首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biocontrol potential of South African isolates of Heterorhabditis zealandica, Steinernema citrae, S. khoisanae, S. yirgalemense, and Steinernema sp., was evaluated against codling moth, Cydia pomonella. Codling moth was susceptible to all six nematode isolates at a concentration of 50 infective juveniles/insect (78–100% mortality). Low temperatures (10 h at 17°C; 14 h at 12°C) negatively affected larvicidal activity (≤3%) for all isolates. All tested isolates were most effective at higher levels of water activity (a w=1). The average a w50-values for all isolates tested was 0.94 (0.93–0.95), except S. khoisanae 0.97 (0.97–0.98). Regarding host-seeking ability, no positive attraction to host cues could be detected amongst isolates, except for H. zealandica. Three of the isolates, H. zealandica, S. khoisanae, and the undescribed Steinernema sp., were selected for field-testing and proven to be effective (mortality >50%). Insect containment methods used during field experimentation was shown to influence larvacidal activity, as different levels of mortality were obtained using various containment methods (wooden planks vs. pear tree logs vs. mesh cages). Pear tree logs were impractical. Predictive equations were subsequently developed, enabling future trials to be conducted using either planks or cages, enabling the prediction of the expected level of control on tree logs. All tested isolates therefore showed a certain degree of biological control potential, however, none of the experiments showed clear efficacy-differences amongst isolates. The study highlighted the importance of environmental factors to ensure the successful application of these nematodes for the control of diapausing codling moth larvae in temperate regions.  相似文献   

2.
The non-insecticidal control strategies currently being implemented in South African orchards for the control of codling moth, Cydia pomonella (L.) may be hampered by wooden fruit bins being infested with diapausing codling moth larvae, acting as a potential source of re-infestation. Key factors contributing to the success or failure of an entomopathogenic nematode application were investigated using the SF 41 isolate of Heterorhabditis zealandica in laboratory bioassays with wooden minibins. Under operational conditions, an application rate of 100 IJs/mL (LD90=102 IJs/mL) effectively controlled codling moth larvae in these bins, and for further laboratory bioassays, the LD50 value of 18 IJs/mL (?25 IJs/mL) was identified as the discriminating dosage. Maximum mortality was attained when bins were pre-wet for at least 1 min (>90% RH) and maintained at maximum humidity (>95% RH) post-treatment for at least 3 days (LT90=73 h), to ensure nematode survival and subsequent satisfactory infection of diapausing codling moth larvae. Tarping bins achieved the desired high level of humidity required. Furthermore, adjuvants (specifically Reverseal 10?) also improved an application. The study conclusively illustrated that if all the above-mentioned conditions are met, H. zealandica has the potential to successfully disinfest wooden fruit bins of codling moth.  相似文献   

3.
Single, double and triple releases of the entomopathogenic nematode Heterorhabditis bacteriophora Poinar, reduced the population of the beetle Maladera matrida Argaman, infesting peanuts (’Shulamit’ cv.) by 70, 75 and 93% respectively in microplot tests. Simultaneous and late (2 weeks after infestation) applications reduced beetle numbers by 63 and 79% respectively, in the microplots, while early application (2 weeks prior to infestation) did not reduce the beetle population. In a field trial, reductions in insect population and damage to the crop were achieved by early treatment with the nematode as well as by Heptachlor, leading to reductions in the insect population of 60 and 90% respectively, when recorded 4 weeks after nematode application. However, the nematode treatment did not maintain its effectiveness for a longer period and pest damage increased to the same level as the untreated control after 7 weeks. When the nematodes were applied at different concentrations (0.25–1.0 x 106 infective juveniles (IJs) m‐2) their effectiveness was not related to the concentration level. The only significant (P < 0.05) reduction in insect levels was recorded in the treatment with 0.5 X 106 IJs m‐2. In a second field trial, both H. bacteriophora and Steinernema glaseri reduced insect populations significantly (P < 0.05) by approximately 50% in comparison to the control. In the third trial, treatment with H. bacteriophora resulted in a decrease in insect population of 90% while treatment with S. carpocapsae reduced the grub numbers by 40% in comparison to the control. A differential susceptibility of various grub developmental stages was recorded in the field. The small grubs (I‐4 mm long, lst‐2nd larval stage) were not affected by the nematode treatments while the numbers of medium and large size grubs were reduced by 2‐ and 3‐fold respectively in the various tests. Nematodes were recovered by ‘nematode traps’ containing Galleria mellonella larvae from treated field plots 78 days after application. The implications of the results from the present studies on the use of entomopathogenic nematodes are discussed in relation to the development of an integrated pest management programme.  相似文献   

