首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study is to evaluate the dietary intakes of calcium (Ca), phosphorus (P), magnesium (Mg), iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn) and investigate their correlation with blood pressure and blood lipids. Targeting 258 healthy men and women, blood pressure was measured, and blood samples were collected to analyze serum lipids, and then the intakes of seven minerals were assessed through a food intake survey for 3 days using a 24-h recall method. The average age of the men and women was 49.55 and 49.19, respectively. The daily energy intake of the men was 1,830.57 kcal, which was significantly higher than that of women, 1,476.23 kcal (p?<?0.001). The mineral intake of the subjects was as follows: 450.95 mg/day for Ca, 915.24 mg/day for P, 279.23 mg/day for Mg, 12.60 mg/day for Fe, 8.25 mg/day for Zn, 1.23 mg/day for Cu, and 4.22 mg/day for Mn. These accounted for 63.83, 130.76, 90.74, 129.75, 97.50, 154.49, and 113.50 % of adequate intake or the recommended intake of each mineral, respectively. Subjects who did not satisfy the estimated average requirement were 74.00 % for Ca, 63.18 % for Mg, and 41.86 % for Zn. After adjusting for age, sex, BMI, and energy intake, Mg intake had a negative correlation with systolic blood pressure (SBP), and Cu intake had a significant negative correlation with SBP and diastolic blood pressure (DBP). Also, Mn intake was negatively correlated with DBP, serum total cholesterol, and triglycerides. Thus, it is concluded that the dietary intakes of Mg, Cu, and Mn may play an important role in controlling blood pressure and lipids in Korean adults.  相似文献   

2.
Women in low-income settings, common in India, are at risk of inadequate zinc intake due to poor diet quality and low consumption of flesh foods rich in zinc. The aims of this study were to assess the prevalence of zinc status of non-pregnant rural and tribal women living in central India and to identify dietary and non-dietary factors associated with the biochemical zinc status of these women. Rural and tribal non-pregnant women 18–30 years of age were selected using proportion to population sampling near Nagpur, Maharashtra, India. Sociodemographic, biochemical (serum zinc), clinical, and dietary data (1-day interactive 24-h recall) were collected. The mean age of women (n?=?109; rural?=?52; tribal?=?56) was 23.2 years and mean BMI was 17.9 kg/m2. The majority of the participants identified as being non-vegetarian (72 %). The mean?±?SD serum zinc concentration was 10.8?±?1.6 μmol/L, and 52 % of participants had a low serum zinc concentration according to the International Zinc Nutrition Consultative Group (IZiNCG). The median (first and third quartile) energy, zinc intake, and phytate/zinc molar ratio was 5.4 (4.2, 6.7)?MJ/day, 5.3 (3.8, 7.0)?mg/day, and 26 (22, 28), respectively. Zinc intakes were well below IZiNCG recommendations for dietary zinc of 9 mg/day for non-pregnant women aged 14–18 years and 7 mg/day for non-pregnant women aged ≥19 years. Using linear regression analysis to identify non-dietary and dietary factors associated with serum zinc, a significant association was only found for current lactation (p?=?0.012) and energy intake (p?相似文献   

3.
The objectives of the study were to determine dietary zinc bioavailability by using a double label stable isotope technique, and to identify the zinc content and levels of some possible factors which may affect zinc utilization in a typical representative Chinese urban diet. Twenty urban women of childbearing age were fed a diet extrinsically labeled with 67Zn and received intravenous (i.v.) injections of 70Zn. Fecal monitoring, urine monitoring and chemical balance technique were used simultaneously for comparisons. Isotopic enrichment in feces and urine after oral and i.v. administration of stable zinc isotopes was measured to determine the ways of zinc absorption. The mean (+/-SD) zinc intake from the representative Chinese diet was 10.22+/-0.80 mg/day, which is lower than the reference nutrient intake (RNI) level (11.5 mg/day), and mainly came from the subsidiary foods (63%). The mean dietary Fe/Zn weight was 1.1+/-0.1. The phytate/zinc molar ratio in the diet was about 3:1. The phytic acidxCa/zinc molar ratio in the diet was about 45:1. The apparent and true absorption rates of 67Zn were 36.2+/-9.7% and 38.2+/-10.1%, respectively, which were higher than the apparent absorption determined by balance technique (29.7+/-10.6%). The mean fractional absorption (FA) determined in urine was 35.7+/-13.3. In conclusion, the subsidiary food is the main source of dietary zinc in this typical diet. The extrinsic labeling technique by use of stable isotopes was more reliable and accurate to determine zinc absorption. Moreover, the double isotopic tracer ratio (DITR) technique applied to urine samples was a more practical and valuable way to evaluate zinc absorption than other methods. It can be speculated that iron and phytic acid might not be the main inhibitors in the representative Chinese diet.  相似文献   

