首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroelectric reservoirs can stratify, producing favorable conditions for mercury methylation in the hypolimnion. The methylmercury (MeHg) can be exported downstream, increasing its bioavailability below the dam. Our objective was to assess the mercury levels in plankton, suspended particulate matter (SPM) and fish collected upstream (UP) and downstream (DW) from the Reservatório de Samuel dam, an Amazonian reservoir that stratifies during half of the year. Mercury concentrations in both SPM and plankton were similar between the two sites, which could indicate there are no conditions favoring methylation at the moment of sampling (absence of stratification). Almost all mercury found in the muscle of fishes was in organic form, and differences of mercury levels between sites were dependent on the fishes trophic level. Herbivores showed similar mean organic mercury levels (UP = 117 μg g?1; DW = 120 μg g?1; n = 12), whereas omnivores (UP = 142 μg g?1; DW = 534 μg g?1; n = 27) and carnivores (UP = 545 μg g?1; DW = 1,366 μg g?1; n = 69) showed significantly higher values below the dam. The absence of a reservoir effect in herbivores is expected, since they feed on grassy vegetation, near the riverbanks, which is not much influenced by mercury in aquatic systems. On the other hand, the higher mercury levels below the dam observed for omnivores and carnivores suggest a possible influence of the reservoir since they feed on items that could be contaminated by MeHg exported from upstream. The results highlight the necessity of assessing areas downstream of reservoirs.  相似文献   

2.
Batch experiments were performed for the aerobic co-metabolism of 1,1-dichloroethylene (1,1-DCE) by Achromobacter sp., identified by gene sequencing of 16S rRNA and grown on benzene. Kinetic models were employed to simulate the co-metabolic degradation of 1,1-DCE, and relevant parameters were obtained by non-linear least squares regression. Benzene at 90 mg L?1 non-competitively inhibited degradation of 1,1-DCE (from 125 to 1,200 μg L?1). The maximum specific utilization (kc) rate and the half-saturation constant (Kc) for 1,1-DCE were 54 ± 0.85 μg h?1 and 220 ± 6.8 μg L?1, respectively; the kb and Kb for benzene were 13 ± 0.18 mg h?1 and 28 ± 0.42 mg L?1, respectively. This study provides a theoretical basis to predict the natural attenuation when benzene and 1,1-DCE occur as co-contaminants.  相似文献   

3.
Five antifouling biocides, chlorothalonile, dichlofluanide, medetomidine, tolylfluanide, and zinc pyrithione, were evaluated regarding their effect on the composition of the periphyton community and the subsequent toxicant-induced succession (TIS). The periphyton communities were exposed in a semi-static setting for 96 h using a SWIFT microcosm. As a measure of community composition, pigment profiles from the exposed communities were used as effect indicators and compared with unexposed parts of the same community using the Bray–Curtis dissimilarity index. Chlorothalonile caused changes in the community starting at 85 μg l?1 while dichlofluanide had no effect even at the highest concentrations used, 810 μg l?1. The related substance tolylfluanide only affected the community composition at 2700 μg l?1. Medetomidine had a different response curve with a small effect on the community composition at 0.8 μg l?1 which then disappeared only to reappear at 240 μg l?1. Zinc pyrithione had the largest effect on the periphyton community with changes starting at 10 μg l?1 and no detectable pigments at 100 μg l?1. The changes in the community composition for the five substances were also compared using multidimensional scaling. When all substances were analyzed and plotted together, chlorothalonile, dichlofluanide, medetomidine, and tolylfluanide showed surprisingly similar effects compared to zinc pyrithione that gave very different TIS. However, when only chlorothalonile, dichlofluanide, and tolylfluanide were plotted together, clear differences in TIS between the three toxicants were revealed. Dichlofluanide only induced small effects, while concentration-dependent TIS trajectories for chlorothalonile and tolylfluanide took off in opposite directions indicating very different responses of the periphyton communities. This study demonstrates that substances with a similar chemical structure and mechanisms of action can have different effects on the community composition. With the exception of zinc pyrithione, none of the recorded effect levels were at concentrations reported from marine environments so far.  相似文献   