4.
Pathogenicity of a native isolate of Steinernema feltiae (H1) and two exotic strains, Heterorhabditis bacteriophora and Steinernema carpocapsae was assessed under laboratory conditions using different concentrations i.e. 4000, 6000, 8000 and 10,000 infective juveniles/ml against second instar larvae, prepupa and pupa of Thrips tabaci Lindeman. The mortality data were recorded 24 and 48?h post-inoculation. The highest mortality rate was recorded for prepupa (62%) than second instar (12.5%) by H. bacteriophora and S. carpocapsae, respectively, 24?h after treatment. No significant differences were found in mortality between prepupa and pupa with increasing the nematodes concentrations (from 4000 to 10,000 nematode/ml) but increasing nematode concentrations increased the mortality of second instar. At the end of the experiment (48?h.), S. feltiae H1 caused the highest mortality on second instar larvae (74%), whereas all other species caused 80–83% mortalities on pupa. This study suggests that native isolate of S. feltiae (H1) had high potential to infect soil-dwelling stages of T. tabaci.  相似文献   

5.
Spread pachytene nuclei of codling moth Cydia pomonella (Linnaeus) (Lep., Tortricidae) females of a Syrian strain (SY) were used to investigate chromomere patterns of chromosome bivalents and determine their length. The karyotype of female codling moths consists of 28 chromosome bivalents, of which seven are clearly distinguishable using chromosome length and the number and size of the chromomeres in the pachytene stage. One autosome bivalent has two nucleolar organizing regions (NORs) that are located at the opposite ends of the chromosome and appear as distinct structural landmarks. In female codling moths, the WZ sex chromosome bivalent was easily identified in pachytene oocytes according to the heterochromatic thread of the W chromosome. This study contributed to the knowledge and identification of pachytene chromosomes of female codling moths.  相似文献   

6.
Entomopathogenic nematodes (EPNs) in the families Heterorhabditidae and Steinernematidae have considerable potential as biological control agents of soil-inhabiting insect pests. In the present study, the control potential of the EPNs Steinernema carpocapsae (TUR-S4), S. feltiae (Nemaplus), S. carpocapsae (Nemastar), S. feltiae (TUR-S3) and Heterorhabditis bacteriophora (Nematop) against a new longicorn pest, Dorcadion pseudopreissi Breuning, 1962 (Coleoptera: Cerambycidae), on turf was examined in laboratory studies. Pathogenicity tests were performed at the following doses: 50, 100 and 150 Dauer Juveniles (DJs)/larva at 25°C. Highest mortalities (75–92%) of the larvae were detected at the dose of 150 DJs/larva for all nematodes used. Reproduction capabilities of the used EPNs were examined at doses of 50, 75, 100 and 150 DJs/larva at 25°C. S. carpocapsae (TUR-S4) had the most invasions (32 DJs/larva) and reproduction (28042 DJs/larva) at the dose of 100 DJs, and the highest reproduction (per invaded DJ into a larva) was observed in H. bacteriophora (Nematop) (2402.85 DJs) at a dose of 50 DJs. The foraging behaviour of the nematodes in the presence of D. pseudopreissi and Galleria mellonella L. (Lepidoptera: Galleriidae) larvae was studied using a Petri dish filled with sand at 20°C. All of the used nematodes accumulated near the larvae section of both insect species (32–53% of recovered DJs) with a higher percentage of S. carpocapsae (TUR-S4) (53%) and H. bacteriophora (48%) (Nematop) moving towards larvae of D. pseudopreissi, than the S. feltiae strains.  相似文献   

