首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal signalling of fear memory   总被引:5,自引:0,他引:5  
The learning and remembering of fearful events depends on the integrity of the amygdala, but how are fear memories represented in the activity of amygdala neurons? Here, we review recent electrophysiological studies indicating that neurons in the lateral amygdala encode aversive memories during the acquisition and extinction of Pavlovian fear conditioning. Studies that combine unit recording with brain lesions and pharmacological inactivation provide evidence that the lateral amygdala is a crucial locus of fear memory. Extinction of fear memory reduces associative plasticity in the lateral amygdala and involves the hippocampus and prefrontal cortex. Understanding the signalling of aversive memory by amygdala neurons opens new avenues for research into the neural systems that support fear behaviour.  相似文献   

2.
Raybuck JD  Lattal KM 《PloS one》2011,6(1):e15982
A key finding in studies of the neurobiology of learning memory is that the amygdala is critically involved in Pavlovian fear conditioning. This is well established in delay-cued and contextual fear conditioning; however, surprisingly little is known of the role of the amygdala in trace conditioning. Trace fear conditioning, in which the CS and US are separated in time by a trace interval, requires the hippocampus and prefrontal cortex. It is possible that recruitment of cortical structures by trace conditioning alters the role of the amygdala compared to delay fear conditioning, where the CS and US overlap. To investigate this, we inactivated the amygdala of male C57BL/6 mice with GABA (A) agonist muscimol prior to 2-pairing trace or delay fear conditioning. Amygdala inactivation produced deficits in contextual and delay conditioning, but had no effect on trace conditioning. As controls, we demonstrate that dorsal hippocampal inactivation produced deficits in trace and contextual, but not delay fear conditioning. Further, pre- and post-training amygdala inactivation disrupted the contextual but the not cued component of trace conditioning, as did muscimol infusion prior to 1- or 4-pairing trace conditioning. These findings demonstrate that insertion of a temporal gap between the CS and US can generate amygdala-independent fear conditioning. We discuss the implications of this surprising finding for current models of the neural circuitry involved in fear conditioning.  相似文献   

3.
The molecular processes that establish fear memory are complex and involve a combination of genetic and epigenetic influences. Dysregulation of these processes can manifest in humans as a range of fear-related anxiety disorders like post-traumatic stress disorders (PTSD). In the present study, immunohistochemistry for acetyl H3, H4, c-fos, CBP (CREB-binding protein) in the infralimbic prefrontal cortex (IL-PFC) and prelimbic prefrontal cortex (PL-PFC) of mPFC (medial prefrontal cortex) and basal amygdala (BA), lateral amygdala (LA), centrolateral amygdala (CeL), centromedial amygdala (CeM) of the amygdala was performed to link region-specific histone acetylation to fear and extinction learning. It was found that the PL-PFC and IL-PFC along with the sub-regions of the amygdala responded differentially to the fear learning and extinction. Following fear learning, c-fos and CBP expression and acetylation of H3 and H4 increased in the BA, LA, CeM, and CeL and the PL-PFC but not in the IL-PFC as compared to the naive control. Similarly, following extinction learning, c-fos and CBP expression increased in BA, LA, CeL, and IL-PFC but not in PL-PFC and CeM as compared to the naive control and conditioned group. However, the acetylation of H3 increased in both IL and PL as opposed to H4 which increased only in the IL-PFC following extinction learning. Overall, region-specific activation in amygdala and PFC following fear and extinction learning as evident by the c-fos activation paralleled the H3/H4 acetylation in these regions. These results suggest that the differential histone acetylation in the PFC and amygdala subnuclei following fear learning and extinction may be associated with the region-specific changes in the neuronal activation pattern resulting in more fear/less fear.  相似文献   

4.
Fear learning ensures survival through an expression of certain behavior as a conditioned fear response. Fear memory is processed and stored in a fear memory circuit, including the amygdala, hippocampus, and prefrontal cortex. A gradual decrease in conditioned fear response can be induced by fear extinction, which is mediated through the weakening of the original fear memory traces and the newly formed inhibition of those traces. Fear memory can also recover after extinction, which shows flexible control of the fear memory state. Here, we demonstrate how fear engram, which is a physical substrate of fear memory, changes during fear extinction and relapse by reviewing recent studies regarding engram.  相似文献   

