首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Lead (Pb) is a known nephrotoxicant that causes damage to proximal tubular cells. PERK pathway plays an important role in the pathogenesis of renal diseases, but its role in Pb-induced nephrotoxicity remains largely unknown. In this study, data showed that Pb could induce ER stress as shown by increased phosphorylation of PERK with subsequent activation of the eIF2α-ATF4-CHOP axis in primary rat proximal tubular (rPT) cells, indicating the activation of PERK-eIF2α-ATF4-CHOP pathway due to excessive ER stress. Pb-activated PERK pathway can be effectively inhibited by 4-phenylbutyric acid and PERK gene silencing, respectively; whereas continuously up-regulated by tunicamycin (TM) treatment. Moreover, Pb-induced apoptosis and inhibition of autophagic flux in rPT cells were significantly augmented and aggravated by co-treatment with TM, respectively. Pharmacological or genetic inhibition of the PERK pathway results in alleviation of apoptosis and restoration of autophagy inhibition in Pb-exposed rPT cells. Mechanistically, activation of PERK-eIF2α-ATF4-CHOP axis triggered by excessive ER stress in rPT cells leads to Pb-induced apoptosis and blockage of autophagic flux, resulting in nephrotoxicity.  相似文献   

2.
《Free radical research》2013,47(3):192-201
Abstract

Lead (Pb), a well-known environmental toxin, is one of the major hazards for human health. Quercetin (QE), a natural flavonoid, has been reported to have many benefits and medicinal properties. However, its protective effects against Pb-induced endoplasmic reticulum (ER) stress in liver have not been clarified. The aim of the present study was to investigate the effects of quercetin on hepatic ER stress in rats exposed to Pb. Wistar rats were exposed to lead acetate in the drinking water with or without quercetin co-administration for 75 days. Our data showed that quercetin significantly prevented Pb-induced hepatotoxicity in a dose-dependent manner, indicated by both diagnostic indicators of liver damage and histopathological analysis. Quercetin markedly decreased Pb contents in blood and liver. Western blot analysis showed that Pb-induced ER stress in rat liver was significantly inhibited by quercetin. In exploring the underlying mechanisms of quercetin action, we found quercetin markedly suppressed Pb-induced oxidative stress. Quercetin decreased reactive oxygen species (ROS) production and increased the total antioxidant capacity in rat livers. Additionally, quercetin dramatically increased Phosphoinositide-3-kinase (PI3K) and phosphorylated protein kinase B (PKB/Akt) levels in liver rats. In the examined unfolded protein response (UPR) pathways, quercetin markedly inhibited the Pb-induced increase of the phosphorylated inositol-requiring enzyme 1 (IRE1) and c-jun N-terminal kinase (JNK) in rat liver. Taken together, these results suggested that the inhibition of Pb-induced ER stress by quercetin is due at least in part to its anti-oxidant stress activity and its ability to modulate the PI3K/Akt and IRE1/JNK signaling pathway.  相似文献   

3.
Exposure to lead (Pb) is associated with serious health problems including hepatorenal toxicity. Apigenin is a natural-sourced flavonoid with promising antioxidant and anti-inflammatory effects. In this research, we investigated the potential protective role of apigenin against lead acetate (PbAc)-induced hepatorenal damage. Thus, this experiment studied the exposure of male Wistar Albino rats to apigenin and/or PbAc and their effects in comparison to the control rats. Apigenin administration decreased the levels of Pb and prevented the histopathological deformations in liver and kidney tissues following PbAc exposure. This was confirmed by the normalized levels of liver and kidney function markers. Additionally, apigenin inhibited significantly oxidative reactions through upregulating Nrf2 and HO-1, and activating their downstreamed antioxidants accompanied by a marked depletion of pro-oxidants. Moreover, apigenin decreased the elevated pro-inflammatory cytokines and inhibited cell loss in liver and kidney tissues in response to PbAc intoxication in both tissues. The obtained results demonstrated that apigenin could be used to attenuate the molecular, biochemical, and histological alterations associated with Pb exposure due to its potent antioxidant, anti-inflammatory, and antiapoptotic effects.  相似文献   