7.
The susceptibility of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) to native and commercial strains of entomopathogenic nematodes (EPNs) was studied under laboratory conditions. Native strains of EPNs were collected from northeastern Iran and characterised as Steinernema feltiae and Heterorhabditis bacteriophora (FUM 7) using classic methods as well as analysis of internal transcribed spacer (ITS) and D2/D3 sequences of 28S genes. Plate assays were performed to evaluate the efficiency of five EPN strains belonging to four species including Steinernema carpocapsae (commercial strain), S. feltiae, Steinernem glaseri and H. bacteriophora (FUM 7 and commercial strains). This initial assessment with 0, 75, 150, 250, 375 and 500 IJs/ml concentrations showed that S. carpocapsae and H. bacteriophora caused the highest mortality in both larval and prepupal stages of P. operculella, PTM. Thereafter, these three strains (i.e. S. carpocapsae, H. bacteriophora FUM 7 and the commercial strains) were selected for complementary assays to determine the effects of soil type (loamy, loamy–sandy and sandy) on the virulence of EPNs against the second (L2) and fourth instar (L4) larvae as well as prepupa. A soil column assay was conducted using 500 and 2000 IJs in 2-ml distilled water. Mortality in the L2 larvae was not affected by the EPN strain or soil type, while there was a significant interactive effect of nematode strains and soil type on larval mortality. The results also showed that EPN strains have higher efficiency in lighter soils and caused higher mortality on early larvae than that in loamy soil. In L4 larvae, mortality of PTM was significantly influenced by nematode strain and applied concentrations of infective juveniles. The larval mortality induced by S. carpocapsae was higher than those caused either by a commercial or the FUM 7 strain of H. bacteriophora. Prepupa were the most susceptible stage.  相似文献   

8.
Seasonal changes in the fatty acid composition of the total lipid extracted from the whole body of Cydia pomonella L. larvae were determined by gas chromatography. The six most abundant fatty acids in both non-diapause and diapause larvae of codling moth were oleic (35%-39%), palmitic (23%-33%), linoleic (16%-30%), palmitoleic (5%-10%), stearic (1.5%-3.0%) and linolenic acids (1.0%-2.5%). This represents a typical complement of Lepidopteran fatty acids. The fatty acid composition of total lipid of C. pomonella larvae was related to diapause. In similarity to most other reports, the proportion of unsaturated fatty acids increased in diapause initiation state. The total lipid of diapause larvae contained more linoleic acid (25.8% vs. 16.1%) and less palmitic acid (24.7% vs. 33.4%), than that of non-diapause larvae. The weight percentage of linoleic acid (C 18:2) increased from 16% to 26% from early-August through early-September during transition to diapause, while palmitic acid (C16:0) decreased from 33% to 25% at the same time. These changes resulted in an increase in the ratio of unsaturated to saturated fatty acids (UFA/SFA) from 1.72 in non-diapause larvae to 2.63 in diapause larvae.  相似文献   

9.
The possibility of controlling the codling moth Cydia pomonella (Linnaeus) using an attract and kill approach as an alternative to chemical sprays with contact insecticides was investigated in widely separated orchards. The results of a 4‐year study have shown that, using an attract and kill approach, three applications/season kept infestation rates in treated orchards below the economic injury level except in one with a too high codling moth population density. The mean number of male codling moths/trap/week in attract and kill‐treated orchards was much lower in comparison with control orchards which were treated with the usual cover sprays of insecticides. The results also showed that the efficacy of attract and kill under orchard conditions decreased with time and the relationship between time effect and codling moth death rate was very strong. These data indicate that the attract and kill technique applied at a rate of three application per season resulted in good control of codling moth in well managed orchards in Syria.  相似文献   