5.
Extinction learning in humans: role of the amygdala and vmPFC   总被引:20,自引:0,他引:20  
Understanding how fears are acquired is an important step in translating basic research to the treatment of fear-related disorders. However, understanding how learned fears are diminished may be even more valuable. We explored the neural mechanisms of fear extinction in humans. Studies of extinction in nonhuman animals have focused on two interconnected brain regions: the amygdala and the ventral medial prefrontal cortex (vmPFC). Consistent with animal models suggesting that the amygdala is important for both the acquisition and extinction of conditioned fear, amygdala activation was correlated across subjects with the conditioned response in both acquisition and early extinction. Activation in the vmPFC (subgenual anterior cingulate) was primarily linked to the expression of fear learning during a delayed test of extinction, as might have been expected from studies demonstrating this region is critical for the retention of extinction. These results provide evidence that the mechanisms of extinction learning may be preserved across species.  相似文献   

6.
Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.  相似文献   

7.
Extinction describes the process of attenuating behavioral responses to neutral stimuli when they no longer provide the reinforcement that has been maintaining the behavior. There is close correspondence between fear and human anxiety, and therefore studies of extinction learning might provide insight into the biological nature of anxiety-related disorders such as post-traumatic stress disorder, and they might help to develop strategies to treat them. Preclinical research aims to aid extinction learning and to induce targeted plasticity in extinction circuits to consolidate the newly formed memory. Vagus nerve stimulation (VNS) is a powerful approach that provides tight temporal and circuit-specific release of neurotransmitters, resulting in modulation of neuronal networks engaged in an ongoing task. VNS enhances memory consolidation in both rats and humans, and pairing VNS with exposure to conditioned cues enhances the consolidation of extinction learning in rats. Here, we provide a detailed protocol for the preparation of custom-made parts and the surgical procedures required for VNS in rats. Using this protocol we show how VNS can facilitate the extinction of conditioned fear responses in an auditory fear conditioning task. In addition, we provide evidence that VNS modulates synaptic plasticity in the pathway between the infralimbic (IL) medial prefrontal cortex and the basolateral complex of the amygdala (BLA), which is involved in the expression and modulation of extinction memory.  相似文献   

8.
Fear conditioning is relevant for elucidating the pathophysiology of anxiety, but may also be useful in the context of chronic pain syndromes which often overlap with anxiety. Thus far, no fear conditioning studies have employed aversive visceral stimuli from the lower gastrointestinal tract. Therefore, we implemented a fear conditioning paradigm to analyze the conditioned response to rectal pain stimuli using fMRI during associative learning, extinction and reinstatement.In N = 21 healthy humans, visual conditioned stimuli (CS+) were paired with painful rectal distensions as unconditioned stimuli (US), while different visual stimuli (CS) were presented without US. During extinction, all CSs were presented without US, whereas during reinstatement, a single, unpaired US was presented. In region-of-interest analyses, conditioned anticipatory neural activation was assessed along with perceived CS-US contingency and CS unpleasantness.Fear conditioning resulted in significant contingency awareness and valence change, i.e., learned unpleasantness of a previously neutral stimulus. This was paralleled by anticipatory activation of the anterior cingulate cortex, the somatosensory cortex and precuneus (all during early acquisition) and the amygdala (late acquisition) in response to the CS+. During extinction, anticipatory activation of the dorsolateral prefrontal cortex to the CS was observed. In the reinstatement phase, a tendency for parahippocampal activation was found.Fear conditioning with rectal pain stimuli is feasible and leads to learned unpleasantness of previously neutral stimuli. Within the brain, conditioned anticipatory activations are seen in core areas of the central fear network including the amygdala and the anterior cingulate cortex. During extinction, conditioned responses quickly disappear, and learning of new predictive cue properties is paralleled by prefrontal activation. A tendency for parahippocampal activation during reinstatement could indicate a reactivation of the old memory trace. Together, these findings contribute to our understanding of aversive visceral learning and memory processes relevant to the pathophysiology of chronic abdominal pain.  相似文献   

