首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ryanodine receptors (RyRs) are the Ca2+ release channels in the sarcoplasmic reticulum in striated muscle which play an important role in excitation-contraction coupling and cardiac pacemaking. Single channel recordings have revealed a wealth of information about ligand regulation of RyRs from mammalian skeletal and cardiac muscle (RyR1 and RyR2, respectively). RyR subunit has a Ca2+ activation site located in the luminal and cytoplasmic domains of the RyR. These sites synergistically feed into a common gating mechanism for channel activation by luminal and cytoplasmic Ca2+. RyRs also possess two inhibitory sites in their cytoplasmic domains with Ca2+ affinities of the order of 1 μM and 1 mM. Magnesium competes with Ca2+ at these sites to inhibit RyRs and this plays an important role in modulating their Ca2+-dependent activity in muscle. This review focuses on how these sites lead to RyR modulation by Ca2+ and Mg2+ and how these mechanisms control Ca2+ release in excitation-contraction coupling and cardiac pacemaking.  相似文献   

2.

Background  

E-NTPase/E-NTPDase is activated by millimolar concentrations of Ca2+ or Mg2+ with a pH optimum of 7.5 for the hydrolysis of extracellular NTP and NDP. It has been generally accepted that E-NTPase/E-NTPDase plays regulatory role in purinergic signalling, but other functions may yet be discovered.  相似文献   

3.
The non-selective slow vacuolar (SV) channel can dominate tonoplast conductance, making it necessary to tightly control its activity. Applying the patch-clamp technique to vacuoles from sugar beet (Beta vulgaris L.) taproots we studied the effect of divalent cations on the vacuolar side of the SV channel. Our results show that the SV channel has two independent binding sites for vacuolar divalent cations, (i) a less selective one, inside the channel pore, binding to which impedes channel conductance, and (ii) a Ca2+-selective one outside the membrane-spanning part of the channel protein, binding to which stabilizes the channels closed conformations. Vacuolar Ca2+ and Mg2+ almost indiscriminately blocked ion fluxes through the open channel pore, decreasing measured single-channel current amplitudes. This low-affinity block displays marked voltage dependence, characteristic of a permeable blocker. Vacuolar Ca2+—with a much higher affinity than Mg2+—slows down SV channel activation and shifts the voltage dependence to more (cytosol) positive potentials. A quantitative analysis results in a model that exactly describes the Ca2+-specific effects on the SV channel activation kinetics and voltage gating. According to this model, multiple (approximately three) divalent cations bind with a high affinity at the luminal interface of the membrane to the channel protein, favoring the occupancy of one of the SV channels closed states (C2). Transition to another closed state (C1) diminishes the effective number of bound cations, probably due to mutual repulsion, and channel opening is accompanied by a decrease of binding affinity. Hence, the open state (O) is destabilized with respect to the two closed states, C1 and C2, in the presence of Ca2+ at the vacuolar side. The specificity for Ca2+ compared to Mg2+ is explained in terms of different binding affinities for these cations. In this study we demonstrate that vacuolar Ca2+ is a crucial regulator to restrict SV channel activity to a physiologically meaningful range, which is less than 0.1% of maximum SV channel activity.Abbreviation SV Slow vacuolar  相似文献   

4.
To test the effects of ketamine on metal ion balance in the spinal cord tissues after ischemic reperfusion (I/R), 24 white adult Japanese rabbits were randomly assigned to sham operation group, I/R group or ketamine-treated I/R group. Spinal cord injuries in I/R group and ketamine-treated I/R group were induced by aortic occlusions. Rabbits in ketamine-treated I/R group were intravenously infused 10 mg/kg ketamine twice: once at 10 min before aortic clamping and once at the onset of reperfusion. Post-operative neurological functions and concentrations of ions Ca2+, Mg2+, Cu2+ and Zn2+ in the spinal cord were assessed. Compared with the sham operation group, rabbits in the I/R group showed significantly worsened neurological functions as scored with the modified Tarlov criteria and altered concentrations of ions Ca2+, Mg2+, Cu2+ and Zn2+. These unfavorable changes were significantly reversed in the ketamine-treated I/R group, suggesting that the potent protective effects of ketamine against the I/R-induced spinal cord injuries may be due to its ability to maintain ion balance in the I/R affected tissues.  相似文献   

