首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lecanicillium muscarium Zare and Gams (previously known as Verticillium lecanii) is a well-known pathogen of arthropods. The influence of six fungicides on growth, sporulation, conidial germination and cuticle-degrading enzyme production by L. muscarium was investigated under laboratory conditions. The maximum reduction in vegetative growth, sporulation and conidial germination in relation to the control treatment was observed for propiconazole, whereas mancozeb and chlorothalonil caused the lowest reduction in these parameters. Propiconazole and pyraclostrobin caused higher reduction in enzyme activities (chitinase, Pr1, Pr2 and lipase) at all three concentrations (10, 100 and 1000 µg/ml), whereas low reduction in enzyme activities was caused by chlorothalonil and mancozeb when used at 10 µg/ml. The data presented can be used for future recommendations of these fungicides in Integrated Pest Management (IPM) programmes where L. muscarium is an important control agent.  相似文献   

2.
The influence of six chemical insecticides on growth, sporulation, conidial germination and cuticle-degrading enzyme production by Isaria fumosorosea were investigated under laboratory conditions. Maximum reduction in vegetative growth, sporulation and conidial germination in relation to the control treatment was observed for Chloranthraniliprole whereas Indoxacarb proved to be the safest insecticide causing lowest reduction in these parameters. Chloranthraniliprole, Chlorpyrifos and Chlorfenapyr caused higher reduction in enzyme activities (chitinase, Pr1, Pr2 and lipase) at all three concentrations whereas very low reduction in enzyme activities was caused by Hubendamide+ Avermectin and Indoxacarb when used at 10 µg/ml. The data presented can be used for future recommendations of these insecticides in IPM programmes where I. fumosorosea is an important control agent.  相似文献   

3.
Twenty six Rhizobium strains isolated from root nodules of Sesbania sesban were studied for chitinase activity on chitin agar plates. Among them, only 12 strains showed chitinase activity. The strain showing the highest chitinase activity was selected based on maximum clear zone/colony size ratio on chitin agar plates and chitinase activity in culture filtrate. The strain was identified as Rhizobium sp. which showed a high degree of similarity with Rhizobium radiobacter (= Agrobacterium radiobacter). The cultural and nutritional conditions were optimized for maximum chitinase activity. The Rhizobium sp. exhibited maximum chitinase activity after 36 h of incubation, at neutral pH. Among the different nutritional sources, arabinose and yeast extract were found to be good inducers for chitinase activity. Rhizobium sp. could degrade and utilize dead mycelia of Aspergillus flavus, Aspergillus niger, Curvularia lunata, Fusarium oxysporum and Fusarium udum.  相似文献   

4.
Beauveria bassiana s.l. is a cosmopolitan fungus used in the control of different species of arthropods. The current study explored the virulence for ticks, proteolytic and lipolytic activities of 10 Brazilian B. bassiana s.l. isolates. For this purpose, Rhipicephalus microplus biological parameters was evaluated after immersion of the engorged females in fungal suspension (108 conidia mL?1) and the enzymatic activities were performed posteriorly the fungal growth in minimal medium. After the biological assays, five isolates changed all parameters analysed with highest efficacy of approximately 61% (CG 206) and 66% (CG 481). However, we observed that the most virulent isolates did not show the highest enzymatic activities. Interestingly, CG 500, considered an isolate of intermediate efficacy, demonstrated higher enzymatic activities than the other isolates in four of five analyses (total protease, Pr1, Pr2 and lipase; p?相似文献   

5.
6.
The chitinase producing Penicillium sp. LYG 0704 was procured from soil of the Chonnam National University crop field. The chitinase activity was detected after the first day which increased gradually and reached its maximum after 3 days of cultivation. The chitinase was purified from a culture medium by precipitation with isopropanol and column chromatography with Mono Q and Butyl-Sepharose. The molecular mass of chitinase was estimated to be 47 kDa by SDS–PAGE. Optimal pH and temperature were 5.0 and 40 °C, respectively. The N-terminal amino acid sequence of the enzyme was determined to be 1AGSYRSVAYFVDWAI15. The fully cloned gene, 1287 bp in size, encoded a single peptide of 429 amino acids. BLAST search of the chitinase gene sequence showed similarity with chitinase of Aspergillus fumigatus Af293 chitinase gene (58%) and A. fumigatus class V chitinase ChiB1 gene (56%).  相似文献   