4.
Acute and chronic lead (Pb) exposure might cause hypertension and cardiovascular diseases. The purpose of this study was to evaluate the effects of early acute exposure to Pb on the cellular morphology, apoptosis, and proliferation in rats and to elucidate the early mechanisms involved in the development of Pb-induced hypertension. Very young Sprague-Dawley rats were allowed to drink 1% Pb acetate for 12 and 40 days. Western blot analysis indicated that the expression of proliferating cell nuclear antigen (PCNA) decreased in the tissues of the abdominal and thoracic aortas and increased in the cardiac tissue after 12 and 40 days of Pb exposure, respectively. Bax was upregulated and Bcl-2 was downregulated in vascular and cardiac tissues after 40 days of Pb exposure. In addition, an increase in caspase-3 activity was observed after 40 days of exposure to Pb. In terms of morphology, we found that the internal elastic lamina (IEL) of aorta lost the original curve and the diameter of cardiac cell was enlarged after 40 days. Furthermore, the exposure led to a marked increase in acetylated histone H3 levels in the aortas and cardiac tissue after 12 and 40 days, than that in the control group. These findings indicate that Pb might increase the level of histone acetylation and induce apoptosis in vascular and cardiac tissues. However, the mechanism involved need to be further investigated.  相似文献   

5.
Lead (Pb) is a ubiquitous and toxic heavy metal and it can damage the immune system in humans and animals. Many researchers have reported that Selenium (Se) could possess various pharmacological effects in mammals. However, few studies have been carried out to investigate the protective role of Se in birds, especially in chickens. In this study, we investigated the protective effects of Se against Pb-induced inflammatory responses and the expression of heat shock proteins (HSPs) in peripheral blood neutrophils. One hundred eighty Hy-Line brown chickens were randomly divided into the control group (Con group), Se supplementation group (+Se group), Pb supplementation group (+Pb group), and the Se and Pb compound group (Se+Pb group). On the 90th day of the experiment, the peripheral blood was collected to extract neutrophils, and then, the levels of HSPs and cytokines were examined. The results showed that, after Pb treatment, the levels of IL-(1β, 1R, 4, 8, 10, and 12β), TGF-β4, and HSP (27, 40, 60, 70, and 90) mRNA were significantly increased and levels of IL-2 and IFN-γ mRNA were decreased compared with those in the control group. Compared with the control group, the protein levels of HSP60 and HSP70 were also increased in the Pb treatment group. Co-administration of Se (1 mg/kg/day) and Pb resulted in a reversal of the Pb-induced cytokine changes in neutrophils accompanied by a significant decrease in HSPs. Our study demonstrated that Pb could decrease the immune function via changing the expression of cytokines and HSPs in chicken neutrophils, but Se could relieve the toxic effect induced by Pb.  相似文献   

6.
Lead (Pb) pollution has become one of the most serious global ecological problems. In animals, Pb ingestion induces apoptosis in many tissues. However, the mechanisms by which Pb induces apoptosis in chicken splenic lymphocytes in vitro via the PI3K/Akt pathway and the antagonistic effect of selenium (Se) on Pb remain unclear. Therefore, we established the in vitro Se-Pb interaction model in chicken splenic lymphocytes and examined the frequency of apoptotic cells using acridine orange/ethidium bromide (AO/EB) staining and the TdT-mediated dUTP nick end labeling assay and detected the activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT), as well as the levels of malondialdehyde (MDA) and reactive oxygen species (ROS). The expression of PI3K/Akt pathway-related genes was also examined by qRT-PCR and western blotting. MDA and ROS levels were markedly increased, whereas the activities of GPx, SOD, and CAT were significantly decreased; the levels of the PI3K, Akt, and Bcl-2 messenger RNAs (mRNAs) and proteins were decreased; and the levels of the p53, Bax, cytochrome c (Cyt-c), caspase 3, and caspase 9 mRNAs and proteins were increased in the Pb group. In addition, the frequency of apoptotic cells was also significantly increased by the Pb treatment. However, Se supplementation during Pb exposure observably attenuated Pb-induced apoptosis; increased the levels of the PI3K, Akt, and Bcl-2 mRNAs and proteins; and decrease the levels of the p53, Bax, Cyt-c, caspase 3, and caspase 9 mRNAs and proteins in the chicken spleen. In conclusion, Pb exposure causes oxidative stress, inhibits the PI3K/Akt pathway, and subsequently induces apoptosis in chicken splenic lymphocytes in vitro, and these effects are partially attenuated by Se supplementation. To the best of our knowledge, this study is the first to reveal the antagonistic effect of Se on Pb-induced apoptosis of chicken splenic lymphocytes in vitro via the activation of the PI3K/Akt pathway.  相似文献   