4.
The co-fortification of wheat flour with iron (Fe) and zinc (Zn) is a strategy used to prevent these deficiencies in the population. Given that Zn could interact negatively with Fe, the objective was to assess the effect of Zn on Fe absorption from bread prepared with wheat flour fortified with Fe and graded levels of Zn fortificant. Twelve women aged 30–43 years, with contraception and a negative pregnancy test, participated in the study. They received on four different days, after an overnight fast, 100 g of bread made with wheat flour (70 % extraction) fortified with 30 mg Fe/kg as ferrous sulfate (A) or prepared with the same Fe-fortified flour but with graded levels of Zn, as zinc sulfate: 30 mg/kg (B), 60 mg/kg (C), or 90 mg/kg (D). Fe radioisotopes (59Fe and 55Fe) of high specific activity were used as tracers and Fe absorption iron was measured by the incorporation of radioactive Fe into erythrocytes. Results: The geometric mean and range of ±1 SD of Fe absorption were: A?=?19.8 % (10.5–37.2 %), B?=?18.5 % (10.2–33.4 %), C?=?17.7 % (7.7–38.7 %), and D?=?11.2 % (6.2–20.3 %), respectively; ANOVA for repeated measures F?=?5.14, p?<?0.01 (Scheffè’s post hoc test: A vs D and B vs D, p?<?0.05). We can conclude that Fe is well absorbed from low extraction flour fortified with 30 mg/kg of Fe, as ferrous sulfate, and up to 60 mg/kg of Zn, as Zn sulfate. A statistically significant reduction of Fe absorption was observed at a Zn fortification level of 90 mg Zn/kg.  相似文献   

5.
Iron (Fe) and zinc’s (Zn) interaction at the absorptive level can have an effect on the success of co-fortification of wheat flour with both minerals on iron deficiency prevention. The aim of the study was to determine the effect of increasing levels of zinc fortificant on the iron absorption of bread co-fortified with iron and zinc consumed with a black tea. Twelve women aged 33–42 years participated in the study. They received on four different days 200 mL of black tea and 100 g of bread made with wheat flour (70 % extraction) fortified with either 30 mg Fe/kg alone, as ferrous sulfate (A), or with the same Fe-fortified flour, but with graded levels of Zn, as zinc sulfate: 30 mg/kg (B), 60 mg/kg (C), or 90 mg/kg (D). Fe radioisotopes (59Fe and 55Fe) of high specific activity were used as tracers, and Fe absorption iron was measured by the incorporation of radioactive Fe into erythrocytes. The geometric mean and range of ±1 SD of Fe absorption were as follows: A?=?6.5 % (2.2–19.3 %), B?=?4.6 % (1.0–21.0 %), C?=?2.1 % (0.9–4.9 %), and D?=?2.2 % (0.7–6.6 %), respectively; ANOVA for repeated measures F?=?10.9, p?<?0.001 (Scheffè’s post hoc test: A vs. C, A vs. D, B vs. C, and B vs. D; p?<?0.05). We can conclude that Fe absorption of bread made from low-extraction flour fortified with 30 mg/kg of Fe, as ferrous sulfate, and co-fortified with zinc, as zinc sulfate consumed with black tea is significantly decreased at a zinc fortification level of ≥60 mg/kg flour.  相似文献   