5.
Annexin A5 (AnxA5) binds to negatively charged phospholipid membranes in a Ca2+ dependent manner. Several studies already demonstrate that Mg2+ ions cannot induce the binding. In this paper, quartz crystal microbalance with dissipation monitoring (QCM-D), Brewster angle microscopy (BAM), polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) and molecular dynamics (MD) were performed to elucidate the high specificity of Ca2+ versus Mg2+ on AnxA5 binding to membrane models. In the presence of Ca2+, AnxA5 showed a strong interaction with lipids, the protein is adsorbed mainly in α-helix under the DMPS monolayer, with an orientation of the α-helices axes slightly tilted with respect to the normal of the phospholipid monolayer as revealed by PMIRRAS. The Ca2+ ions interact strongly with the phosphate group of the phospholipid monolayer. In the presence of Mg2+, instead of Ca2+, no interaction of AnxA5 with lipids was detected. Molecular dynamics simulations allow us to explain the high specificity of calcium. Ca2+ ions are well exposed and surrounded by labile water molecules at the surface of the protein, which then favour their binding to the phosphate group of the membrane, explaining their specificity. To the contrary, Mg2+ ions are embedded in the protein structure, with a smaller number of water molecules strongly bound. We conclude that the embedded Mg2+ ions inside the AnxA5 structure are not able to link the protein to the phosphate group of the phospholipids for this reason.  相似文献   

6.
In the absence of exogenous Ca2+ and Mg2+ and in the presence of EGTA, which favours the release of endogenous Ca2+, the polyamine spermine is able to stimulate the activity of pyruvate dehydrogenase complex (PDC) of energized rat liver mitochondria (RLM). This stimulation exhibits a gradual concentration-dependent trend, which is maximum, about 140%, at 0.5 mM concentration, after 30 min of incubation. At concentrations higher than 0.5 mM, spermine still stimulates PDC, when compared with the control, but shows a slight dose-dependent decrease. Changes in PDC stimulation are very close to the phosphorylation level of the E subunit of PDC, which regulates the activity of the complex, but it is also the target of spermine. In other words, progressive dephosphorylation gradually enhances the stimulation of RLM and progressive phosphorylation slightly decreases it. These results provide the first evidence that, when transported in RLM, spermine can interact in various ways with PDC, showing dose-dependent behaviour. The interaction most probably takes place directly on a specific site for spermine on one of the regulatory enzymes of PDC, i.e. pyruvate dehydrogenase phosphatase (PDP). The interaction of spermine with PDC may also involve activation of another regulatory enzyme, pyruvate dehydrogenase kinase (PDK), resulting in an increase in E phosphorylation and consequently reduced stimulation of PDC at high polyamine concentrations. The different effects of spermine in RLM are discussed, considering the different activities of PDP and PDK isoenzymes. It is suggested that the polyamine at low concentrations stimulates the isoenzyme PDP2 and at high concentrations it stimulates PDK2.  相似文献   

7.
Isocitrate dehydrogenase kinase/phosphatase (AceK) is a bifunctional enzyme with both kinase and phosphatase activities that are activated by Mg2+. We have studied the interactions of Mn2+and Mg2+ with AceK using isothermal titration calorimetry (ITC) combined with molecular docking simulations and show for the first time that Mn2+ also activates the enzyme activities. However, Mn2+ and Mg2+ exert their effects by different mechanisms. Although they have similar binding constants (of 1.11?×?105 and 0.98?×?105 M?1, respectively) for AceK and induce conformational changes of the enzyme, they do not compete for the same binding site. Instead Mn2+ appears to bind to the regulatory domain of AceK, and its effect is transmitted to the active site of the enzyme by the conformational change that it induces. The information in this study should be very useful for understanding the molecular mechanism underlying the interaction between AceK and metal ions, especially Mn2+ and Mg2+.  相似文献   

8.
9.
A diet containing an inert marker (ballotini beads, quantified by X-radiography) was used to quantify the transport of two essential minerals, Ca2+ and Mg2+ from the diet during the digestion and absorption of a single meal of commercial trout food (3% ration). Initially, net uptake of Ca2+ was observed in the stomach followed by subsequent Ca2+ fluxes along the intestine which were variable, but for the most part secretory. This indicated a net secretion of Ca2+ along the intestinal tract resulting in a net assimilation of dietary Ca2+ of 28%. Similar handling of Ca2+ and Mg2+ was observed along the gastrointestinal tract (GI), although net assimilation differed substantially between the cations, with Mg2+ assimilation being close to 60%, mostly a result of greater uptake by the stomach. The stomach displayed the highest net uptake rates for both cations (1.5 and 1.3 mmol kg−1 fish body mass for Ca2+ and Mg2+, respectively), occurring within 2 h following ingestion of the meal. Substantial secretions of both Ca2+ and Mg2+ were observed in the anterior intestine, which were attributed to bile and other intestinal secretions, while fluxes in the mid and posterior intestine were small and variable. The overall patterns of Ca2+ and Mg2+ handling in the GI tract were similar to those observed for Na+ and K+ (but not Cl) in a previous study. Overall, these results emphasize the importance of dietary electrolytes in ionoregulatory homeostasis.  相似文献   