7.
A chitinase producing bacterium Enterobacter sp. NRG4, previously isolated in our laboratory, has been reported to have a wide range of applications such as anti-fungal activity, generation of fungal protoplasts and production of chitobiose and N-acetyl D-glucosamine from swollen chitin. In this paper, the gene coding for Enterobacter chitinase has been cloned and expressed in Escherichia coli BL21(DE3). The structural portion of the chitinase gene comprised of 1686 bp. The deduced amino acid sequence of chitinase has high degree of homology (99.0%) with chitinase from Serratia marcescens. The recombinant chitinase was purified to near homogeneity using His-Tag affinity chromatography. The purified recombinant chitinase had a specific activity of 2041.6 U mg−1. It exhibited similar properties pH and temperature optima of 5.5 and 45°C respectively as that of native chitinase. Using swollen chitin as a substrate, the Km, kcat and catalytic efficiency (kcat/Km) values of recombinant chitinase were found to be 1.27 mg ml−1, 0.69 s−1 and 0.54 s−1M−1 respectively. Like native chitinase, the recombinant chitinase produced medicinally important N-acetyl D-glucosamine and chitobiose from swollen chitin and also inhibited the growth of many fungi.  相似文献   

8.
Extracellular chitinase production by the entomopathogenic fungus, Isaria fumosorosea IF28.2 was studied by using submerged fermentation. Maximum chitinase production (178.34±3.91 mU/mL) was obtained when fermentation was carried out at 25°C for 120 h using 72-h-old mycelium in a medium. The effect of inoculum size on chitinase activity was also observed and maximum chitinase activity (159.41±2.91 mU/mL) was obtained with an inoculum size of 3 discs while an incubation period of 96 h proved the most active inducer of chitinase production yielding a chitinase activity of 186.14±3.81 mU/mL. Colloidal chitin (1.5%, w/v) proved to be the best concentration. The optimum pH for chitinase production was 5.7 while 25°C proved to be the best temperature for chitinase production. Supplementation of additional carbon source like 1.5% N-acetylglucosamine (GlcNAc) showed further enhancement in chitinase production. The divalent metal salts, CaCl2, MgCl2 and ZnSO4, inhibited chitinase activity at 10 and 100 mM concentration, whereas inhibition of chitinase activity by KCl, FeSO4 and EDTA was observed only at higher concentrations. The results presented in this study increase the knowledge on chitinase production in I. fumosoroseus opening new avenues for the study of the role of this enzyme in virulence against different insect pests during the infection process.  相似文献   

9.
Summary In this study flake chitin, crab shell chitin, mushroom stalk, fungal cell wall, wheat bran and rice bran were used as substrate for chitinase production by Enterobacter sp. NRG4 under submerged and solid state fermentation (SSF) conditions. Enterobacter sp. NRG4 produced 72 and 49.7 U/ml of chitinase in presence of cell walls of Candida albicans and Fusarium moniliforme in submerged fermentation. Under SSF, maximum chitinase production was 965 U/g solid substrate with flake chitin and wheat bran (1:3 ratio) at 75% moisture level after 144 h. The purified chitinase inhibited hyphal extension of Fusarium moniliforme, Aspergillus niger, Mucor rouxi and Rhizopus nigricans. The chitinase was effective in release of protoplasts from Trichoderma ressei, Pleurotus florida, Agaricus bisporus and Aspergillus niger. Protoplasts yield was maximum with 60 mg of 24 h old fungal mycelium incubated with 60 U of chitinase and 60 U of cellulase.  相似文献   