4.
In present study, lead (Pb) level in biological samples of children with physiological disorders (liver, bone, and gastrointestinal; age ranged 1–10 years) have been assessed. For comparison purpose, age-matched healthy children were also selected. Cloud point extraction (CPE) was employed for preconcentration of Pb in acid-digested biological samples prior to its determination by flame atomic absorption spectrometry (FAAS). Dithizone (diphenylthiocarbazone) and nonionic surfactant Triton X-114 (TX-114) were used as complexing reagent and extractant, respectively. The effects of several experimental variables on proposed CPE were evaluated. Under the optimum experimental conditions, the observed detection limit (LOD) and the enhancement factor (EF) were 0.08 μg L?1 and 53, respectively. Relative standard deviation (RSD) of 10 μg L?1 Pb was 3.4 %. It was observed that children with liver-, bone-, and gastrointestinal-related disorders had three- to fourfold higher Pb level in blood and scalp hair samples.  相似文献   

5.
Photosynthetic bacteria are known to utilize volatile fatty acids as a carbon source for growth and product formation. In this study, a new isolate, Rubrivivax benzoatilyticus PS-5, possessing self-flocculation properties, was cultivated in modified glutamate-malate (GM) medium containing glutamate and malate as carbon sources. The effect of acetic acid, propionic acid and butyric acid (at 1–4 g L?1) as co-substrates and 7.5 mM glycine, 10 mM succinic acid as precursors for 5-aminolevulinic acid (ALA) production from R. benzoatilyticus PS-5 was investigated. Among the volatile fatty acids tested, acetic acid was preferred to butyric acid and propionic acid, with the optimum concentrations of 3 g L?1, 1 g L?1 and 3 g L?1, respectively. The highest ALA production was 169.71 μM, 162.16 μM and 46.18 μM, respectively, while the highest productivity was 2.57 μM h?1, 2.25 μM h?1 and 0.96 μM h?1, respectively. The precursor was consumed completely (100 %) while the assimilation of the acetic acid and butyric acid was 62.50 % and 48.65 %, respectively. Supplementation of propionic acid (at 1–4 g l?1) had a negative effect on growth and ALA production. To increase production efficiency, the pH-control strategy (at pH 6.0–8.0) during fermentation was tested. The optimum pH was 7.0, giving the maximum ALA production of 286.18 μM and a productivity of 3.97 μM h?1. These values were 1.68-fold and 1.54-fold higher, respectively, than those under uncontrolled pH conditions.  相似文献   

6.
Anthropogenic pollutants and climate change are major threats to coral reefs today. Yet interactions between chemical and thermal perturbations have not been fully explored in reef studies. Here, we present the single and combined effects of copper (Cu) with thermal stress on five early life-history stages/processes (fertilization, larval mortality, swimming ability, metamorphosis and growth of juvenile recruits) of the massive coral Platygyra acuta in Hong Kong. In the first four experiments, coral gametes and larvae were exposed to different Cu doses (0–200 μg L?1, apart from the fertilization assay in which 0–1000 μg L?1 was used) and temperature treatments (ambient and ambient +2 or +3 °C as a thermal stress treatment) following a factorial experimental design. Exposure time was 5 h for the fertilization assay and 48 h for the other experiments. The last experiment on growth of coral recruits was conducted over 56 d with 0–80 μg L?1 Cu used. Cu significantly reduced percent fertilization success, percentage of active swimming larvae and larval survivorship (EC50s, the half maximal effective concentrations, for percent fertilization success and percentage of active swimming larvae were 92–145 and 45–47 μg L?1 respectively. While LC50, the lethal concentration that kills 50% of the population, was 101–110 μg L?1), while growth of coral recruits was not affected at 80 μg L?1 Cu for 56 d. No settling cues were used in the settlement experiment. In their absence, percent metamorphosis increased with Cu doses, in sharp contrast to earlier findings. Settlement and metamorphosis may thus be strategies for coral larvae to escape from Cu toxicity. Thermal treatment did not significantly affect any experimental end points. This is likely because the thermal regimes used in the experiments were within the range experienced by local corals. The high variability in Cu toxicities indicates differential susceptibilities of the various life-history stages/processes of P. acuta. The level of Cu tolerance was also markedly higher than that reported in the literature for other coral species. This provides evidence to suggest possible adaptation of this species to survive in a highly polluted marine environment like that in Hong Kong.  相似文献   