10.
SODIUM-potassium-activated, magnesium-dependent, adenosine triphosphatase (Na+, K+, Mg2+-ATPase) is widely accepted as an essential factor in sodium transport1 and observations on fish substantiate this view. There are concurrent increases, for example, of both Na+, K+, Mg2+-ATPase activity and osmoregulatory sodium transport2, in the intestinal mucosae3,4 and the gills3,5 of euryhaline teleosts during adaptation to seawater. Furthermore, the gills of stenohaline seawater teleosts, which actively secrete sodium, exhibit higher Na+, K+, Mg2+-ATPase activity than the gills of stenohaline freshwater teleosts, which do not actively secrete sodium3,5. Na+, K+, Mg2+-ATPase therefore seems to be important in maintaining tissue osmolarity well below that of seawater. It is disquieting to report therefore that Na+, K+, Mg2+-ATPase activity in the intestinal mucosae and gills of marine teleosts is inhibited by the organochlorine insecticide DDT. This observation may help to clarify the unexplained sensitivity of teleosts to DDT6.  相似文献   

11.
AtMHX is a vacuolar transporter encoded by a single gene in Arabidopsis. Electrophysiological analysis showed that it exchanges protons with Mg2+, Zn2+, and Fe2+ ions. The physiological impact of AtMHX was examined so far only in tissue-culture grown seedlings of tobacco plants overexpressing this transporter. Here we investigated the impact of AtMHX on growth, response to different metals, and metal accumulation of mature tobacco plants, as well as Arabidopsis plants in which we overexpressed this transporter. The analyses were carried out in hydroponic growth-systems, in which the mineral composition could be effectively controlled, and the metal content of roots could be examined. Transformed tobacco plants showed necrotic lesions and apical burnings upon growth with increased levels of Mg2+, Zn2+, and Cd2+ ions. This suggested that AtMHX can carry in planta not only Mg2+ and Zn2+ ions, as previously deduced based on observations in tissue-culture, but also Cd2+ ions. Transformed plants of both tobacco and Arabidopsis showed a reduction in plant size. However, the overall response of Arabidopsis to AtMHX overexpression was minor. No change was detected in the mineral content of any organ of the transgenic tobacco or Arabidopsis plants. The necrotic lesions in tobacco resembled those seen in plants with perturbed proton balancing, raising the assumption that AtMHX can affect the proton homeostasis of cells. In agreement with this assumption, the transformed tobacco plants had increased expression and activity of the vacuolar H+-ATPase. The relative significance of AtMHX for metal and proton homeostasis still has to be elucidated.  相似文献   

12.
HP0059, an uncharacterized gene of Helicobacter pylori, encodes a 284-aa-long protein containing a nuclear localization sequence (NLS) and multiple leucine-rich heptad repeats. Effects of HP0059 proteins in human stomach cells were assessed by incubation of recombinant HP0059 proteins with the AGS human gastric carcinoma cell line. Wild-type HP0059 proteins showed cytotoxicity in AGS cells in a concentration-dependent manner, whereas NLS mutant protein showed no effect, suggesting that the cytotoxicity is attributed to host nuclear localization. AGS cells transfected with pEGFP-HP0059 plasmid showed strong GFP signal merged to the chromosomal DNA region. The chromosome was fragmented into multiple distinct dots merged with the GFP signal after 12 h of incubation. The chromosome fragmentation was further explored by incubation of AGS chromosomal DNA with recombinant HP0059 proteins, which leaded to complete degradation of the chromosomal DNA. HP0059 protein also degraded circular plasmid DNA without consensus, being an indication of DNase I activity. The DNase was activated by MgCl2, but not by CaCl2. The activity was completely blocked by EDTA. The optimal pH and temperature for DNase activity were 7.0–8.0 and 55°C, respectively. These results indicate that HP0059 possesses a novel DNase I activity along with a role in the genomic instability of human gastric cells, which may result in the transformation of gastric cells.  相似文献   