10.
Virulent entomopathogenic fungal strains against Cydia pomonella (Lepidoptera: Tortricidae) were isolated and identified in the Western Cape Province of South Africa. Thirty-nine isolates belonging to six species were obtained using the insect bait method. Generally, Metarhizium robertsii (Ascomycota: Hypocreales) was the most frequently encountered species representing 51% of the total number of isolates collected from the soil samples. This is the first report of M. robertsii from southern Africa. Mortality data from an immersion bioassay indicated that the 39 fungal isolates were pathogenic against fifth instar larvae of C. pomonella inducing 47–85% insect mortalities. Two M. robertsii strains, MTL151 and GW461, induced 85% larval mortality and were selected for further evaluations. The exposure of freshly laid eggs to wax papers that were pre-treated with fungal spores ranging from 103 to 108 spores ml?1 of MTL151 and GW461 resulted in a significant reduction of egg hatchabilities, from 95 to 66% and 93 to 71%, respectively as spore concentration increased. First instar larval neonates were exposed to apples that were pre-sprayed topically with varied conidia suspensions (103?108 spores ml?1). The mean percentage of participating apples with larvae in their cores/flesh significantly reduced from 53 to 10% (MTL151) and 76 to 10% (GW461) of 10 apples, and a concurrent decrease in the incidence of apple fruit rot was observed as conidia concentration increased. Up to 90% of apples treated with 1 × 108 spores ml?1 had no larvae present in their cores and this result compared favourably with the commercial pesticide Fruitfly®, containing the active ingredient cypermethrin (20 g/l) used at a recommended dose of 0.25 ml/250 ml of water.  相似文献   

11.
Entomopathogenic nematodes (EPNs) from the families Steinernematidae and Hererorhabditidae are considered excellent biological control agents against many insects that damage the roots of crops. In a regional survey, native EPNs were isolated, and laboratory and greenhouse experiments were conducted to determine the infectivity of EPNs against the cucurbit fly, Dacus ciliatus Loew (Diptera: Tephritidae). Preliminary experiments showed high virulence by a native strain of Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae) and a commercial strain of Steinernema carpocapsae Weiser (Rhabditida: Steinernematidae). These two strains were employed for further analysis while another native species, Steinernema feltiae, was excluded due to low virulence. In laboratory experiments, larvae and adult flies were susceptible to nematode infection, but both nematode species induced low mortality on pupae. S. carpocapsae had a significantly lower LC50 value against larvae than H. bacteriophora in filter paper assays. Both species of EPNs were effective against adult flies but S. carpocapsae caused higher adult mortality. When EPN species were applied to naturally infested fruit (150 and 300 IJs/cm2), the mortality rates of D. ciliatus larvae were 28% for S. carpocapsae and 12% for H. bacteriophora. Both EPN strains successfully reproduced and emerged from larvae of D. ciliates. In a greenhouse experiment, H. bacteriophora and S. carpocapsae had similar effects on fly larvae. Higher rates of larval mortality were observed in sandy loam and sand soils than in clay loam. The efficacy of S. carpocapsae and H. bacteriophora was higher at 25 and 30°C than at 19°C. The results indicated that S. carpocapsae had the best potential as a biocontrol agent of D. ciliatus, based on its higher virulence and better ability to locate the fly larvae within infected fruits.  相似文献   

12.
A series of laboratory and greenhouse experiments evaluated the entomopathogenic nematodes Steinernema scarabaei Stock & Koppenhöfer, Heterorhabditis bacteriophora Poinar, and H. zealandica Poinar for control of second- and third-instar cranberry white grub, Phyllophaga georgiana Horn (Coleoptera: Scarabaeidae), in cranberries. Steinernema scarabaei was the most effective species with 76–100% control at a rate of 2.5×109 IJ/ha in the greenhouse experiments. H. zealandica and especially H. bacteriophora were generally less effective and required rates of 5×109 IJ/ha for acceptable control. Larval stage had no effect on H. zealandica and H. bacteriophora performance, whereas S. scarabaei was more effective against third instars than second instars in the laboratory but not in the greenhouse experiments. Steinernema scarabaei, should it become commercially available, could be an effective alternative to chemical insecticides for P. georgiana management.  相似文献   