7.
Tungsten coil atomic emission spectrometry (WCAES) is used to determine trace levels of Mn (403.1 nm) and Cr (425.5 nm) in cow placenta. All samples were collected in Ilha Solteira, SP, Brazil. The instrumental setup is based on a tungsten filament extracted from 150 W, 15 V microscope light bulbs, a solid state power supply, fused silica lens, crossed Czerny-Turner spectrograph, and a thermoelectrically cooled charge-coupled device detector. The limits of detection (LOD) and quantification (LOQ) for Cr are 2 and 8 μg L?1, and 20 and 60 μg L?1 for Mn, respectively. Recoveries for 0.30 mg L?1 spikes of each analyte were in the range 93.0–103.0%, and relative standard deviation (RSD) was between 6.50 and 7.20% for both elements. Placenta samples were microwave-assisted digested with diluted HNO3 and H2O2 and analyzed by WCAES. The results for Cr and Mn were compared with values obtained by tandem inductively coupled plasma mass spectrometry (ICP-MS/MS). No statistically significant difference was observed between the different methods by applying a paired t test at a 95% confidence level. The average concentrations of Cr and Mn in the placentas evaluated were 0.95 ± 0.22 and 2.64 ± 0.39 μg g?1, respectively. By using a short integration time, LODs for Cr and Mn were lower than values reported by recent works using a similar WCAES system.  相似文献   

8.
In the present study, process engineering strategy was applied to achieve lipid-rich biomass with high density of Chlorella sp. FC2 IITG under photoautotrophic condition. The strategy involved medium optimization, intermittent feeding of limiting nutrients, dynamic change in light intensity, and decoupling growth and lipid induction phases. Medium optimization was performed using combinations of artificial neural network or response surface methodology with genetic algorithm (ANN-GA and RSM-GA). Further, a fed-batch operation was employed to achieve high cell density with intermittent feeding of nitrate and phosphate along with stepwise increase in light intensity. Finally, mutually exclusive biomass and lipid production phases were decoupled into two-stage cultivation process: biomass generation in first stage under nutrient sufficient condition followed by lipid enrichment through nitrogen starvation. The key findings were as follows: (i) ANN-GA resulted in an increase in biomass titer of 157 % (0.95 g L?1) in shake flask and 42.8 % (1.0 g L?1) in bioreactor against unoptimized medium at light intensity of 20 μE m?2 s?1; (ii) further optimization of light intensity in bioreactor gave significantly improved biomass titer of 5.6 g L?1 at light intensity of 250 μE m?2 s?1; (iii) high cell density of 13.5 g L?1 with biomass productivity of 675 mg L?1 day?1 was achieved with dynamic increase in light intensity and intermittent feeding of limiting nutrients; (iv) finally, two-phase cultivation resulted in biomass titer of 17.7 g L?1 and total lipid productivity of 313 mg L?1 day?1 which was highest among Chlorella sp. under photoautotrophic condition.  相似文献   