7.
The influence of dietary iron deficiency, lead exposure or their combination on certain enzymes, and the accumulation of Pb and essential metal levels in vital organs of rats was investigated. Iron deficiency caused alterations in the activity of muscle, hepatic and renal succinate dehydrogenase, and hepatic mitochondrial succinate cytochrome c reductase, whereas Pb exposure had no influence on these enzymes. There was no synergistic effect of the two factors on the activity of the enzymes. However, feeding of a Fe-deficient diet during Pb exposure enhanced the accumulation of Pb in soft tissues and flat bones. The hepatic copper and zinc levels were lowered upon either feeding a Fe-deficient diet or Pb exposure. However, the synergistic effect of the two factors was evident in hepatic Cu, but not in hepatic Zn. The feeding of a Fe-deficient diet decreased liver, kidney, and spleen levels of Fe, whereas Pb exposure decreased kidney and spleen Fe. The synergistic influence of the two factors could be observed only in liver and kidney.  相似文献   

8.
Mitochondrial fusion is linked to heart and liver ischemia-reperfusion (IR) insult. Unfortunately, there is no report to elucidate the detailed influence of mitochondrial fusion in renal IR injury. This study principally investigated the mechanism by which mitochondrial fusion protected kidney against IR injury. Our results indicated that sirtuin 3 (Sirt3) was inhibited after renal IR injury in vivo and in vitro. Overexpression of Sirt3 improved kidney function, modulated oxidative injury, repressed inflammatory damage, and reduced tubular epithelial cell apoptosis. The molecular investigation found that Sirt3 overexpression attenuated IR-induced mitochondrial damage in renal tubular epithelial cells, as evidenced by decreased reactive oxygen species production, increased antioxidants sustained mitochondrial membrane potential, and inactivated mitochondria-initiated death signaling. In addition, our information also illuminated that Sirt3 maintained mitochondrial homeostasis against IR injury by enhancing optic atrophy 1 (OPA1)-triggered fusion of mitochondrion. Inhibition of OPA1-induced fusion repressed Sirt3 overexpression-induced kidney protection, leading to mitochondrial dysfunction. Further, our study illustrated that OPA1-induced fusion could be affected through ERK; inhibition of ERK abolished the regulatory impacts of Sirt3 on OPA1 expression and mitochondrial fusion, leading to mitochondrial damage and tubular epithelial cell apoptosis. Altogether, our results suggest that renal IR injury is closely associated with Sirt3 downregulation and mitochondrial fusion inhibition. Regaining Sirt3 and/or activating mitochondrial fission by modifying the ERK-OPA1 cascade may represent new therapeutic modalities for renal IR injury.  相似文献   