9.
Emotions, such as fear and anxiety, can be modulated by both environmental and genetic factors. One genetic factor is for example the genetically encoded variation of the serotonin transporter (5-HTT) expression. In this context, the 5-HTT plays a key role in the regulation of central 5-HT neurotransmission, which is critically involved in the physiological regulation of emotions including fear and anxiety. However, a systematic study which examines the combined influence of environmental and genetic factors on fear-related behavior and the underlying neurophysiological basis is missing. Therefore, in this study we used the 5-HTT-deficient mouse model for studying emotional dysregulation to evaluate consequences of genotype specific disruption of 5-HTT function and repeated social defeat for fear-related behaviors and corresponding neurophysiological activities in the lateral amygdala (LA) and infralimbic region of the medial prefrontal cortex (mPFC) in male 5-HTT wild-type (+/+), homo- (-/-) and heterozygous (+/-) mice. Naive males and experienced losers (generated in a resident-intruder paradigm) of all three genotypes, unilaterally equipped with recording electrodes in LA and mPFC, underwent a Pavlovian fear conditioning. Fear memory and extinction of conditioned fear was examined while recording neuronal activity simultaneously with fear-related behavior. Compared to naive 5-HTT+/+ and +/- mice, 5-HTT-/- mice showed impaired recall of extinction. In addition, 5-HTT-/- and +/- experienced losers showed delayed extinction learning and impaired recall of extinction. Impaired behavioral responses were accompanied by increased theta synchronization between the LA and mPFC during extinction learning in 5-HTT-/- and +/- losers. Furthermore, impaired extinction recall was accompanied with increased theta synchronization in 5-HTT-/- naive and in 5-HTT-/- and +/- loser mice. In conclusion, extinction learning and memory of conditioned fear can be modulated by both the 5-HTT gene activity and social experiences in adulthood, accompanied by corresponding alterations of the theta activity in the amygdala-prefrontal cortex network.  相似文献   

10.
The metabotropic glutamate receptor subtype 1 (mGluR1) is thought to be crucial for several forms of memory, but its role in memory extinction has not been determined. Here, we examined a role of mGluR1 in the extinction of conditioned fear using microinjection of an mGluR1 antagonist, CPCCOEt, into the lateral amygdala (LA), a critical structure for fear conditioning and extinction. Intra-LA injection of 3 microg CPCCOEt impaired extinction that was initiated 48 h after the conditioning, but not that initiated 2h after the conditioning, indicating that the effectiveness of CPCCOEt depends upon the length of time since fear conditioning. The CPCCOEt injection failed to alter an mGluR1-like receptor (mGluR5)-dependent acquisition of fear memory, further supporting the specificity of the injected CPCCOEt on mGluR1. Together, our results suggest that amygdala mGluR1 plays a critical role in the extinction of learned fear, but not in the acquisition of fear memory.  相似文献   

11.
Kenney JW  Raybuck JD  Gould TJ 《Hippocampus》2012,22(8):1681-1690
Nicotine administration alters various forms of hippocampus-dependent learning and memory. Increasing work has found that the dorsal and ventral hippocampus differentially contribute to multiple behaviors. Thus, the present study examined whether the effects of nicotine in the dorsal and ventral hippocampus have distinct influences on contextual fear learning in male C57BL/6J mice. Direct infusion of nicotine into the dorsal hippocampus resulted in an enhancement of contextual fear learning, whereas nicotine infused into the ventral hippocampus resulted in deficits. Nicotine infusions into the ventral hippocampus did not alter hippocampus-independent cued fear conditioning or time spent in the open arm of the elevated plus maze, a measure of anxiety, suggesting that the effects are due to alterations in contextual learning and not other general processes. Finally, results from using direct infusions of MLA, a low-affinity α7 nicotinic acetylcholine receptor (nAChR) antagonist, in conjunction with systemic nicotine, provide evidence that α7-nAChRs in the ventral hippocampus mediate the detrimental effect of ventral hippocampal nicotine on contextual fear learning. These results suggest that with systemic nicotine administration, competition exists between the dorsal and ventral hippocampus for behavioral control over contextual learning.  相似文献   

12.
Fear acquisition and extinction are crucial mechanisms in the etiology and maintenance of anxiety disorders. Moreover, they might play a pivotal role in conveying the influence of genetic and environmental factors on the development of a (more or less) stronger proneness for, or resilience against psychopathology. There are only few insights in the neurobiology of genetically and environmentally based individual differences in fear learning and extinction. In this functional magnetic resonance imaging study, 74 healthy subjects were investigated. These were invited according to 5-HTTLPR/rs25531 (S+ vs. L(A)L(A); triallelic classification) and TPH2 (G(-703)T) (T+ vs. T-) genotype. The aim was to investigate the influence of genetic factors and traumatic life events on skin conductance responses (SCRs) and neural responses (amygdala, insula, dorsal anterior cingulate cortex (dACC) and ventromedial prefrontal cortex (vmPFC)) during acquisition and extinction learning in a differential fear conditioning paradigm. Fear acquisition was characterized by stronger late conditioned and unconditioned responses in the right insula in 5-HTTLPR S-allele carriers. During extinction traumatic life events were associated with reduced amygdala activation in S-allele carriers vs. non-carriers. Beyond that, T-allele carriers of the TPH2 (G(-703)T) polymorphism with a higher number of traumatic life events showed enhanced responsiveness in the amygdala during acquisition and in the vmPFC during extinction learning compared with non-carriers. Finally, a combined effect of the two polymorphisms with higher responses in S- and T-allele carriers was found in the dACC during extinction. The results indicate an increased expression of conditioned, but also unconditioned fear responses in the insula in 5-HTTLPR S-allele carriers. A combined effect of the two polymorphisms on dACC activation during extinction might be associated with prolonged fear expression. Gene-by-environment interactions in amygdala and vmPFC activation may reflect a neural endophenotype translating genetic and adverse environmental influences into vulnerability for or resilience against developing affective psychopathology.  相似文献   

