首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this research was to determine the effects of Momordica charantia (MC) fruit aqueous extract on pancreatic histopathological changes in neonatal STZ-induced type-II diabetic rats. Diabetes mellitus was induced in one day Sprague-Dawley neonatal rats using a single intrapretoneal injection of streptozotocin (STZ) (85 mg/kg body weight) and monitored for 12 weeks thereafter. The diabetic rats were separated into three groups, as follows: the diabetic control group (i.e. nSTZ), the diabetic group (i.e. nSTZ/M) - which was orally given 20 mg/kg of MC fruit extract, and the diabetic group (i.e. nSTZ/G) - that was treated with glibenclamide, 0.1 mg/kg for a period of four weeks. At the end of treatment, the animals were sacrificed and blood samples were collected from the saphenous vein to measure the blood glucose and serum insulin level. The pancreatic specimens were removed and processed for light microscopy, electron microscopy examination and immunohistochemical study. The results of this study showed that MC fruit aqueous extract reduced the blood glucose level as well as glibenclamide and increased the serum insulin level in the treated diabetic rats (P<0.05). The fruit extract of MC alleviated pancreatic damage and increased the number of β-cells in the diabetic treated rats (P<0.05). Our results suggest that oral feeding of MC fruit extract may have a significant role in the renewal of pancreatic β-cells in the nSTZ rats.  相似文献   

2.
The present study was aimed to evaluate the effect of olive (Olea europaea) leaves extract on streptozotocin (STZ)-induced diabetic male rats. The experimental rats were divided into six groups. Rats of the first group were served as normal controls. Rats of the second group were diabetic control. The third and fourth groups were diabetic rats, treated with olive leaves extract at low and high doses respectively. The fifth and sixth groups were non diabetic rats, subjected to olive leaves extract at the same doses given to the third and fourth groups respectively. The minimum of body weigh gain was noted in diabetic rats of the second group. the levels of serum glucose, insulin, total protein, albumin, triglycerides, cholesterol, low density lipoprotein cholesterol (LDL-C), very low density lipoprotein cholesterol (VLDL-C), creatine kinase (CK), lactate dehydrogenase (LDH) and malondialdehyde (MDA) were significantly increased, while the levels of high density lipoprotein cholesterol (HDL-C), superoxide dismutase, (SOD) glutathione (GSH) and catalase (CAT) were statistically decreased in diabetic rats of the second group. The levels of liver insulin receptor substrate 1 (IRS1) and insulin receptor A (IRA) were significantly declined in diabetic rats of the second group. The diabetic pancreatic sections from diabetic rats of the second group showed several histopathological changes. Administration of low and high doses of olive leaves extract improved the observed physiological, molecular and histopathological alterations. Collectively, the obtained results confirmed that the protective effects of olive leaves extract are attributed to the antioxidant activities of olive leaves extract and its active constituents.  相似文献   

3.

The purpose of the current study was to examine the neuroprotective effect of rutin against colistin-induced neurotoxicity in rats. Thirty-five male Sprague Dawley rats were randomly divided into 5 groups. The control group (orally received physiological saline), the rutin group (orally administered 100 mg/kg body weight), the colistin group (i.p. administered 15 mg/kg body weight), the Col?+?Rut 50 group (i.p. administered 15 mg/kg body weight of colistin, and orally received 50 mg/kg body weight of rutin), the Col?+?Rut 100 group (i.p. administered 15 mg/kg body weight of colistin, and orally received 100 mg/kg body weight of rutin). Administration of colistin increased levels of glial fibrillary acidic protein and brain-derived neurotrophic factor and acetylcholinesterase and butyrylcholinesterase activities while decreasing level of cyclic AMP response element binding protein and extracellular signal regulated kinases 1 and 2 (ERK1/2) expressions. Colistin increased oxidative impairments as evidenced by a decrease in level of nuclear factor erythroid 2-related factor 2 (Nrf-2), glutathione, superoxide dismutase, glutathione peroxidase and catalase activities, and increased malondialdehyde content. Colistin also increased the levels of the apoptotic and inflammatoric parameters such as cysteine aspartate specific protease-3 (caspase-3), p53, B-cell lymphoma-2 (Bcl-2), nuclear factor kappa B (NF-κB), Bcl-2 associated X protein (Bax), tumor necrosis factor-α (TNF-α) and neuronal nitric oxide synthase (nNOS). Rutin treatment restored the brain function by attenuating colistin-induced oxidative stress, apoptosis, inflammation, histopathological and immunohistochemical alteration suggesting that rutin supplementation mitigated colistin-induced neurotoxicity in male rats.