9.
Dioscorea spp. is an important food crop in many countries and the source of the phytochemical diosgenin. Efficient microtuber production could provide source materials for farm-planting stock, for food markets, and for the production of high-diosgenin-producing cultivars. The first step in this study was optimizing the plant growth regulators for plantlet production, followed by a study of the effects of sucrose concentration on microtuber induction and diosgenin production. Significantly, more shoots (3.5) were produced at 4.65 μM (1 mg L?1) kinetin (KIN), longer shoots (4.1 cm) were obtained at 2.46 μM (0.5 mg L?1) indole-3-butyric acid (IBA), and root number (3.9) was significantly higher at 5.38 μM (1 mg L?1) naphthalene acetic acid (NAA) than in other treatments. Increased sucrose concentrations in the optimized growth medium with 4.65 μM KIN and 5.38 μM NAA had significant effects on microtuber production (p < 0.01) and diosgenin content (p < 0.05). The most microtubers (6.2) were obtained with 100 g L?1 sucrose, while those on 80 g L?1 sucrose were the heaviest (0.7 g) and longest (7.4 mm). Microtubers formed in medium with 80 g L?1 sucrose had significantly higher diosgenin content (3.64% [w/w]) than those in other sucrose treatments (< 2%) and was similar to that of field-grown parent tubers (3.79%). This result indicates an important role for sucrose in both microtuber growth and diosgenin production. Medium containing 4.65 μM KIN and 5.38 μM NAA is recommended for plantlet production, and medium containing 80 g L?1 sucrose is recommended for microtuber and diosgenin production.  相似文献   

10.
Citric acid was produced by five species of the yeast Candida after growth on a medium containing soy biodiesel-based crude glycerol. After growth on a medium containing 10 g L?1 or 60 g L?1 crude glycerol for 168 hr at 30°C, Candida parapsilosis ATCC 7330 and C. guilliermondii ATCC 9058 produced the highest citric acid levels. On 10 g L?1 or 60 g L?1 crude glycerol for 168 hr at 30°C, the citric acid level produced by C. parapsilosis ATCC 7330 was 1.8 g L?1 or 11.3 g L?1, respectively, while C. guilliermondii ATCC 9058 produced citric acid concentrations of 3.0 g L?1 or 10.4 g L?1, respectively. Biomass production by C. guilliermondii ATCC 9058 on 10 g L?1 or 60 g L?1 crude glycerol for 168 hr at 30°C was highest at 1.2 g L?1 or 6.9 g L?1, respectively. The citric acid yields observed for C. guilliermondii ATCC 9058 after growth on 10 g L?1 or 60 g L?1 crude glycerol (0.35 g g?1 or 0.21 g g?1, respectively) were generally higher than for the other Candida species tested. When similar crude glycerol concentrations were present in the culture medium, citric acid yields observed for some of the Candida species utilized in this study were about the same or higher compared to citric acid yields by Yarrowia lipolytica strains. Based on the findings, it appeared that C. guilliermondii ATCC 9058 was the most effective species utilized, with its citric acid production being similar to what has been observed when citric acid-producing strains of Y. lipolytica were grown on crude glycerol under batch conditions that could be of significance to biobased citric acid production.  相似文献   

11.
In these studies, butanol (acetone butanol ethanol or ABE) was produced from concentrated lactose/whey permeate containing 211 g L?1 lactose. Fermentation of such a highly concentrated lactose solution was possible due to simultaneous product removal using a pervaporation membrane. In this system, a productivity of 0.43 g L?1 h?1 was obtained which is 307 % of that achieved in a non-product removal batch reactor (0.14 g L?1 h?1) where approximately 60 g L?1 whey permeate lactose was fermented. The productivity obtained in this system is much higher than that achieved in other product removal systems (perstraction 0.21 g L?1 h?1 and gas stripping 0.32 g L?1 h?1). This membrane was also used to concentrate butanol from approximately 2.50 g L?1 in the reactor to 755 g L?1. Using this membrane, ABE selectivities and fluxes of 24.4–44.3 and 0.57–4.05 g m?2 h?1 were obtained, respectively. Pervaporation restricts removal of water from the reaction mixture thus requiring significantly less energy for product recovery when compared to gas stripping.  相似文献   