6.
Copper absorption was measured at two levels of dietary zinc in six healthy young men who were confined to a metabolic unit for a 75 d study of zinc utilization. A diet of conventional foods was fed, providing either 16.5 or 5.5 mg zinc and 1.3 mg copper daily. Copper absorption was determined by feeding65Cu, a stable isotope of copper, once during the 16.5 mg Zn diet and near the beginning and end of the 5.5 mg Zn diet. Apparent copper absorption averaged 48.1% when the 16.5 mg Zn diet was fed. This was significantly higher than the averages of 37.2 and 38.5% when the 5.5 mg Zn diet was fed. Absorption also differed significantly among subjects. Fecal copper did not differ between diets or among subjects. All subjects were in positive copper balance at both levels of dietary zinc. These results suggest that a dietary zinc intake slightly above the Recommended Dietary Allowance of 15 mg/d does not increase fecal copper loss and does not interfere with copper absorption.  相似文献   

7.
Concentrations of copper (Cu) and zinc (Zn) were determined in 383 human hair samples and in 445 food samples purchased in 11 Chinese cities. The concentrations of Cu were 7.91, 5.39, 2.27 and 2.20 mg kg?1 and those of Zn were 47.2, 24.8, 52.8 and 30.2 mg kg?1 in vegetables, cereals, meat and fish, respectively. The overall mean concentrations of hair Cu and Zn were 8.97 and 128 mg kg?1, respectively. Hair Cu and Zn concentrations were higher in females than in males, especially in the 13–19 and 20–50 year age groups. Hair Cu concentration increased with increasing age and these changes occurred mainly in males. In contrast, 51–65 years old females had the lowest hair Zn concentrations. Residents of rural areas had similar hair Cu or Zn concentrations to people in urban areas. There were no significant correlations between hair concentration and food intake in terms of Cu and Zn among the cities. The results indicate that hair Cu and Zn concentrations and their changes with biological and environmental factors cannot be explained satisfactorily by the estimated food intakes in the cities sampled.  相似文献   

8.
The serum zinc (Zn) concentrations of 80 healthy subjects (48 male, 32 female) from southeastern Spain were determined by atomic absorption spectrometry. The samples were digested by heating in a 4:1 mixture of nitric and perchloric acids. The concentration of Zn was determined against a Contox Trace Metal Serum Control Panel A standard reference. Zn concentrations in the standard were found to be 2.332 ±0.489 mg/L, with a mean recovery of 102.7%. In the serum samples, the relative standard deviation was <6% for the range of concentrations determined: 0.420-1.540 mg/L for women (mean value 0.947 ±0.265 mg/L) and 0.490-1.480 mg/L for men (mean value 0.951 ±0.243 mg/L). In healthy subjects, no statistically significant differences were observed in the Zn levels with respect to their sex (p > 0.05) or the location where they lived (mountainous vs coastal zones). It is concluded that the dietary Zn intake and Zn status for healthy adults in this region of Spain are within normal values.  相似文献   

9.
The aims of this study were to determine the effect of breast milk zinc, copper, and iron concentrations on infants’ growth and their possible correlations with maternal dietary intake. Milk samples and information on food intake were collected from 182 lactating women. Concentrations of zinc, copper, and iron in milk were analyzed using atomic absorption spectrophotometry. The infant’s weight for age Z-score (WAZ) and height for age Z-score (HAZ) were calculated. The mean milk zinc, copper, and iron concentrations were 1.85?±?0.5, 0.53?±?0.3, and 0.85?±?0.2 mg/l, respectively. Only zinc mean level was lower than the recommended range. Association between zinc, copper, and iron concentrations of milk and WAZ or HAZ of infants were not significant. However, the WAZ of infants whose mothers' milk zinc was more than 2 mg/l was significantly (P?<?0.039) higher than for others. The mean dietary zinc (5.31?±?2.3 mg/day) and copper (1.16?±?0.7 mg/day) intake of mothers was significantly less than the required daily intake (RDA) recommendations (P?<?0.05). The mean dietary iron intake (11.8?±?8.2 mg/day) was significantly higher than RDA recommendation (P?<?0.001). No significant association was found between maternal mean dietary zinc, copper, and iron intakes with their concentrations in milk. Dietary consultation or/and zinc supplementation is suggested for lactating women and infants.  相似文献   