  相似文献   

4.
The ethanolic extract of W. fruticosa flowers (250 and 500 mg/kg) significantly reduced fasting blood glucose level and increased insulin level after 21 days treatment in streptozotocin diabetic rats. The extract also increased catalase, superoxide dismutase, glutathione reductase, glutathione peroxidase activities significantly and reduced lipid peroxidation. Glycolytic enzymes showed a significant increase in their levels while a significant decrease was observed in the levels of the gluconeogenic enzymes in ethanolic extract treated diabetic rats. The extract has a favourable effect on the histopathological changes of the pancreatic beta-cells in streptozotocin induced diabetic rats. The results suggest that W. fruticosa possess potential antihyperglycemic effect by regulating glucose homeostasis and antioxidant efficacy in streptozotocin-induced diabetic rats.  相似文献   

5.
Diabetes mellitus is associated to a reduction of antioxidant defenses that leads to oxidative stress and complications in diabetic individuals. The present study was undertaken to investigate the effect of selenium on blood biochemical parameters, antioxidant enzyme activities, and tissue zinc levels in alloxan-induced diabetic rats fed a zinc-deficient diet. The rats were divided into two groups; the first group was fed a zinc-sufficient diet, while the second group was fed a zinc-deficient diet. Half of each group was treated orally with 0.5 mg/kg sodium selenite. Tissue and blood samples were taken from all animals after 28 days of treatment. At the end of the experiment, the body weight gain and food intake of the zinc-deficient diabetic animals were lower than that of zinc-adequate diabetic animals. Inadequate dietary zinc intake increased glucose, lipids, triglycerides, urea, and liver lipid peroxidation levels. In contrast, serum protein, reduced glutathione, plasma zinc and tissue levels were decreased. A zinc-deficient diet led also to an increase in serum glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, and liver glutathione-S-transferase and to a decrease in serum alkaline phosphatase activity and glutathione peroxidase. Selenium treatment ameliorated all the values approximately to their normal levels. In conclusion, selenium supplementation presumably acting as an antioxidant led to an improvement of insulin activity, significantly reducing the severity of zinc deficiency in diabetes.  相似文献   

6.
Diabetes mellitus (DM) is characterized by hyperglycemia due to insulin inactivity or insufficiency with increasing risk of developing specific complications, including retinopathy, nephropathy, neuropathy, and atherosclerosis. The aim of the present study is to evaluate the efficacy of coenzyme Q10 (CoQ10), niacin, as well as their combination in ameliorating brain disorders associated with streptozotocin (STZ)-induced diabetes in rats. Glibenclamide, a reference diabetic drug, and donepezil, an acetylcholine inhibitor drug, were also evaluated. Diabetes was induced by single intraperitoneal injection of STZ (60 mg/kg body weight (b.wt)). One-month diabetic rats were treated with the selected drugs daily for another two consecutive weeks. The evaluation was done through the estimation of the levels of blood glucose, serum insulin, and oxidative stress markers: malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH); neurotransmitters: acetylcholine (Ach) and dopamine (DA); vasoconstrictor indices: intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1(VCAM-1), and angiotensin II (Ang II); and apoptosis markers: tumor necrosis factor-α (TNF-α) and caspase-3 as well as the histopathological picture of the cerebellum region of the brain. The results revealed that the combination of niacin and CoQ10 improved most of the measured parameters with variable degrees. In conclusion, niacin and CoQ10 are promising dietary supplements in the management of diabetic encephalopathy.  相似文献   