12.
Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity. Use of xylose alone resulted in the production of 20.68 ± 0.44 g L?1 ethanol with a productivity of 0.17 ± 0.00 g L?1 h?1, while xylose plus 3 g L?1 CaCO3 resulted in the production of 24.68 ± 0.75 g L?1 ethanol with a productivity of 0.21 ± 0.01 g L?1 h?1. Use of xylose plus glucose in combination with 3 g L?1 CaCO3 resulted in the production of 47.37 ± 0.55 g L?1 ethanol (aerobic culture), thus resulting in an ethanol productivity of 0.39 ± 0.00 g L?1 h?1. These values are 229 % of that achieved in xylose medium. Supplementation of xylose and glucose medium with 0.40 g L?1 CaCl2 resulted in the production of 44.84 ± 0.28 g L?1 ethanol with a productivity of 0.37 ± 0.02 g L?1 h?1. Use of glucose plus 3 g L?1 CaCO3 resulted in the production of 57.39 ± 1.41 g L?1 ethanol under micro-aerophilic conditions. These results indicate that supplementation of cellulosic sugars in the fermentation medium with CaCO3 and CaCl2 would improve economics of ethanol production from agricultural residues.  相似文献   

13.
Several factors affecting erythritol production from glycerol by Yarrowia lipolytica Wratislavia K1 strain were examined in batch fermentations. Ammonium sulfate, monopotassium phosphate, and sodium chloride were identified as critical medium components that determine the ratio of polyols produced. The central composite rotatable experimental design was used to optimize medium composition for erythritol production. The concentrations of ammonium sulfate, monopotassium phosphate, and sodium chloride in the optimized medium were 2.25, 0.22, and 26.4 g L?1, respectively. The C:N ratio was found as 81:1. In the optimized medium with 100 g L?1 of glycerol the Wratislavia K1 strain produced 46.9 g L?1 of erythritol, which corresponded to a 0.47 g g?1 yield and a productivity of 0.85 g L?1 hr?1. In the fed-batch mode and medium with the total concentration of glycerol at 300 g L?1 and C:N ratio at 81:1, 132 g L?1 of erythritol was produced with 0.44 g g?1 yield and a productivity of 1.01 g L?1 hr?1.  相似文献   

14.
The transfer of carbon (C) from Amazon forests to aquatic ecosystems as CO2 supersaturated in groundwater that outgases to the atmosphere after it reaches small streams has been postulated to be an important component of terrestrial ecosystem C budgets. We measured C losses as soil respiration and methane (CH4) flux, direct CO2 and CH4 fluxes from the stream surface and fluvial export of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate C over an annual hydrologic cycle from a 1,319-ha forested Amazon perennial first-order headwater watershed at Tanguro Ranch in the southern Amazon state of Mato Grosso. Stream pCO2 concentrations ranged from 6,491 to 14,976 ??atm and directly-measured stream CO2 outgassing flux was 5,994 ± 677 g C m?2 y?1 of stream surface. Stream pCH4 concentrations ranged from 291 to 438 ??atm and measured stream CH4 outgassing flux was 987 ± 221 g C m?2 y?1. Despite high flux rates from the stream surface, the small area of stream itself (970 m2, or 0.007% of watershed area) led to small directly-measured annual fluxes of CO2 (0.44 ± 0.05 g C m2 y?1) and CH4 (0.07 ± 0.02 g C m2 y?1) per unit watershed land area. Measured fluvial export of DIC (0.78 ± 0.04 g C m?2 y?1), DOC (0.16 ± 0.03 g C m?2 y?1) and coarse plus fine particulate C (0.001 ± 0.001 g C m?2 y?1) per unit watershed land area were also small. However, stream discharge accounted for only 12% of the modeled annual watershed water output because deep groundwater flows dominated total runoff from the watershed. When C in this bypassing groundwater was included, total watershed export was 10.83 g C m?2 y?1 as CO2 outgassing, 11.29 g C m?2 y?1 as fluvial DIC and 0.64 g C m?2 y?1 as fluvial DOC. Outgassing fluxes were somewhat lower than the 40?C50 g C m?2 y?1 reported from other Amazon watersheds and may result in part from lower annual rainfall at Tanguro. Total stream-associated gaseous C losses were two orders of magnitude less than soil respiration (696 ± 147 g C m?2 y?1), but total losses of C transported by water comprised up to about 20% of the ± 150 g C m?2 (±1.5 Mg C ha?1) that is exchanged annually across Amazon tropical forest canopies.  相似文献   