10.
Obesity is a chronic inflammatory state characterized by altered adipokine production and increased levels of inflammatory cytokines. The study explored the effect of zinc supplementation on inflammatory markers and adipocyte hormones in young obese women. Twenty five non-obese women and forty obese women (body mass index ≥25 kg/m2) aged 19–28 years were recruited for this study. Twenty obese women of the study group took 30 mg/day of supplemental zinc as zinc gluconate for 8 weeks and 20 obese women of control group took placebo. Usual dietary zinc intake was estimated from 3-day diet records. Serum zinc and urinary zinc concentration were measured by Atomic Absorption Spectrophotometry. Inflammatory markers such as high sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-alpha (TNF-α), and interleukin (IL)-6 and adipocyte hormones such as lepin and adiponectin were measured by enzyme immunoassay. Inflammatory markers and leptin were significantly higher, but adiponectin was significantly lower in obese women than non-obese women. Zinc supplementation increased serum zinc by 15 % and urinary zinc by 56 % (P?<?0.05). The levels of hs-CRP (P?=?0.03) and IL-6 (P?=?0.006) significantly decreased with zinc supplementation, but not in placebo group. Serum leptin and plasma adiponectin concentration did not differ with either zinc supplementation or placebo. The levels of IL-6 and leptin were inversely associated with dietary zinc intake. These results suggest that zinc may have a favorable effect on obesity-related inflammation in young adults.  相似文献   

11.

Background

A micronutrient survey carried out in 2010 among randomly selected Vietnamese women in reproductive age indicated that anemia and micronutrient deficiencies are still prevalent. The objective of this study was thus to analyze the dietary micronutrient intakes of these women, to select the food vehicles to be fortified and to calculate their contributions to meet the recommended nutrient intake (RNI) for iron, zinc, vitamin A and folic acid.

Main Findings

Consumption data showed that the median intake was 38.4% of the RNI for iron, 61.1% for vitamin A and 91.8% for zinc. However, more than 50% of the women had daily zinc consumption below the RNI. Rice and vegetable oil were consumed daily in significant amounts (median: 320.4 g/capita/day and 8.6 g/capita/day respectively) by over 90% of the women, making them suitable vehicles for fortification. Based on consumption data, fortified vegetable oil could contribute to an additional vitamin A intake of 27.1% of the RNI and fortified rice could increase the intake of iron by 41.4% of the RNI, zinc by 15.5% and folate by 34.1%. Other food vehicles, such as fish and soy sauces and flavoring powders, consumed respectively by 63% and 90% of the population could contribute to increase micronutrient intakes if they are properly fortified and promoted. Wheat flower was consumed by 39% of the women and by less than 20% women from the lowest socioeconomic strata.

Conclusion

The fortification of edible vegetable oils with vitamin A and of rice with iron, zinc and folic acid are the most promising fortification strategies to increase micronutrient intakes of women in reproductive age in Vietnam. While rice fortification will be implemented, fortification of fish and soy sauces with iron, that has been proven to be effective, has to be supported and fortification of flavouring powders with micronutrients investigated.  相似文献   