7.
The present study was aimed to investigate the effect of thymoquinone (TQ) on pancreatic insulin levels, tissue antioxidant and lipid peroxidation (LPO) status in streptozotocin (STZ) nicotinamide (NA) induced diabetic rats. Diabetes was induced in experimental rats by a single intraperitoneal (i.p) injection of STZ (45 mg/kg b.w) dissolved in 0.1 mol/L citrate buffer (pH 4.5), 15 min after the i.p administration of NA (110 mg/kg b.w). Diabetic rats exhibited increased blood glucose with significant decrease in plasma insulin levels. The activities of antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and the levels of low-molecular weight antioxidants Vitamin C, Vitamin E and reduced glutathione (GSH) were decreased while increases in the levels of lipid peroxidation markers were observed in liver and kidney tissues of diabetic control rats as compared to control rats. In addition, diabetic rats showed an obvious decrease in pancreatic insulin levels. Administration of TQ (80 mg/kg b.w) to diabetic rats for 45 days significantly reversed the damage associated with diabetes. Biochemical findings were supported by histological studies. These results indicated that TQ exerts a protective action on pancreatic beta cell function and overcomes oxidative stress through its antioxidant properties.  相似文献   

8.
A high fat diet promotes oxidative stress, which contributes to the development of pancreatic fibrosis. We compared the protective effects of a hydroalcoholic extract of Caralluma fimbriata (CFE) to metformin (Met) in the pancreas of Wistar rats fed a high fat diet. The experimental animals were divided into five groups: control (C), treated with CFE (C + CFE), treated with high fat diet (HFD), high fat diet treated with CFE (HFD + CFE), and high fat diet treated with metformin (Met) (HFD + Met). CFE was administered orally to groups C + CFE and HFD + CFE rats for 90 days. Met was given to the HFD + Met group. After 90 days, oxidative stress markers in the pancreas including reduced glutathione (GSH), lipid oxidation (LO), protein oxidation (PO), and activities of antioxidant and polyol pathway enzymes, aldose reductase (AR) and sorbitol dehydrogenase (SDH) were assayed and tissue histology was examined. Establishment of oxidative stress in high fat diet fed rats was verified by elevated LO and PO, decreased GSH, decreased activities of antioxidants and increased activities of polyol pathway enzymes. Oxidative stress was prevented in HFD + CFE and HFD + Met groups. Group C + CFE exhibited improved antioxidant status compared to group C. CFE treatment prevented high fat diet induced acinar cell degeneration, necrosis, edema and hemorrhage. CFE could be used as adjuvant therapy for preventing or managing high fat diet induced pancreatic damage.  相似文献   

9.
The present study was designed to investigate the effect of MetVO-salen in ameliorating diabetes and oxidative stress in the pancreas of diabetic rats. Streptozotocin (STZ)-induced diabetic rats were treated with MetVO-salen complex intraperitonially (0.3 and 0.6?mg/kg) thrice a week and continued for 8?weeks. Total cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides in serum, and blood glucose were estimated. Furthermore, oxidative stress in rats was also investigated in terms of superoxide dismutase (SOD), catalase, lipid peroxidation, and glutathione (GSH). In addition, the anti-diabetic activity of MetVO-salen was also investigated by assessing histopathological, immunohistochemical in terms of endothelial nitric oxide synthase expression, and apoptotic events in pancreas. Treatment with MetVO-salen complex reduced the blood glucose level and significantly altered the serum biochemical parameters of diabetic rats. Treatment with above complex decreased the lipid peroxidation and the antioxidant enzymes such as SOD, CAT, and GSH to near-control levels. Histopathological, immunohistochemical, and apoptotic studies also revealed that MetVO-salen-induced amelioration of the diabetic state appears to be significant to the preservation of a functional portion of the pancreatic β cells which initially prevent STZ toxicity. This study provides new direction for the management of diabetes but needs further clinical evaluation.  相似文献   