10.
Allosamidin, a product of Streptomyces sp. No 1713, inhibited Bombyx mori chitinase specifically in a competitive way with a Ki o f about 0.1 μm. The effect of allosamidin on chitinases from r Streptomyces griseus and Serratia marcescens was weaker, about 1/500 that on B. mori chitinase. Allosamidin did not inhibit yam chitinase, lysozymes of hen egg-white or human urine, or B. mori α-N-acetyl-d-glucosaminidase. The results suggest that allosamidin is a specific inhibitor of the insect chitinase.  相似文献   

11.
Aims: To reveal the cause of the difference in activity of chitinase A from Vibrio proteolyticus and chitinase A from a strain of Vibrio carchariae (a junior synonym of Vibrio harveyi), we investigated the pH‐dependent activity of full‐length V. proteolyticus chitinase A and a truncated recombinant corresponding to the V. harveyi form of chitinase A. Methods and Results: After overexpression in Escherichia coli strain DH5α, the full‐length and truncated recombinant chitinases were purified by ammonium sulphate precipitation and anion exchange column chromatography. Chitinase activity was measured at various pH values using α‐crystal and colloidal chitins as the substrate. The pH‐dependent patterns of the relative specific activities for α‐crystal chitin differed between the full‐length and truncated recombinant chitinases, whereas those for colloidal chitin were similar to each other. Conclusion: The difference in the activity of V. proteolyticus chitinase A and V. harveyi chitinase A might be partly due to a change in the pH dependence of the chitinase activities against α‐crystal chitin, resulting from C‐terminal processing. Significance and Impact of Study: The present results are important findings for not only ecological studies on the genus Vibrio in association with survival strategies, but also phylogenetic studies.  相似文献   

12.
The chitinase enzyme was identified in isolated bacteria of maize rhizosphere as well as its potential for the biological control of fungi associated at seeds of the same plant. The production of chitinase enzyme was found in the genera identified as Acinetobacter, Bacterium, Burkholderia, Paenibacillus, Pseudomonas, Rhizobium, Shewanella, Sphingomonas and Stenotrophomonas. Bacterial isolates with ability to degrade fungal mycelium from maize fungi as Fusarium and Alternaria among others, were detected. Bacterial chitinase activity and the presence of the chiA gene were determined. The inoculation of chitinolytic bacteria showed a positive effect in the control of fungi in maize seeds. The results support the potential use of chitinase enzyme producing bacteria on the control of phytopathogenic fungi.  相似文献   

13.
A chitinase gene (pCHi58) encoding a 58 kDa chitinase was isolated from theSerratia marcescens KCTC 2172 cosmid library. The chitinase gene consisted of a 1686 bp open reading frame that encoded 562 amino acids.Escherichia coil harboring the pChi58 gene secreted a 58 kDa chitinase into the culture supernatant. The 58 kDa chitinase was purified using a chitin affinity column and mono-S column. A nucleotide andN-terminal amino acid sequence analysis showed that the 58 kDa chitinase had a leader peptide consisting of 23 amino acids which was cleaved prior to the 24th alanine. The 58 KDa chitinase exhibited a 98% similarity to that ofS. marcescens QMB 1466 in its nuclotide sequence. The chitinolytic patterns of the 58 kDa chitinase released N,N′-diacetyl chitobiose (NAG2) as the major hydrolysis end-product with a trace amount ofN-acetylglucosamine. When a 4-methylumbellyferyl-N-acetylglucosamin monomer, dimmer, and tetramer were used as substrates, the 58 kDa chitinase did not digest the 4-Mu-NAG monomer (analogue of NAG2), thereby indicating that the 58 kDa chitinase was likely an endochitinase. The optimum reaction temperature and pH of the enzyme were 50°C and 5.0, respectively.  相似文献   