12.
Zinc is an essential trace element for growth and development in children, but zinc deficiency is a serious nutritional problem worldwide. Our study aimed to assess the zinc status of school-age children living in rural areas of China and to examine the change of zinc status based on the China Nutrition and Health Survey 2002 and 2012. We used the probability proportional to size sampling method for subject selection, and a total of 3407 school-age children were included in this study. Zinc status was assessed by three items of indicators recommended by the World Health Organization (WHO), the United Nations Children’s Fund (UNICEF), the International Atomic Energy Agency (IAEA), and the International Zinc Nutrition Consultative Group (IZiNCG). The concentration of serum zinc was 718.2 μg/L, and 44.4% of children being zinc deficiency in 2002, while 846.8 μg/L and 10.4% in 2012. Zinc intake was 7.8 mg/day with a 7.6% inadequate zinc intake in 2002, together with 6.9 mg/day and 38.2% in 2012. Height-for-age Z score was ?1.06 and 19.1% of children being stunting in 2002, as well as ?0.15 and 6.8% in 2012. In conclusion, the zinc status of school-age children living in rural areas of China has been significantly improved in addition to zinc intake over the past 10 years. However, the zinc deficiency still observed in poor rural areas of China in 2012. In addition, we suggested that the zinc bioavailability should be taken into account when assessing zinc status in population.  相似文献   

13.
Saccharomyces cerevisiae LN-17 was selected from 26 kinds of primary yeast strains that belong to different genera and species. The iron- and zinc-enriched capability of strain LN-17 was higher than the others. The highest iron and zinc contents of the strain were obtained when the strain grew up under the following conditions: The strain was incubated (5%, v/v) in 50 mL wort medium (pH 6.0) with 100 mg/L Fe ion and 120 mg/L Zn ion. The medium was loaded into a 250-mL Erlenmeyer flask and shaken in a rotary shaker (200 rpm) at 30°C for 60 h. Ferrous sulfate and zinc sulfate were chosen as the source of Fe and Zn. The Fe and Zn contents of the dry cells were determined by atomic absorption spectrum analysis. Under the optimized cultivation conditions, the Fe and Zn contents reached 7.854 mg/g dry cells and 4.976 mg/g dry cells.  相似文献   

14.
This study was performed with the aim of investigating the concentration of zinc and copper in the blood of healthy alpacas (Vicugna pacos) kept in central Europe and to compare the concentration of Zn and Cu in plasma and in whole blood. A further objective was to evaluate blood Zn and Cu in relation to different micromineral supplementation, age and sex groups of alpacas. A total of 299 alpacas (224 adults and 75 crias) from 18 farms were included in this study. The concentrations of copper and zinc in plasma/whole blood were measured by flame atomic absorption spectrometry. The results of this study show high individual variability in plasma Zn (median 3.54, range 1.56–8.01 μmol/l), whole blood Zn (median 10.01, range 6.23–75.0 μmol/l), plasma Cu (median 7.53, range 2.93–16.41 μmol/l) and whole blood Cu (median 6.33, range 3.02–13.95 μmol/l). Plasma Zn was not significantly influenced by sex, age or feeding group. Whole blood Zn was only significantly higher in females than in males. The intake of Zn in all groups was equal to or higher than the nutritional recommendation. During excessive supplementation, Zn absorption decreased and thus blood Zn did not reflect the higher intake. Only a weak correlation was found (Spearman correlation coefficient r = 0.384; p > 0.01; n = 204) between plasma and whole blood Zn concentrations. Plasma copper concentration was significantly influenced by age, sex and feeding; whole blood Cu by age and feeding. However, neither plasma Cu nor whole blood Cu reflected the intake of the element. We found a close correlation between plasma and blood copper concentrations (Spearman correlation coefficient r = 0.9043; p ≤ 0.01; n = 99). According to our results, copper in plasma or blood is not a good indicator of copper intake.  相似文献   

15.
Two groups of 16 rats each were fed the same diet with 12.9 ppm Zn. Nine days after each animal was injected with65Zn for assessing fecal zinc of endogenous origin, zinc intake and excretion were determined for a six-day period at the age of about five (group I) and nine (II) weeks. At mean growth rates of 5.1 and 5.2 g/day, food consumption per gram of gain was 2.01 g in group I vs 2.86 g in II. Overall, zinc retention amounted to 21 vs 25 μg Zn/g of gain. Apparent absorption averaged 92 vs 74% of Zn intake (132 vs 189 μg/day), while true absorption averaged 98 vs 92%. It was concluded that endogenous fecal zinc excretion was limited to the indispensable loss (F em) in group I (7 μg/day), while it exceeded this minimum loss in group II (33 μg/day). True retention, which reflected total zinc utilization (true absorption times metabolic efficiency), was derived from apparent absorption plusF em (11 μg/day for group II according to the greater metabolic body size of the rats). It averaged 98% of Zn intake in group I vs 80% in group II. The mean metabolic efficiency was 100% vs 87%. The conclusion was that these marked differences between age groups in utilizing the dietary zinc reflected the efficient homeostatic adjustments in absorption and endogenous excretion of zinc to the respective zinc supply status.  相似文献   