10.
The aim of this study was to evaluate the possible protective effects of the volatile oil of Nigella sativa (NS) seeds on insulin immunoreactivity and ultrastructural changes of pancreatic β-cells in STZ-induced diabetic rats. STZ was injected intraperitoneally at a single dose of 50 mg/kg to induce diabetes. The rats in NS treated groups were given NS (0.2 ml/kg) once a day orally for 4 weeks starting 3 days prior to STZ injection. To date, no ultrastructural changes of pancreatic β-cells in STZ induced diabetic rats by NS treatment have been reported. Islet cell degeneration and weak insulin immunohistochemical staining was observed in rats with STZ-induced diabetes. Increased intensity of staining for insulin, and preservation of β-cell numbers were apparent in the NS-treated diabetic rats. The protective effect of NS on STZ-diabetic rats was evident by a moderate increase in the lowered secretory vesicles with granules and also slight destruction with loss of cristae within the mitochondria of β-cell when compared to control rats. These findings suggest that NS treatment exerts a therapeutic protective effect in diabetes by decreasing morphological changes and preserving pancreatic β-cell integrity. Consequently, NS may be clinically useful for protecting β-cells against oxidative stress.  相似文献   

11.
The use of metals in medicine has grown in popularity in clinical and commercial settings. In this study, the immune-protecting effects and the hypoglycemic and antioxidant activity of vanadyl sulfate (VOSO4) and/or selenium tetrachloride (Se) on oxidative injury, DNA damage, insulin resistance, and hyperglycemia were assessed. Fifty male albino rats were divided into five groups, and all treatments were administrated at 9:00 a.m. daily for 60 successive days: control, STZ (Streptozotocin; 50 mg/kg of STZ was given to 6 h fasted animals in a single dose, followed by confirmation of diabetic state occurrence after 72 h by blood glucose estimation at >280 mg/dl), STZ (Diabetic) plus administration of VOSO4 (15 mg/kg) for 60 days, STZ (Diabetic) plus administration of selenium tetrachloride (0.87 mg/Kg), and STZ plus VOSO4 and, after 1/2 h, administration of selenium tetrachloride at the above doses. The test subjects’ blood glucose, insulin hormone, HbA1C, C-peptide, antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, myeloperoxidase, and xanthine oxidase), markers of lipid peroxidation (MDA), and histological sections of pancreatic tissues were evaluated, and a comet assay was performed. Histological sections in pancreas tissues were treated as indicators of both VOSO4 and selenium tetrachloride efficacy, either alone or combined, for the alleviation of STZ toxicity. The genotoxicity of diabetes mellitus was assessed, and the possible therapeutic roles of VOSO4 or selenium tetrachloride, or both, on antioxidant enzymes were studied. The findings show that the administration of VOSO4 with selenium tetrachloride reduced oxidative stress to normal levels, lowered blood glucose levels, and elevated insulin hormone. Additionally, VOSO4 with selenium tetrachloride had a synergistic effect and significantly decreased pancreatic genotoxicity. The data clearly show that both VOSO4 and selenium tetrachloride inhibit pancreatic and DNA injury and improve the oxidative state in male rats, suggesting that the use of VOSO4 with selenium tetrachloride is a promising synergistic potential ameliorative agent in the diabetic animal model.  相似文献   

12.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

13.
The activity of aortic glutathione peroxidase, a selenium-dependent enzyme, significantly decreased in rats 4 and 8 months after the injection of streptozotocin (STZ). Catalase activity was shown to occur at low levels in rat aorta and was not influenced by the diabetic state. Superoxide dismutase activity was less than detectable. The activity of selenium-dependent glutathione peroxidase in kidney, but not in lung and liver, increased in diabetic rats. Catalase and superoxide dismutase activities in the kidney were not altered. The plasma lipid peroxide value increased in diabetic rats. The selenium content in plasma of diabetic rats increased markedly while the increase in plasma glutathione peroxidase activities was insignificant. The observed abnormalities in plasma of STZ rats were improved by insulin treatment. The defects in glutathione peroxidase in the diabetic rat aorta were restored by insulin treatment. These results may suggest that the capacity of the antioxidative defense system in the aorta decreased in the diabetic state, and this may help clarify the mechanism of the pathogenesis of endothelial dysfunction associated with diabetes.  相似文献   