14.
At the nonpermissive temperature, somatic embryos of the temperature-sensitive (ts) carrot (Daucus carota L.) cell variant ts11 only proceed beyond the globular embryo stage in the presence of medium conditioned by wild-type cells. The causative component in the conditioned medium has been identified as an acidic 32 kD endochitinase. An antiserum raised against the 32 kD chitinase detected this protein in culture medium from ts11 embryo cultures grown at the permissive temperature as well as at the nonpermissive temperature. No difference in biochemical characteristics or in effect on ts11 embryo development could be detected between the 32 kD chitinase purified from wild-type cultures and the chitinase from ts11 cultures grown at the permissive or at the nonpermissive temperature. Compared to the amount present in a ts11 embryo culture at the permissive temperature, a reduction in the amount of 32 kD chitinase was observed during the temperature-sensitive period at the nonpermissive temperature. These results imply that the arrested embryo phenotype of ts11 is not the result of a structural difference in its 32 kD chitinase, but is the result of a transient decrease in the amount of 32 kD chitinase present. Morphological observations indicate that the ts11 phenotype is pleiotropic and also affects the cell wall of nonembryogenic cells. © 1995 Wiley-Liss, Inc.  相似文献   

15.
Streptomyces coelicolor A3(2) possesses nine genes for family 18 chitinases and two for family 19, showing high multiplicity. By hybridization analyses, distribution of those chitinase genes was investigated in six other Streptomyces species covering the whole phylogenetic range based on 16S rDNA sequences. All strains showed high-multiplicity of chitinase genes, like S. coelicolor A3(2). The phylogeny and gene organization of the family 18 chitinase genes cloned from Streptomyces species so far were then analyzed to investigate the gene evolution. It was concluded that Streptomyces already possessed a variety of chitinase genes prior to branching into many species, and that the ancestral genes of chiA and chiB have been generated by gene-duplication. In the course of the analyses, evidence that the chi30 and chi40 genes of S. thermoviolaceus were derived from their corresponding original chitinase genes by losing gene parts for substrate-binding domains and fibronectin type III-like domains was obtained. It was thus shown that gene-duplication and domain-deletion were implicated in generating the high diversity and multiplicity of chitinase genes in Streptomyces species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Pseudomonas fluorescens isolate 1 (Pfl) protected finger millet plants treated with the ragi blast fungus, Pyricularia grisea, by upto 27% depending on the cultivar. Induction of pathogenesis-related proteins, viz., chitinase by Pfl isolate, was studied against Py. grisea. The activity of chitinase from plants treated with Pfl was significantly higher than the control plant after pathogen inoculation in all cultivars tested. Chitinase in the cultivars, with and without challenge by Py. grisea, revealed changes in the isoform pattern by western blot analysis. Chitinase was purified by affinity chromatography from the Pfl-treated leaves. It showed a single band at 57 kDa after SDS-PAGE. Western blot analysis using barley chitinase antiserum confirmed a 57 kDa chitinase. The chitinase had anti-fungal activity against Py. grisea in vitro. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Aeromonas caviae CB101 secretes four chitinases (around 92, 82, 70, and 55 kDa) into the culture supernatant. A chitinase gene chi1 (92 kDa) was previously studied. To identify the genes encoding the remaining three chitinases, a cosmid library of CB101 was constructed to screen for putative chitinase genes. Nine cosmid clones were shown to contain a chitinase gene on chitin plates. Surprisingly, all the positive clones contained chi1. In parallel, we purified the 55-kDa chitinase (Chi55) from the CB101 culture supernatant by continuous DEAE-Sepharose and Mono-Q anion exchange chromatography. The N-terminal amino acid sequence of the purified chitinase exactly matched the N-terminal sequence of mature Chi1, indicating that the purified chitinase (Chi55) is a truncated form of Chi1. The N- and C-terminal domains of chi1 were cloned, expressed, and purified, separately. Western blots using anti-sera to the N- and C-terminal domains of chi1 on the chitinases of CB101 showed that the four chitinases in the culture supernatant are either chi1 or C-terminal truncations of Chi1. In addition, the CB101 chi1 null mutant showed no chitinolytic activity, while CB101 chi1 null mutant complemented by pUC19chi1 containing chi1 showed all four chitinases in gel activity assay. These data indicated that all four chitinases secreted by CB101 in the culture supernatant are the product of one chitinase gene chi1.  相似文献   