16.
Pectins are a type of soluble fiber present in natural and processed foods. Evidence regarding the effect of esterification degree of pectins on iron absorption in humans is scarce. In the present study, the effect of pectins with different degrees of esterification on non-heme iron absorption in women was evaluated. A controlled experimental study was conducted with block design, involving 13 apparently healthy, adult women. Each subject received 5 mg Fe (FeSO4) without pectin (control) or accompanied by 5 g citrus pectin, two with a low degree of esterification (27 and 36%), and one with a high degree of esterification (67 to 73%), each on different days. Each day, the 5 mg Fe doses were marked with radioactive 59Fe or 55Fe. Radioactivity incorporated into erythrocytes was determined in blood samples 14 days after the marked Fe doses were consumed. On days 18 and 36 of study, 30 and 20 mL blood samples were obtained, respectively, and blood sample radioactivity incorporated into erythrocytes was determined. Body iron status was determined from blood taken on day 18. Whole body blood volume was estimated for calculate iron bioavailability; it was assumed that 80% of absorbed radioactivity was incorporated into the Hb. All women participants signed an informed consent of participation at baseline. Iron bioavailability (mean geometric ±1 SD) alone (control) was 18.2% (12.3–27.1%), iron + pectin27 was 17.2% (10.2–29.2%), iron + pectin36 was 15.3% (9.5–24.6%), and iron + pectin67 was 19.5% (10.0–38.0%). No statistically significant differences between iron bioavailability (repeated measures ANOVA, p = 0.22) were observed. Pectin esterification degree does not influence the bioavailability of non-heme iron in women.  相似文献   

17.
Zinc (Zn) deficiency is a problem world-wide. Current methods for assessing Zn status are limited to measuring plasma or serum Zn within populations suspected of deficiency. Despite the high prevalence of Zn deficiency in the human population there are no methods currently available for sensitively assessing Zn status among individuals. The purpose of this research was to utilize a proteomic approach using two-dimensional gel electrophoresis (2DE) and mass spectrometry to identify protein biomarkers that were sensitive to changes in dietary Zn levels in humans. Proteomic analysis was performed in human plasma samples (n = 6) obtained from healthy adult male subjects that completed a dietary Zn depletion/repletion protocol, current dietary zinc intake has a greater effect on fractional zinc absorption than does longer term zinc consumption in healthy adult men. Chung et al. (Am J Clin Nutr 87 (5):1224–1229, 2008). After a 13 day Zn acclimatization period where subjects consumed a Zn-adequate diet, the male subjects consumed a marginal Zn-depleted diet for 42 days followed by consumption of a Zn-repleted diet for 28 days. The samples at baseline, end of depletion and end of repletion were pre-fractionated through immuno-affinity columns to remove 14 highly abundant proteins, and each fraction separated by 2DE. Following staining by colloidal Coomassie blue and densitometric analysis, three proteins were identified by mass spectrometry as affected by changes in dietary Zn. Fibrin β and chain E, fragment double D were observed in the plasma protein fraction that remained bound to the immunoaffinity column. An unnamed protein that was related to immunoglobulins was observed in the immunodepleted plasma fraction. Fibrin β increased two-fold following the Zn depletion period and decreased to baseline values following the Zn repletion period; this protein may serve as a viable biomarker for Zn status in the future.  相似文献   