14.
In the present study, the putative antihyperglycemic and antioxidant effects of a flavanone, naringenin, were evaluated in comparison with those of glyclazide, a standard drug for therapy of diabetes mellitus. Diabetes was induced experimentally in 12-h-fasted rats by intraperitoneal injections of first streptozotocin (50 mg/kg b.w.) and then of nicotinamide (110 mg/kg b.w.) after a 15-min interval. Untreated diabetic rats revealed the following in comparison with normal rats: significantly higher mean levels of blood glucose and glycosylated hemoglobin, significantly lower mean levels of serum insulin, significantly lower mean activities of pancreatic antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase), significantly lower mean levels of plasma non-enzymatic antioxidants (reduced glutathione, vitamin C , vitamin E), significantly elevated mean levels of pancreatic malondialdehyde (MDA) and significantly elevated mean activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). Following oral administration of naringenin (50 mg/kg b.w./day) to diabetic rats for 21 days, the following observations were made in comparison with untreated diabetic rats: significantly lower mean levels of fasting blood glucose and glycosylated hemoglobin, significantly elevated serum insulin levels, significantly higher mean activities of pancreatic enzymatic antioxidants, significantly higher mean levels of plasma non-enzymatic antioxidants, lower mean pancreatic tissue levels of MDA and lower mean activities of ALT, AST, ALP and LDH in serum. The values obtained in the naringenin-treated animals approximated those observed in glyclazide-treated animals. Histopathological studies appeared to suggest a protective effect of naringenin on the pancreatic tissue in diabetic rats. These results suggest that naringenin exhibits antihyperglycemic and antioxidant effects in experimental diabetic rats.  相似文献   

15.
The mechanisms by which exendin-4 and selenium exert their antidiabetic actions are still unclear. Here, we investigated the effects of exendin-4 or selenium administration on the expression of glucagon-like peptide-1 receptor (GLP-1R), insulin receptor substrate-1 (IRS-1), and preproinsulin in the pancreas of diabetic rats. Diabetes was induced by streptozotocin administration. Diabetic rats were injected intraperitoneally with 0.03 μg exendin-4/kg body weight/daily or treated with 5 ppm selenium in drinking water for a period of 4 weeks. GLP-1R and IRS-1 levels were decreased while the level of preproinsulin messenger RNA (mRNA) was increased in the pancreas of diabetic untreated rats, as compared to that in control rats. Treatment of diabetic rats with exendin-4 increased protein and mRNA levels of GLP-1R, and IRS-1, and the mRNA level of preproinsulin in the pancreas, as compared to their levels in diabetic untreated rats. Selenium treatment of diabetic rats increased the pancreatic mRNA levels of GLP-1R, IRS-1, and preproinsulin. Exendin-4 or selenium treatment of diabetic rats also increased the numbers of pancreatic islets and GLP-1R molecules in the pancreas. Therefore, exendin-4 and selenium may exert their antidiabetic effects by increasing GLP-1R, IRS-1, and preproinsulin expression in the pancreas and by increasing the number of pancreatic islets.  相似文献   

16.
17.
Zinc exerts a wide range of important biological roles. The present study was carried out to investigate the effects of zinc threoninate chelate in blood glucose levels, lipid peroxidation, activities of antioxidant defense systems and nitrite concentration, and histology of the pancreas in diabetic rats. Wistar rats were intravenously injected with a single dose of streptozotocin to induce diabetes. Then, diabetic rats were administrated orally with zinc threoninate chelate (3, 6, and 9 mg/kg body weight) once daily for 7 weeks. Fasting blood glucose was monitored weekly. At the end of the experimental period, the diabetic rats were killed, and levels of serum insulin, malondialdehyde, and nitric oxide, activities of glutathione peroxidase, total superoxide dismutase, copper/zinc-superoxide dismutase, and nitric oxide synthase were determined; pancreas was examined histopathologically as well. Zinc threoninate chelate significantly reduced the blood glucose levels and significantly increased the serum insulin levels in diabetic rats. In addition, zinc threoninate chelate caused a significant increase in activities of antioxidant enzymes and significant decrease in nitrite concentration and malondialdehyde formation in the pancreas and serum of diabetic rats. These biochemical observations were supplemented by histopathological examination of the pancreas. These results suggested that the antidiabetic effect of zinc threoninate chelate may be related to its antioxidative stress ability in diabetic rats.  相似文献   