9.
cGMP-dependent protein kinase (PKG) is a multifunctional protein. Whether PKG plays a role in ischemia-reperfusion-induced kidney injury (IRI) is unknown. In this study, using an in vivo mouse model of renal IRI, we determined the effect of renal IRI on kidney PKG-I levels and also evaluated whether overexpression of PKG-I attenuates renal IRI. Our studies demonstrated that PKG-I levels (mRNA and protein) were significantly decreased in the kidney from mice undergoing renal IRI. Moreover, PKG-I transgenic mice had less renal IRI, showing improved renal function and less tubular damage compared with their wild-type littermates. Transgenic mice in the renal IRI group had decreased tubular cell apoptosis accompanied by decreased caspase 3 levels/activity and increased Bcl-2 and Bag-1 levels. In addition, transgenic mice undergoing renal IRI demonstrated reduced macrophage infiltration into the kidney and reduced production of inflammatory cytokines. In vitro studies showed that peritoneal macrophages isolated from transgenic mice had decreased migration compared with control macrophages. Taken together, these results suggest that PKG-I protects against renal IRI, at least in part through inhibiting inflammatory cell infiltration into the kidney, reducing kidney inflammation, and inhibiting tubular cell apoptosis.  相似文献   

10.
BackgroundStudies have shown that lead (Pb) is one of hazardous heavy metals with various adverse effects on human health including mental health; Pb can induce psychiatric disorders like anxiety. In the present work, we examined the potential of bisdemethoxycurcumin (BDMC) as a neuroprotective agent against lead induced anxiety inMeriones shawi (M. shawi).MethodsWe asses, the potential of three consecutive day exposure to Pb (25 mg/kg body weight) in inducing anxiogenic effect, serotoninergic and vasopressinergic disruptions inM. shawi. This was done using neurobehavioral tests (open field, elevated plus maze), immunohistochemestry by anti-serotonin (5-HT), and anti-vasopressin (AVP) antibodies. We also measured the possible restorative potential of BDMC (30 mg/kg body weight), delivered by oral gavage. After that, a biochemical and histopathological studies were done.ResultsOur results showed that lead exposure for three consecutive days increases significantly the 5-HT-immunoreactivity in dorsal raphe nucleus (DRN) accompanied with a significant enhancement of AVP-immunoreactivity in the cell bodies and fibers in the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus. In the collecting tube, AVP binds to the V2 receptor of the epithelial cells and increases the water permeability. Our results showed clearly the epithelial cells degeneration after lead exposure, then we suggest that the increased AVP could be a response to the hydric balance disrupted after degenerative effect of lead exposure on epithelial cells. BDMC produced an anxiolytic effect in meriones. Moreover, it restored 5-HT and AVP immunoreactivity within studying nuclei. The biochemical and histopathological studies showed that Pb induced renal damages. In addition, BDMC restored the renal alterations.ConclusionAccording to the obtained results, we suggest new pharmacological effects of BDMC; while it has an anxiolytic effect against Pb-induced anxiety by working on serotoninergic and vasopressinergic systems with an obvious restoration of the renal injuries induced by lead exposure.  相似文献   

11.
Excitatory amino acid transporters (EAATs) are membrane-bound proteins localized in glial and neuronal cells which transport glutamate (Glu) in a process essential for terminating its action and protecting neurons from excitotoxic damage. Since Pb-induced neurotoxicity has a glutamatergic component and astrocytes serve as a cellular Pb deposition site, it was of interest to investigate the response of main glutamate transporters to short-term lead exposure in the adult rat brain (25mg/kg b.w. of lead acetate, i.p. for 3 days). We examined the expression of mRNA and protein of GLAST, GLT-1 and EAAC1 in homogenates obtained from cerebellum, hippocampus and forebrain. Molecular evidence is provided which indicates that, of the two glial transporters, GLT-1 is more susceptible than GLAST to the neurotoxic effect arising from Pb. RT-PCR analysis revealed highly decreased expression of GLT-1 mRNA in forebrain and hippocampus. In contrast, GLAST was overexpressed in forebrain and in cerebellum. In the case of EAAC1, the enhanced expression of mRNA and protein of transporter was observed only in forebrain. The results demonstrate regional differences in the expression of glutamate transporters after short-term exposure to Pb. In forebrain, downregulation of GLT-1 is compensated by enhanced expression of GLAST, while in hippocampus, the expression of both is lowered. This observation suggests that under conditions of Pb toxicity in adult rat brain, the hippocampus is most vulnerable to the excitotoxic cell damage arising from impaired clearance of the released glutamate.  相似文献   