15.
Vitamin D deficiency is associated with wide range of pathologies. Some evidences have shown that low vitamin D circulating levels in children and adolescent are related to fat mass and obesity. The objectives of the present study were to characterize vitamin D status in children and adolescents and to determine if serum 25-hydroxyvitamin D (25(OH)D) concentration is related to adiposity assessed by body mass index (BMI). Serum 25(OH)D levels were measured by LIAISON method in 471 children and adolescents (2 to 18 years age) and analyzed according to gender, pubertal period, age, and BMI. An overall prevalence of 25(OH)D insufficiency and deficiency was present in the 67.1%. Lower 25(OH)D levels were found in females (25.56 ± 14.03 vs 29.71 ± 17.10 ng ml?1; P = 0.004) and pubertal children (25.52 ± 13.97 vs 29.21 ± 16.83 ng ml?1; P = 0.011). In addition, an inverse relation of BMI and age on 25(OH)D concentrations was observed in children. In conclusion, low vitamin D status was highly prevalent among children and adolescents. Of note, a non-lineal regression model showed that 39.6% of vitamin D levels variability was explained by BMI. These results indicate that adiposity assessed by BMI impacts vitamin D status.  相似文献   

16.
Apple (Malus domestica) rootstock G.41 is an excellent member of the Geneva series because it has traits for resistance to abiotic and biotic stresses. A simple and efficient protocol for obtaining shoots from leaf explants was established by optimizing the combinations of plant growth regulators, mode of wounding, and explant orientation on the culture medium. The best shoot multiplication index (2.58) was obtained from successful subculture medium that was the standard Murashige and Skoog (MS) medium supplemented with 7.5 g L?1 agar, 3.55 μM N 6-benzyladenine, 0.16 μM indole-3-butyric acid, and 30 g L?1 sucrose. Regeneration rates were highest (99%) when MS medium was supplemented with 2.7 μM thidiazuron and 0.9 μM 1-naphthaleneacetic acid, and cut-wounding explants before placing the abaxial surface in contact with the medium. The best rooting percentage (80%) was obtained on MS medium supplemented with 4.92 μM indole-3-butyric acid. Plantlets were rooted in vitro and survived acclimatization in the laboratory and greenhouse.  相似文献   

17.
The fermentation of both glucose and xylose is important to maximize ethanol yield from renewable biomass feedstocks. In this article, we analyze growth, sugar consumption, and ethanol formation by the yeast Kluyveromyces marxianus UFV-3 using various glucose and xylose concentrations and also under conditions of reduced respiratory activity. In almost all the conditions analyzed, glucose repressed xylose assimilation and xylose consumption began after glucose had been exhausted. A remarkable difference was observed when mixtures of 5 g L?1 glucose/20 g L?1 xylose and 20 g L?1 glucose/20 g L?1 xylose were used. In the former, the xylose consumption began immediately after the glucose depletion. Indeed, there was no striking diauxic phase, as observed in the latter condition, in which there was an interval of 30 h between glucose depletion and the beginning of xylose consumption. Ethanol production was always higher in a mixture of glucose and xylose than in glucose alone. The highest ethanol concentration (8.65 g L?1) and cell mass concentration (4.42 g L?1) were achieved after 8 and 74 h, respectively, in a mixture of 20 g L?1 glucose/20 g L?1 xylose. When inhibitors of respiration were added to the medium, glucose repression of xylose consumption was alleviated completely and K. marxianus was able to consume xylose and glucose simultaneously.  相似文献   