18.
Sohn EJ  Kim CS  Kim YS  Jung DH  Jang DS  Lee YM  Kim JS 《Life sciences》2007,80(5):468-475
We investigated the effect of magnolol (5,5'-diallyl-2,2'-dihydroxybiphenyl), a marker compound isolated from the cortex of Magnolia officinalis, in non-obese type 2 diabetic Goto-Kakizaki (GK) rats. The rats were treated orally with magnolol (100 mg/kg body weight) once a day for 13 weeks. In magnolol-treated GK rats, fasting blood glucose and plasma insulin were significantly decreased, and the pancreatic islets also showed strong insulin antigen positivity. Urinary protein and creatinine clearance (Ccr) were significantly decreased. Pathological examination revealed the prevention of the glomeruli enlargement in magnolol-treated GK rats. The overproduction of renal sorbitol, advanced glycation endproducts (AGEs), type IV collagen, and TGF-beta1 mRNA were significantly reduced in magnolol-treated GK rats. Thus based on our findings, the use of magnolol could result in good blood glucose control and prevent or retard development of diabetic complications such as diabetic nephropathy.  相似文献   

19.
A selenium (Se)-containing polysaccharide, lotus leaf selenium (Se)-polysaccharide (LLP), was isolated from a lotus leaf. The effects of LLP on antioxidant enzyme activities and insulin resistance in pregnant rats with gestational diabetes mellitus (GDM) were investigated. LLP administered orally at two doses (50 and 100 mg/kg) could significantly reverse the weight loss of pregnant rats before the delivery, fetal rats, and placentas in GDM rats (P < 0.05). Furthermore, LLP treatment induced a decrease of fasting blood glucose (FBG) and fasting blood insulin (FINS) levels in GDM rats, but an increase of hepatic glycogen content, when compared with those in GDM rats (P < 0.05). Also, oral administrations of LLP markedly improved the lipid profile of GDM rats, as evidenced by a reduction of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL) cholesterol levels except for the high-density lipoprotein (HDL) cholesterol level. Additionally, antioxidant enzyme levels, such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glutathione (GSH), in liver tissues of the GDM group were lower than those of the other groups, and following treatment of LLP, these indexes in liver tissues were equivalent to those of the control group (P > 0.05). All the data indicated that LLP may be a promising drug candidate or a healthcare food for GDM therapy or protection.  相似文献   

20.
5′ AMP-activated protein kinase (AMPK), insulin receptors and transporters are distorted in diabetes mellitus. In this study, the effect of Panax ginseng was assessed on glucose manipulating enzymes activities and gene expression of AMPK, IRA and GLUT2 in streptozotocin-induced diabetic male rats. Forty male albino rats were randomly divided to four groups 10 rats of each, group I, normal control group (received saline orally); group II, normal rats received 200 mg/kg of Panax ginseng orally; group III, Streptozotocin (STZ) –induced diabetic rats and group IV, STZ-induced diabetic rats received 200 mg/kg of Panax ginseng orally. The duration of experiment was 30 days. Results showed the ability of Panax ginseng to induce a significant decrease in the blood glucose and increase in the serum insulin levels, hepatic glucokinase (GK), and glycogen synthase (GS) activities with a modulation of lipid profile besides high expression levels of AMPK, insulin receptor A (IRA), glucose transporting protein-2 (GLUT-2) in liver of diabetic rats. In conclusion, the obtained results point to the ability of Panax ginseng to improve the glucose metabolism in diabetic models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号