13.
Acetylcholine (ACh) signaling in the hippocampus is important for behaviors related to learning, memory and stress. In this study, we investigated the role of two ACh receptor subtypes previously shown to be involved in fear and anxiety, the M1 mAChR and the α2 nAChR, in mediating the effects of hippocampal ACh on stress‐related behaviors. Adeno‐associated viral vectors containing short‐hairpin RNAs targeting M1 or α2 were infused into the hippocampus of male C57BL/6J mice, and behavior in a number of paradigms related to stress responses and fear learning was evaluated. There were no robust effects of hippocampal M1 mAChR or α2 nAChR knockdown (KD) in the light/dark box, tail suspension, forced swim or novelty‐suppressed feeding tests. However, effects on fear learning were observed in both KD groups. Short term learning was intact immediately after training in all groups of mice, but both the M1 and α2 hippocampal knock down resulted in impaired cued fear conditioning 24 h after training. In addition, there was a trend for a deficit in contextual memory the M1 mAChR KD group 24 h after training. These results suggest that α2 nicotinic and M1 muscarinic ACh receptors in the hippocampus contribute to fear learning and could be relevant targets to modify brain circuits involved in stress‐induced reactivity to associated cues.  相似文献   

14.
Behavioral analyses of genetically modified and inbred strains of mice have revealed neural systems and molecules that are involved in memory formation. Many of these studies have examined memories that form in contextual fear conditioning, in which an organism learns that a particular context signals the occurrence of a footshock. During fear extinction, nonreinforced exposure to the context results in the loss of the conditioned fear response. The study of extinction has been instrumental for behavioral and molecular theories of memory. However, many of the transgenic, knockout, and inbred strains of mice that have been widely studied in memory have behavioral deficits in contextual fear conditioning, which makes the study of extinction in these mice particularly challenging. Here we explore several strategies for studying extinction in C57BL/6 and DBA/2 mice, two strains known to differ in contextual fear conditioning. First, we attempt to equate performance prior to extinction through several extensive conditioning protocols. Second, we examine extinction in subsets of mice matched for initial levels of context conditioning. Third, we examine within-strain effects of variables known to affect extinction. Differences between the strains persisted across extensive conditioning and extinction protocols, but both strains were sensitive to session duration and context manipulations during extinction. We describe the implications of our results for behavioral and neurobiological approaches to extinction, and we examine the general challenges in studying extinction in subjects that differ in learning or performance prior to extinction.  相似文献   

15.
Contextual fear memory processing requires coordinated changes in neuronal activity and molecular networks within brain. A large number of fear memory-related genes, however, still remain to be identified. Synaptotagmin 13 (Syt13), an atypical member of synaptotagmin family, is highly expressed in brain, but its functional roles within brain have not yet been clarified. Here, we report that the expression of Syt13 mRNA in adult mouse brain was altered following contextual fear conditioning. C57BL/6 mice were exposed to a novel context and stimulated by strong electrical footshock according to a contextual fear conditioning protocol. After 24h, the mice were re-exposed to the context without electrical footshock for the retrieval of contextual fear memory. To investigate the relationship between Syt13 and contextual fear memory, we carried out in situ hybridization and analyzed gene expression patterns for Syt13 at four groups representing temporal changes in brain activity during contextual fear memory formation. Contextual fear conditioning test induced significant changes in mRNA levels for Syt13 within various brain regions, including lateral amygdala, somatosensory cortex, piriform cortex, habenula, thalamus, and hypothalamus, during both acquisition and retrieval sessions. Our data suggest that Syt13 may be involved in the process of contextual fear memory.  相似文献   