18.
The present study designed two sets of experiments by using the uniform design method and investigated the effects of medium components on the accumulation of bioactive compounds (polysaccharide and kinsenoside) in rhizomes, in order to select a suitable culture medium for the rhizome suspension culture of Anoectochilus roxburghii (Wall.) Lindl. Among the combinations of Murashige and Skoog (MS) medium strengths and plant growth regulator (benzylaminopurine, BA; kinetin, KT; and α-naphthaleneacetic acid, NAA) concentrations, and the combinations of nitrogen, phosphorus, and sucrose concentrations, the maximum yield of polysaccharides and kinsenoside was achieved with 0.75 × MS?+?2.0 mg L?1 BA?+?0.2 mg L?1 KT?+?0.5 mg L?1 NAA and 45 mM nitrogen?+?0.93 mM phosphorus?+?35 g L?1 sucrose, respectively. Therefore, the optimal rhizome suspension culture medium was 0.75 × MS medium supplemented with 2.0 mg L?1 BA, 0.2 mg L?1 KT, 0.5 mg L?1 NAA, and 35 g L?1 sucrose. Yeast extract (YE) enhanced bioactive compound accumulation in rhizomes. The polysaccharide and kinsenoside production was significantly improved when 75 mg L?1 YE was added to the culture medium after 30 d of rhizome suspension culture; 8.3 g L?1 of polysaccharide and 6.1 g L?1 of kinsenoside were obtained after 4 d of YE treatment. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity of YE-treated rhizomes was higher than that of YE-untreated rhizomes, demonstrating enhanced antioxidant activity of the treated bioreactor-cultured rhizomes.  相似文献   

19.
The optimal cultivation conditions ensuring the maximal rate of citric acid (CA) biosynthesis by glycerol-grown mutant Yarrowia lipolytica NG40/UV7 were found to be as follows: growth limitation by inorganic nutrients (nitrogen, phosphorus, or sulfur), 28 °C, pH 5.0, dissolved oxygen concentration (pO2) of 50 % (of air saturation), and pulsed addition of glycerol from 20 to 80 g L?1 depending on the rate of medium titration. Under optimal conditions of fed-batch cultivation, in the medium with pure glycerol, strain Y. lipolytica NG40/UV7 produced 115 g L?1 of CA with the mass yield coefficient of 0.64 g g?1 and isocitric acid (ICA) amounted to 4.6 g L?1; in the medium with raw glycerol, CA production was 112 g L?1 with the mass yield coefficient of 0.90 g g?1 and ICA amounted to 5.3 g L?1. Based on the activities of enzymes involved in the initial stages of raw glycerol assimilation, the tricarboxylic acid cycle and the glyoxylate cycle, the mechanism of increased CA yield from glycerol-containing substrates in Y. lipolytica yeast was explained.  相似文献   

20.
Results of a 2-year (2009–2010) survey on the occurrence of ochratoxin A (OTA) in swine feed and in feed for laying hens in Portugal are reported. A total of 664 samples (478 swine feed, 186 feed for laying hens) were analyzed by a HPLC method using fluorescence detection with 2 μg kg?1 as detection limit. In swine feed, 31 samples (6.49%) were positive for OTA. In feed for laying hens, 12 samples (6.45%) were OTA-positive. The average levels of contamination were low, with median values of positive samples at 3–4 μg kg?1 in both years and both commodities, although a few samples contained exceptionally high levels (maximum 130 μg kg?1). Only the maximum level sample (swine feed) contained OTA at a concentration exceeding the European Commission guidance value. The remaining OTA concentrations found in feed samples were much lower than the guidance values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号