase and cleavage of modified DNA indicate that SauUSI belongs to type IV restriction endonucleases, a group that includes EcoK McrBC and Mrr. SauUSI belongs to a family of highly similar homologs found in other sequenced S. aureus, S. epidermidis and S. carnosus genomes. More distant SauUSI orthologs can be found in over 150 sequenced bacterial/archaea genomes. Finally, we demonstrated the biological function of the type IV REase in restricting 5mC-modified plasmid DNA by transformation into clinical S. aureus strain SA564, and in restricting phage λ infection when the endonuclease is expressed in E. coli.  相似文献   

14.
Staphylococcus xylosus, Staphylococcus equorum, and Staphylococcus epidermidis strains were isolated from Bryndza cheese and identified using PCR method. The antimicrobial susceptibility of these strains was assessed using disc diffusion method and broth microdilution method. The highest percentage of resistance was detected for ampicillin and oxacillin, and in contrary, isolates were susceptible or intermediate resistant to ciprofloxacin and chloramphenicol. Fourteen of the S. xylosus isolates (45 %) and eleven of the S. equorum isolates (41 %) exhibited multidrug resistance. None of the S. epidermidis isolate was multiresistant. The phenotypic resistance to oxacillin was verified by PCR amplification of the gene mecA.  相似文献   

15.
The dephospho- form of rat liver citrate lyase has been prepared by treating purified [32P]-ATP citrate lyase with a partially purified phosphatase. A comparison of the properties of the phospho- and dephosphoenzyme has been performed. The pH optima were the same for both forms of the enzyme in four different buffer systems although the optimum values varied identically for both enzyme forms with the buffer. Both the phospho- and dephosphoenzymes show the same kinetic properties except for the Km observed for ATP in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer system where it was 54 μm for the phosphoenzyme and 292 μm for the dephosphoenzyme. The present study also indicates that both enzymes are cleaved by trypsin and lysosomal proteases in a similar manner. Both forms of the enzyme tend to associate with mitochondria to the same extent and both enzymes have identical temperature stability curves.  相似文献   

16.
During surgery with bone grafting, the impaction of bone tissue creates an avascular area where local circulation is disrupted. If infections arise, they may prevent systemically administered antibiotics from reaching the infected bone. In this study we evaluated gentamicin palmitate (GP) mixed with gentamicin sulfate (GS) as a coating for bone chips (BCh). The efficacy of the coated BCh was measured by gentamicin base release tests using B. subtilis, S. epidermidis and S. aureus. Gentamicin base release was evaluated in phosphate-buffered saline for up to 7 days using B. subtilis bioassay. Antimicrobial efficacy was tested with S. aureus and S. epidermidis. A significant difference on the release of gentamicin base between GS and GS + GP was observed. S. epidermidis are significantly more susceptible to GS + GP and GS than S. aureus. BCh can act as gentamicin carriers and showed efficacy against S. aureus and S. epidermidis.  相似文献   

17.
Both the periplasmic and the extracellular cellodextrinases from Bacteroides succinogenes S85 grown on Avicel microcrystalline cellulose were purified to homogeneity by column chromatography and characterized. Over 70% of the total cellobiosidase activity displayed by cells was accounted for by these enzymes. The periplasmic and extracellular cellodextrinases had identical molecular weights (50,000), as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and identical isoelectric points (4.9). In addition, the two enzymes were similar in catalytic properties, with Km and Vmax values of approximately 0.24 mM and 21 μmol/min per mg of protein, respectively. Examination of the two enzymes by using peptide mapping and immunoblotting techniques provided additional evidence indicating their identical nature. Immunoblotting of the extracellular culture fluid with affinity-purified antibody to the periplasmic cellodextrinase revealed one band with a molecular weight corresponding to that of the periplasmic cellodextrinase. The stability of the purified periplasmic cellodextrinase in aqueous solution was markedly enhanced by increased protein content. This enzyme showed a low affinity for crystalline cellulose.  相似文献   

18.
A series of novel 9-O-acetyl-4′-substituted 16-membered macrolides derived from josamycin has been designed and synthesized by cleavage of the mycarose of josamycin and subsequent modification of the 4′-hydroxyl group. These derivatives were evaluated for their in vitro antibacterial activities against a panel of Staphylococcus aureus and Staphylococcus epidermidis. 15 (4′-O-(3-Phenylpropanoyl)-9-O-acetyl-desmycarosyl josamycin) and 16 (4′-O-butanoyl-9-O-acetyl-desmycarosyl josamycin) exhibited comparable activities to josamycin against S. aureus (MSSA) and S. epidermidis (MSSE).  相似文献   

19.
Chloramphenicol-resistant strains of Staphylococcus aureus contain an inducible enzyme which inactivates chloramphenicol by acetylation in the presence of acetyl coenzyme A. The products of acetylation are chromatographically indistinguishable from those obtained with chloramphenicol-resistant Escherichia coli harboring an R factor. The kinetics of induction of chloramphenicol acetyltransferase are complicated by the inducer's effect on protein biosynthesis and its fate as chloramphenicol 3-acetate, which is not an inducer of the enzyme. The E. coli and S. aureus enzymes have been compared, with the conclusion that they are identical with respect to molecular weight (approximately 78,000) and pH optimum (7.8), but differ with respect to heat stability, substrate affinity, electrophoretic mobility, and immunological reactivity. Antiserum prepared against enzyme from E. coli contains precipitating antibody, which inactivates the E. coli enzyme, but neither precipitates nor neutralizes the activity of S. aureus enzyme.  相似文献   

20.
Phosphoenolpyruvate carboxylase has been purified to homogeneity from maize (Zea mays L. var. Golden Cross Bantam T51) leaves. The ratio of specific activities in crude extracts and the purified enzyme suggests that the enzyme is a major soluble protein in the tissue. The enzyme has a sedimentation coefficient (s20,w) of 12.3S and a molecular weight, determined by sedimentation equilibrium, of 400,000 daltons. Dissociation of the enzyme and electrophoresis on dodecyl sulfate polyacrylamide gels yields a single stained band which corresponds to a subunit weight of 99,000 daltons. Thus it appears that the native enzyme is composed of four identical or similar polypeptide chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号