16.
A leading model for studying how the brain forms memories about unpleasant experiences is fear conditioning. A cumulative body of work has identified major components of the neural system mediating this form of learning. The pathways involve transmission of sensory information from processing areas in the thalamus and cortex to the amygdala. The amygdala''s lateral nucleus receives and integrates the sensory inputs from the thalamic and cortical areas, and the central nucleus provides the interface with motor systems controlling specific fear responses in various modalities (behavioural, autonomic, endocrine). Internal connections within the amygdala allow the lateral and central nuclei to communicate. Recent studies have begun to identify some sites of plasticity in the circuitry and the cellular mechanisms involved in fear conditioning. Through studies of fear conditioning, our understanding of emotional memory is being taken to the level of cells and synapses in the brain. Advances in understanding emotional memory hold out the possibility that emotional disorders may be better defined and treatment improved.  相似文献   

17.
In this experiment we present a technique to measure learning and memory. In the trace fear conditioning protocol presented here there are five pairings between a neutral stimulus and an unconditioned stimulus. There is a 20 sec trace period that separates each conditioning trial. On the following day freezing is measured during presentation of the conditioned stimulus (CS) and trace period. On the third day there is an 8 min test to measure contextual memory. The representative results are from mice that were presented with the aversive unconditioned stimulus (shock) compared to mice that received the tone presentations without the unconditioned stimulus. Trace fear conditioning has been successfully used to detect subtle learning and memory deficits and enhancements in mice that are not found with other fear conditioning methods. This type of fear conditioning is believed to be dependent upon connections between the medial prefrontal cortex and the hippocampus. One current controversy is whether this method is believed to be amygdala-independent. Therefore, other fear conditioning testing is needed to examine amygdala-dependent learning and memory effects, such as through the delay fear conditioning.  相似文献   

18.
Theta oscillations are considered crucial mechanisms in neuronal communication across brain areas, required for consolidation and retrieval of fear memories. One form of inhibitory learning allowing adaptive control of fear memory is extinction, a deficit of which leads to maladaptive fear expression potentially leading to anxiety disorders. Behavioral responses after extinction training are thought to reflect a balance of recall from extinction memory and initial fear memory traces. Therefore, we hypothesized that the initial fear memory circuits impact behavioral fear after extinction, and more specifically, that the dynamics of theta synchrony in these pathways signal the individual fear response. Simultaneous multi-channel local field and unit recordings were obtained from the infralimbic prefrontal cortex, the hippocampal CA1 and the lateral amygdala in mice. Data revealed that the pattern of theta coherence and directionality within and across regions correlated with individual behavioral responses. Upon conditioned freezing, units were phase-locked to synchronized theta oscillations in these pathways, characterizing states of fear memory retrieval. When the conditioned stimulus evoked no fear during extinction recall, theta interactions were directional with prefrontal cortical spike firing leading hippocampal and amygdalar theta oscillations. These results indicate that the directional dynamics of theta-entrained activity across these areas guide changes in appraisal of threatening stimuli during fear memory and extinction retrieval. Given that exposure therapy involves procedures and pathways similar to those during extinction of conditioned fear, one therapeutical extension might be useful that imposes artificial theta activity to prefrontal cortical-amygdalo-hippocampal pathways that mimics the directionality signaling successful extinction recall.  相似文献   

19.
Electrical stimulation of the rodent medial prefrontal cortex (mPFC), including the infralimbic cortex (IL), immediately prior to or during fear extinction training facilitates extinction memory. Here we examined the effects of high-frequency stimulation (HFS) of the rat IL either prior to conditioning or following retrieval of the conditioned memory, on extinction of Pavlovian fear and conditioned taste aversion (CTA). IL-HFS applied immediately after fear memory retrieval, but not three hours after retrieval or prior to conditioning, subsequently reduced freezing during fear extinction. Similarly, IL-HFS given immediately, but not three hours after, retrieval of a CTA memory reduced aversion during extinction. These data indicate that HFS of the IL may be an effective method for reducing both learned fear and learned aversion.  相似文献   

20.
α2A肾上腺素受体选择性激动剂guanfacine对空间工作记忆和选择性注意等前额叶皮层认知功能有重要的、有益的影响.然而,激活α2A受体对于依赖杏仁体和海马回路的恐惧记忆条件反射是否有影响,目前尚不清楚.本研究结果显示,全身给予guanfacine显著提高大鼠在Lashley迷宫中的空间学习能力:guanfacine组大鼠达到学会标准所需要的训练次数和所犯错误的次数显著少于生理盐水对照组大鼠.然而,guanfacine组大鼠场景和声音恐惧记忆的获得/巩固与对照组大鼠相比没有显著差异.结果提示,刺激α2A受体产生的有益效应是任务依赖的:guanfacine改善空间学习能力,但不影响恐惧记忆的获得/巩固.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号