12.
NDR1/2 kinase is essential in dendrite morphology and spine formation, which is regulated by cellular Ca2+. Lead (Pb) is a potent blocker of L-type calcium channel and our recent work showed Pb exposure impairs dendritic spine outgrowth in hippocampal neurons in rats. But the sensitivity of Pb-induced spine maturity with mixed factors (gender×age×brain regions) remains unknown. This study aimed to systematically investigate the effect of Pb exposure on spine maturity in rat brain with three factors (gender×age×brain regions), as well as the NDR1/2 kinase expression. Sprague–Dawley rats were exposed to Pb from parturition to postnatal day 30, 60, 90, respectively. Golgi-Cox staining was used to examine spine maturity. Western blot assay was applied to measure protein expression and real-time fluorescence quantitative PCR assay was used to examine mRNA levels. The results showed chronic Pb exposure significantly decreased dendritic length and impaired spine maturity in both rat hippocampus and medial prefrontal cortex. The impairment of dendritic length induced by Pb exposure tended to adolescence > adulthood, hippocampus > medial prefrontal cortex and female > male. Pb exposure induced significant damage in spine maturity during adolescence and early adult while little damage during adult in male rat brain and female medial prefrontal cortex. Besides, there was sustained impairment from adolescence to adulthood in female hippocampus. Interestingly, impairment of spine maturity followed by Pb exposure was correlated with NDR1/2 kinase. The reduction of NDR1/2 kinase protein expression after Pb exposure was similar to the result of spine maturity. In addition, NDR2 and their substrate Rabin3 mRNA levels were significantly decreased by Pb exposure in developmental rat brain. Taken together, Pb exposure impaired dendrite growth and maturity which was subject to gender×age×brain regions effects and related to NDR1/2 signal expression.  相似文献   

13.
Protection by essential metals against the genotoxic effects of toxic elements is an open question. Here, human Hs27 dermal fibroblasts and B-mel melanoblasts were exposed for 10 days to (1 μM) zinc (Zn) or copper (Cu) or selenium (+ 4, Sei; + 6, Sea). Afterwards, cells were exposed for 3 days to subtoxic concentrations of lead (Pb, 100 μM) or vanadium (+ 5, V, 2 μM) or cadmium (Cd, 3 μM), slightly reducing, by themselves, cell proliferation and unaffecting cell viability and apoptosis. Genotoxic damage was evaluated by cytokinesis-block micronucleus assay (CBMN) and single cell gel electrophoresis (Comet assay, CA). CBMN and CA were preliminarly assessed following 3, 10 and 30 days of exposure to the above concentrations of Pb, V and Cd: Pb induced micronuclei (MN) formation in both Hs27 and B-mel cells, without determining direct DNA damage (as shown by CA); V did not reveal genotoxic effects on fibroblasts (as shown by CBMN and CA) but increased the frequency of MN and comets in melanoblasts; Cd induced a great number of MN and comets in fibroblasts but not in melanoblasts; all these effects did not differ after 3, 10 or 30 days of exposure to such elements so that Hs27 and B-mel cells were exposed to Pb,V and Cd for 3 days following pretreatment with (1 μM) Zn, Cu, Sei or Sea. By itself, the 10 day-exposure to (1 μM) Zn, Cu, Sei or Sea did not affect cell proliferation, viability, apoptosis and formation of MN or comets in either Hs27 or B-mel cells. Only Zn significantly reduced the Cd- and V-induced MN and comet formation in fibroblasts and melanoblasts, respectively; in these cells, however, Zn did not affect the Pb-induced MN formation. These results emphasize the role of Zn, in respect to other essential metals, in opposing the genotoxic effects of cancerogenic (Cd) or potentially cancerogenic elements (V).  相似文献   