18.
Evidence linking copper and zinc to hypertension are limited and conflicting. Data from the National Health and Nutrition Examination Survey (NHANES) 2007–2014 were used. Zinc and copper intake from diet and supplements was assessed with 24-h dietary recall. Hypertension was defined as systolic blood pressure (SBP) ≥?140 mmHg/diastolic blood pressure (DBP) ≥?90 mmHg/treatment with hypertensive medications. In a sensitivity analysis, according to the 2017 American College of Cardiology and American Heart Association guideline, hypertension was also defined as SBP ≥?130 mmHg/DBP ≥?80 mmHg/treatment with hypertensive medications. A total of 17,811 adults (8430 men and 9381 women) were included. After adjustment for age, gender, body mass index (BMI), race, educational level, smoking status, family income, and total daily energy intake, the OR of hypertension for highest vs. lowest quartile intake of copper, zinc, and copper/zinc ratio was 1.11 (0.90–1.37), 1.11 (0.90–1.35), and 0.95 (0.81–1.11), respectively. In stratified analysis by BMI (<?25 kg/m2, 25–30 kg/m2, >?30 kg/m2), no significant association was found between hypertension and intakes of copper, zinc, and copper/zinc ratio (highest vs. lowest quartile) in multivariate analysis. In multivariate analysis, the OR of hypertension for highest vs. lowest quartile levels of serum copper, zinc, and copper/zinc ratio was 1.11 (0.61–2.04), 1.43 (0.84–2.44), and 0.68 (0.34–1.33), respectively. Similar results were found in the sensitivity analysis. Zinc and copper might be not independently associated with hypertension in US adults.  相似文献   

19.
BackgroundThe Nutrition Societies of Germany, Austria and Switzerland as the joint editors of the ‘D-A-CH reference values for nutrient intake’ have revised the reference values for zinc in July 2019.MethodsFor infants aged 0 to under 4 months, an estimated value was set based on the zinc intake via breast feeding. For all other age groups, the reference values were calculated using the factorial method considering endogenous zinc losses via intestinal losses, urine, faeces, skin and sweat, semen in men and the additional zinc requirements to build up body weight in children and adolescents as well as in pregnant women. Due to the strong influence of phytate intake on zinc absorption, the recommendations for the intake of zinc for adults are derived depending on low (0.5 mmol/day, corresponding to 330 mg/day), moderate (1.0 mmol/day, corresponding to 660 mg/day) and high (1.5 mmol/day, corresponding to 990 mg/day) phytate intake. The reference values for lactating women take into account the zinc loss via breast milk.Results and conclusionFor adults, pregnant and lactating women, the recommended intake values for zinc range from 7 mg/day to 16 mg/day, depending on sex and dietary phytate intake.  相似文献   

20.
Currently, the biofortification of crops like wheat with micronutrients such as iron (Fe) and zinc (Zn) is extremely important due to the deficiencies of these micronutrients in the human diet and in soils. Agronomic biofortification with Fe and Zn can be done through different exogenous strategies such as soil application, foliar spraying, and seed priming. However, the excess of these micronutrients can be detrimental to the plants. Therefore, in the last decade, a high number of studies focused on the evaluation of their phytotoxic effects to define the best strategies for biofortification of bread wheat. In this study, we investigated the effects of seed priming with different dosages (1 mg L?1 to 8 mg L?1) of Fe and/or Zn in germination, mitosis and yield of bread wheat cv. ‘Jordão’ when compared with control. Overall, our results showed that: micronutrient dosages higher than 4 mg L?1 negatively affect the germination; Fe and/or Zn concentrations higher than 2 mg L?1 significantly decrease the mitotic index and increase the percentage of dividing cells with anomalies; treatments performed with 8 mg L?1 of Fe and/or 8 mg L?1 Zn caused negative effects in germination, mitosis and grain yield. Moreover, seed priming with 2 mg L?1 Fe?+?2 mg L?1 Zn has been shown to be non-cytotoxic, ensuring a high rate of germination (80%) and normal dividing cells (90%) as well as improving tillering and grain yield. This work revealed that seed priming with Fe and Zn micronutrients constitutes a useful and alternative approach for the agronomic biofortification of bread wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号