13.
The morphology of Nosema carpocapsae and its development in experimentally infected codling moth larvae are described. Spherical uninucleate meronts were the first stages. Nuclear division produced binucleate meronts which were the most abundant vegetative stage, although additional uninucleate and a few tetranucleate meronts were also observed at this time. All meronts were spherical and ranged from 2.8 to 5.8 μm in diameter. Uninucleate and binucleate fusiform sporonts then appeared followed by some tetranucleate and dividing forms. Oval sporoblasts developed after these and did not divide before maturing into spores. Sporonts were approximately 5.0 to 7.9 × 2.4 to 3.0 μm. Spores developed in all host tissues except the nervous tissue. The binucleate spores showed considerable variation in spore size, 2.4 to 3.9 × 1.3 to 3.1 μm (alcohol fixed, Giemsa stained). The polar filament was usually coiled 11 times (range 9 to 13) at an angle of 53° to the long axis of the spore. Its maximum observed length was 75 μm.  相似文献   

14.
The lepidopteran, Cydia splendana, and the coleopteran, Curculio elephas, are the most serious pests of chestnut fruit in Turkey. We evaluated the biological control potential of three Turkish entomopathogenic nematode species, Steinernema feltiae, S. weiseri and Heterorhabditis bacteriophora, against the last instar larvae of C. splendana and C. elephas, both of which occur in the soil from fall (October–November) until mid-summer (August). The optimal temperature for infection, time to death of the hosts, and reproductive potential of the nematodes were determined at 10, 15, 20 and 25°C for both pest species. Cydia splendana was more susceptible to nematode infection than C. elephas. Temperature had a significant effect on the infectivity and development of entomopathogenic nematodes. The cold-adapted S. weiseri and S. feltiae were the most virulent species at 10 and 15°C, whereas the warm-adapted H. bacteriophora was the most effective at 20 and 25°C. In soil pot experiments conducted at 15°C, S. weiseri was the most virulent species against C. elephas and C. splendana. However, our data show that C. elephas larvae had a lower and C. splendana larvae had a higher susceptibility to the nematode species tested. Accordingly, we recommend that future efforts of using entomopathogenic nematodes, especially S. weiseri, be directed against C. splendana and that there be a continued effort to find more virulent nematode isolates against larvae of C. elephas.  相似文献   

15.
Fruit bins infested with diapausing larvae of codling moth larvae, Cydia pomonella (L.), are a source of reinfestation of orchards and may jeopardize the success of mating disruption programs and other control strategies. Bins are not routinely treated for control of overwintering codling moth before placing them in orchards. Entomopathogenic nematodes provide a noninsecticidal alternative to methyl bromide that could be applied at the time bins are submerged in dump tanks at the packing house for flotation of fruit. Diapausing codling moth larvae in miniature fruit bins were highly susceptible to infective juveniles of Steinernema carpocapsae (Weiser). Immersion of bins in suspensions of S. carpocapsae ranging from 5 to 100 infective juveniles per milliliter of water resulted in 68-100% mortality. Immersion times of 1 or 5 min in suspensions with 5 infective juveniles of S. carpocapsae per milliliter of water, with and without Tween 80 (0.01%), yielded essentially the same mortality of codling moth larvae. Highest mortalities in codling moth larvae (88%) after treatment of bins in suspensions of 5 infective juveniles of S. carpocapsae per milliliter of water were observed after incubation for 24 h at 25 degrees C and 70% RH. Lowest mortalities (37%) were observed after incubation at 15 degrees C and 35% RH. Comparative tests conducted with Heterorhabditis marelatus Liu & Berry, Steinernema kraussei (Steiner), and S. carpocapsae with 5 infective juveniles per milliliter of water resulted in 21.7, 53.9, and 68.7% mortality, respectively. The use of miniature fruit bins as described in this article provides an effective means of assessing nematode efficacy without the cumbersome size of commercial bins.  相似文献   