14.
Kaur G  Singh HP  Batish DR  Kohli RK 《Protoplasma》2012,249(4):1091-1100
We examined the effect of Pb(2+) (8 and 40?mg?l(-1)) on reactive oxygen species generation and alterations in antioxidant enzymes in hydroponically grown wheat at 24, 72, and 120?h after exposure. Pb(2+) toxicity was more pronounced on root growth, and it correlated with the greater Pb accumulation in roots. Pb exposure (40?mg?l(-1)) enhanced superoxide anion, H(2)O(2), and MDA content in wheat roots by 1.9- to 2.2-folds, 56-255%, and 41-90%, respectively, over the control. Pb-induced loss of membrane integrity was confirmed by the enhanced electrolyte leakage and in vivo histochemical localization. Activities of scavenging enzymes, superoxide dismutases and catalases, enhanced in Pb-treated wheat roots by 1.4- to 5.7-folds over that in the control. In contrast, the activities of ascorbate and guaiacol peroxidases and glutathione reductases decreased significantly, suggesting their non-involvement in detoxification process. The study concludes that Pb(2+)-induced oxidative damage in wheat roots involve greater H(2)O(2) accumulation and the deactivation of the related scavenging enzymes.  相似文献   

15.
Over the last decade, oxidative stress has been implicated in the pathogenesis of a wide variety of seemingly unrelated renal diseases. Epidemiological studies have documented an association of moderate wine consumption with a decreased risk of cardiovascular and neurological diseases; however, similar studies in the kidney are still lacking. The kidney is an organ highly vulnerable to damage caused by reactive oxygen species (ROS), likely due to the abundance of polyunsaturated fatty acids in the composition of renal lipids. ROS are involved in the pathogenic mechanism of conditions such as glomerulosclerosis and tubulointerstitial fibrosis. The health benefits of moderate consumption of red wine can be partly attributed to its antioxidant properties. Indeed, the kidney antioxidant defense system is enhanced after chronic exposure to moderate amounts of wine, a response arising from the combined effects of ethanol and the nonalcoholic components, mainly polyphenols. Polyphenols behave as potent ROS scavengers and metal chelators; ethanol, in turn, modulates the activity of antioxidant enzymes. Therefore, a hypothesis that red wine causes a decreased vulnerability of the kidney to the oxidative challenges could be proposed. This view is partly supported by direct evidences indicating that wine and antioxidants isolated from red wine, as well as other antioxidants, significantly attenuate or prevent the oxidative damage to the kidney. The present hypothesis paper provides a collective body of evidence suggesting a protective role of moderate wine consumption against the production and progression of renal diseases, based on the existing concepts on the pathophysiology of kidney injury mediated by oxidative stress.  相似文献   

16.
Abstract: This study examined the hypotheses that low-level lead (Pb) exposure would increase dopamine (DA) binding sites, would do so preferentially in nucleus accumbens, and that such effects would be modified by concurrent DA agonist treatment. D1-like and D2-like binding sites and the dopamine transporter (DT) were measured autoradiographically in caudate-putamen and nucleus accumbens of rats exposed from weaning to 0, 50, or 150 ppm Pb acetate drinking solutions with or without concurrent chronic intermittent intraperitoneal injections of the D1-like agonist SKF 82958 or the DA agonist apomorphine after 2 weeks (no injections), 8 months, or 12 months of Pb exposure. Pb selectively decreased DA binding in nucleus accumbens. Decreases in D2-like and DT sites were sustained across the 12-month exposure, whereas D1-like sites evidenced recovery at 12 months. Chronic intermittent DA agonist treatments reversed these effects of Pb in nucleus accumbens, restoring receptor and DT binding levels to normal, despite decreasing binding sites of non-Pb-treated rats. These studies implicate increased DA availability as a mechanism of Pb-induced DA system changes. They also raise the possibility that Pb exposure could serve as a predisposing factor in neurodegenerative diseases associated with DA system dysfunction or could alter the course of DA-based therapeutic treatments.  相似文献   