18.
Secretion of catabolic extracellular enzymes (ECE) is the hallmark of the infection of insects through the cuticle by entomopathogenic fungi (EPF). In this paper, we show that germinating conidia of Beauveria bassiana (Bb) regulate the synthesis of ECE through a multiple control mode during the initial stages of germination. We tested Bb conidial growth on aphid exuviae with or without supplementation of additional carbon and/or nitrogen (C/N) compounds. To understand the interrelation between conidial germination during growth, the synthesis of ECE activity, free amino nitrogen (FAN), glucose and fungal dry weight biomass were measured. Immediately (0.25 h) upon incubation of conidia, activity of subtilisin-like Pr1 and trypsin-like Pr2 enzymes and chitinase (NAGase) was observed in the culture filtrates. At 0.25 h, addition of exogenous C-source resulted in higher activities of Pr1 and Pr2, respectively. Conversely at 0.25 h, addition of N-sources repressed the synthesis of Pr2, but that of Pr1. C/N repression was observed only for exponentially growing mycelia. NAGase activity remained at basal level and unaffected by added C/N. We conclude that C/N repression occurs only when it is necessary for the Bb infective structures to establish a nutritional relationship with the host structures.  相似文献   

19.
Strain improvement was carried out to obtain higher chitinase and protein by inter-specific protoplast fusion between Trichoderma harzianum and Trichoderma viride. Fusant HF9 and parental strains of Trichoderma were compared for chitinase and protein production. 1% of glucose, sucrose and fungal cell wall (Rhizoctonia solani), were used as carbon source for cultivation of Trichoderma and fungal cell wall was the best to induce chitinase and protein. Usage of 0.5% colloidal chitin for the fungal growth under aerated conditions at pH 6.5 and 28°C led to higher chitinase and protein production. In these conditions fusant Trichoderma HF9 in comparison with parent strains had 3-, 2.5- and 1.5-fold increase of total chitinase, specific chitinase and protein, respectively. SDS-PAGE analysis revealed that it had 9 major protein bands with up-regulation compared to parent strains. Amino acid analysis showed that protein of culture filtrate of T. harzianum, T. viride and fusant Trichoderma HF9 had 8, 6 and 10 amino acids, respectively. The results obtained suggested that fusant HF9 could be an integration of T. harzianum and T. viride through protoplast fusion.  相似文献   

20.
The gene cloning, purification, properties, kinetics, and antifungal activity of chitinase from marine Streptomyces sp. DA11 associated with South China sponge Craniella australiensis were investigated. Alignment analysis of the amino acid sequence deduced from the cloned conserved 451 bp DNA sequence shows the chitinase belongs to ChiC type with 80% similarity to chitinase C precursor from Streptomyces peucetius. Through purification by 80% ammonium sulfate, affinity binding to chitin and diethylaminoethyl-cellulose anion-exchange chromatography, 6.15-fold total purification with a specific activity of 2.95 Umg−1 was achieved. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed a molecular weight of approximately 34 kDa and antifungal activities were observed against Aspergillus niger and Candida albicans. The optimal pH, temperature, and salinity for chitinase activity were 8.0, 50°C, and 45 g‰ psu, respectively, which may contribute to special application of this marine microbe-derived chitinase compared with terrestrial chitinases. The chitinase activity was increased by Mn2+, Cu2+, and Mg2+, while strongly inhibited by Fe2+ and Ba2+. Meanwhile, SDS, ethyleneglycoltetraacetic acid, urea, and ethylenediaminetetraacetic acid were found to have significantly inhibitory effect on chitinase activity. With colloidal chitin as substrates instead of powder chitin, higher V max (0.82 mg product/min·mg protein) and lower K m (0.019 mg/ml) values were achieved. The sponge’s microbial symbiont with chitinase activity may contribute to chitin degradation and antifungal defense. To our knowledge, it was the first time to study sponge-associated microbial chitinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号