16.
The purpose of this study was to analyse the radiosensitivity of codling moth Cydia pomonella (L.) strains from different elevations, 850 and 2000 m above the sea level. The level of sterility of parental males and inherited sterility of F1 males in the strain from the higher elevation at all radiation doses (80, 100 and 150 Gy) was significantly lower, than in the strain from the lower elevation. The frequency of chromosomal aberrations in the F1 generation in the strain from the higher elevation was significantly lower at 80 and 150 Gy than that in strain from the lower elevation. The average number of eupyrene sperm in the F1 males descended from irradiated males was higher in the strain from the higher elevation than in the strain from the lower elevation. Inheritance of the resistance/susceptible to ionizing radiation were examined by standard genetic cross‐breeding analysis confirming the polygenic nature of the differences in radiosensitivity. The implications of these findings for the implementation of area‐wide integrated pest management programmes that integrate the use of sterile insects are discussed.  相似文献   

17.
Haemolymph from diapausing codling moth larvae contain a dominant soluble protein, which is of minor significance in the haemolymph of nondiapausing larvae. This haemolymph protein is accumulated during the ultimate larval instar and its concentration is maintained throughout diapause development. Larvae induced into a diapause-like condition following topical treatment with a juvenile hormone mimie stored the haemolymph protein.  相似文献   

18.
Codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) is the key pest of pome fruit in South Africa, and it’s control in apple and pear orchards relies on the application of insecticides and pheromone‐mediated mating disruption. Development of resistance to insecticides and placement of restrictions on the use of certain insecticides has made control of codling moth in South Africa increasingly problematic. The use of the sterile insect technique (SIT) as a control tactic for codling moth is under investigation as a potential addition to the current control strategy. We investigated the radiosensitivity of a laboratory strain of codling moth that was established from moths collected from commercial and organic orchards in the Western Cape, South Africa. Fecundity and fertility of this strain following radiation were consistent with values for the codling moth strain in the Canadian rearing facility in British Columbia. For both strains, the female codling moth was considerably more radiosensitive than the male. At a radiation dose of 100 Gy or higher, treated females were 100% sterile. The fertility of the South African strain was higher (86.3%) than for the Canadian strain (71.9%). This difference in fertility between the two strains was maintained when the dose of radiation was 100 Gy. However, the level of fertility was very similar between the two strains for doses ≥150 Gy. Therefore, based upon previously published work and the data from this study, an operational dose of 150 Gy is recommended for future codling moth SIT programmes in South Africa.  相似文献   

19.
In laboratory studies, we demonstrated that five native entomopathogenic nematode species/isolates caused 100% mortality of Spodoptera cilium larvae, a soil surface-feeding pest of turfgrass. At 25 infective juveniles/cm2 applied to sod, two selected Turkish species, Steinernema carpocapsae and Heterorhabditis bacteriophora (Sarigerme isolate), averaged 77% and 29% larval mortality, respectively.  相似文献   

20.
Oriental fruit moth Grapholita molesta (Busck, 1916) (Lepidoptera: Tortricidae) is considered a major pest in temperate fruit trees, such as peach and apple. Entomopathogenic nematodes (EPNs) are regarded as viable for pest management control due to their efficiency against tortricid in these trees. The objective of this study was to evaluate the effectiveness of native EPNs from Rio Grande do Sul state against pre-pupae of G. molesta under laboratory and field conditions. In the laboratory, pre-pupae of G. molesta were placed in corrugated cardboard sheets inside glass tubes and exposed to 17 different EPNs strains at concentrations of 6, 12, 24, 48 and 60 IJs/cm2 and maintained at 25 °C, 70 ± 10% RH and photophase of 16 h. Insect mortality was recorded 72 h after inoculation of EPNs. Steinernema rarum RS69 and Heterorhabditis bacteriophora RS33 were the most virulent strains and selected for field application (LC95 of 70.5 and 53.8 IJs/cm2, respectively). Both strains were highly efficient under field conditions when applied in aqueous suspension directed to larvae on peach tree trunk, causing mortality of 94 and 97.0%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号