17.
18.
The effects of chronic lead (Pb) exposure on neuronal electric membrane properties (EMP) were determined using neural cell cultures of adult mouse dorsal root ganglia (DRG). Cultures were exposed to Pb concentrations ranging from 0 to 100 microM for 12 days (8 DIV to 20 DIV). EMP were determined in Pb-free medium either immediately after withdrawal (IWD), or 6 days after withdrawal (6WD) from Pb. For IWD, regression analysis indicated that a number of EMP varied significantly with increasing Pb concentration. The largest such change occurred for electrical excitability which decreased significantly with increasing Pb (P = 0.000), being reduced by approximately two-thirds for neurons exposed to 100 microM Pb; resting membrane potential increased with Pb (P = 0.000); membrane time constant decreased with Pb (P = 0.007); action potential afterhyperpolarization decreased with Pb (P = 0.023). There was also evidence that the time course of action potentials was accelerated with increasing Pb concentrations, the rate of fall of neurons with biphasic falling phases being particularly increased (P = 0.047). This general pattern of altered EMP was observed for the 6WD condition also, indicating that chronic exposure to Pb caused persistent abnormalities in neuronal membranes even after 6 days of cultivation in Pb-free medium. The patterns of alterations in EMP suggested that chronic Pb exposure caused a prolonged increase in potassium permeability. It was proposed that the latter was mediated through a Pb-induced increase in intracellular ionic calcium and the associated disruption of calcium homeostasis.  相似文献   

19.
The mechanism of Pb-induced disruption of Na(+) and Cl(-) balance was investigated in the freshwater rainbow trout (Oncorhynchus mykiss). Na(+) and Cl(-) influx rates were reduced immediately in the presence of 2.40 +/- 0.24 and 1.25 +/- 0.14 muM Pb, with a small increase in efflux rates occurring after 24-h exposure. Waterborne Pb caused a significant decrease in the maximal rate of Na(+) influx without a change in transporter affinity, suggesting a noncompetitive disruption of Na(+) uptake by Pb. Phenamil and bafilomycin markedly reduced Na(+) influx rate but did not affect Pb accumulation at the gill. Time-course analysis in rainbow trout exposed to 0, 0.48, 2.4, and 4.8 microM Pb revealed time- and concentration-dependent branchial Pb accumulation. Na(+)-K(+)-ATPase activity was significantly reduced, with 4.8 microM exposure resulting in immediate enzyme inhibition and 0.48 and 2.4 microM exposures inhibiting activity by 24 h. Reduced activity was weakly correlated with gill Pb accumulation after 3- and 8-h exposures; this relationship strengthened by 24 h. Reduced Na(+) uptake was correlated with gill Pb burden after exposures of 3, 8, and 24 h. Immediate inhibition of branchial carbonic anhydrase activity occurred after 3-h exposure to 0.82 +/- 0.05 or 4.30 +/- 0.05 microM Pb and continued for up to 24 h. We conclude that Pb-induced disruption of Na(+) and Cl(-) homeostasis is in part a result of rapid inhibition of carbonic anhydrase activity and of binding of Pb with Na(+)-K(+)-ATPase, causing noncompetitive inhibition of Na(+) and Cl(-) influx.  相似文献   

20.
Antioxidant defense in a lead accumulating plant, Sesbania drummondii.   总被引:4,自引:0,他引:4  
Seedlings of Sesbania drummondii were grown in 500 mg l-1 Pb(NO3)2 in presence and absence of chelators: EDTA, DTPA and HEDTA for 4 weeks. Plants were assayed for activities of the antioxidant enzymes: ascorbate peroxidase (APX), guaiacol peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD) and glutathione (gamma-glutamyl-cysteinyl-glycine) content. Activities of antioxidant enzymes were elevated in the presence of Pb but were similar to controls in plants grown in the presence of Pb and EDTA, -DTPA or -HEDTA. Glutathione content was significantly elevated upon exposure to Pb, but lowered upon exposure to chelators. Chlorophyll a fluorescence kinetics were assessed by determination of Fv/Fm and Fv/Fo values. Seedling growth in Pb alone and Pb + chelators did not significantly affect photosynthetic integrity (Fv/Fo) and efficiency (Fv/Fm). The results suggest that Sesbania plants were able to tolerate Pb-induced stress using an effective antioxidant defense mechanism. This study also indicates a protective role of synthetic chelators in Pb-induced oxidative stress metabolism in a Pb-accumulating plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号