13.
In a previous study we evaluated muscle blood flow and muscle metabolism in patients diagnosed with chronic fatigue syndrome (CFS). To better understand muscle metabolism in CFS, we re-evaluated our data to calculate free Magnesium levels in skeletal muscle. Magnesium is an essential cofactor in a number of cell processes. A total of 20 CFS patients and 11 controls were evaluated. Phosphorus magnetic resonance spectroscopy from the medial gastrocnemius muscle was used to calculate free Mg2+ from the concentrations and chemical shifts of Pi, PCr, and beta ATP peaks. CFS patients had higher magnesium levels in their muscles relative to controls (0.47 + 0.07 vs 0.36 + 0.06 mM, P < 0.01), although there was no difference in the rate of phosphocreatine recovery in these subjects, as reported earlier. This finding was not associated with abnormal oxidative metabolism as measured by the rate of recovery of phosphocreatine after exercise. In summary, calculation of free Mg2+ levels from previous data showed CFS patients had higher resting free Mg2+ levels compared to sedentary controls.  相似文献   

14.
Competitive binding of Fe3+, Cr3+, and Ni2+ to transferrin (Tf) was investigated at various physiological iron to Tf concentration ratios. Loading percentages for these metal ions are based on a two M n+ to one Tf (i.e., 100% loading) stoichiometry and were determined using a particle beam/hollow cathode–optical emission spectroscopy (PB/HC-OES) method. Serum iron concentrations typically found in normal, iron-deficient, iron-deficient from chronic disease, iron-deficient from inflammation, and iron-overload conditions were used to determine the effects of iron concentration on iron loading into Tf. The PB/HC-OES method allows the monitoring of metal ions in competition with Fe3+ for Tf binding. Iron-overload concentrations impeded the ability of chromium (15.0 μM) or nickel (10.3 μM) to load completely into Tf. Low Fe3+ uptake by Tf under iron-deficient or chronic disease iron concentrations limited Ni2+ loading into Tf. Competitive binding kinetic studies were performed with Fe3+, Cr3+, and Ni2+ to determine percentages of metal ion uptake into Tf as a function of time. The initial rates of Fe3+ loading increased in the presence of nickel or chromium, with maximal Fe3+ loading into Tf in all cases reaching approximately 24%. Addition of Cr3+ to 50% preloaded Fe3+–Tf showed that excess chromium (15.0 μM) displaced roughly 13% of Fe3+ from Tf, resulting in 7.6 ± 1.3% Cr3+ loading of Tf. The PB/HC-OES method provides the ability to monitor multiple metal ions competing for Tf binding and will help to understand metal competition for Tf binding.  相似文献   

15.
Cd2+ is highly toxic to Staphylococcus aureus since it blocks dithiols in cytoplasmic 2-oxoglutarate dehydrogenase complex (ODHC) participating in energy conservation process. However, S. aureus 17810R is Cd2+-resistant due to possession of cadA-coded Cd2+ efflux system, recognized here as P-type Cd2+-ATPase. This Cd2+ pump utilizing cellular energy—ATP, ?μ H + (electrochemical proton potential) and respiratory protons, extrudes Cd2+ from cytoplasm to protect dithiols in ODHC, but the mechanism of Cd2+ extrusion remains unknown. Here we propose that two Cd2+ taken up by strain 17810R via Mn2+ uniporter down membrane potential (?ψ) generated during glutamate oxidation in 100 mM phosphate buffer (high PiB) are trapped probably by high affinity sites in cytoplasmic domain of Cd2+-ATPase, forming SCdS. This stops Cd2+ transport towards dithiols in ODHC, allowing undisturbed NADH production, its oxidation and energy conservation, while ATP could change orientation of SCdS towards facing transmembrane channel. Now, increased number of Pi-dependent protons pumped electrogenically via respiratory chain and countertransported through the channel down ?ψ, extrude two trapped cytoplasmic Cd2+, which move to low affinity sites, being then extruded into extracellular space via ?ψ-dependent Cd2+/H+ exchange. In 1 mM phosphate buffer (low PiB), external Cd2+ competing with decreased number of Pi-dependent protons, binds to ψs of Cd2+-ATPase channel, enters cytoplasm through the channel down ?ψ via Cd2+/Cd2+ exchange and blocks dithiols in ODHC. However, Mg2+ pretreatment preventing external Cd2+ countertransport through the channel down ?ψ, allowed undisturbed NADH production, its oxidation and extrusion of two cytoplasmic Cd2+ via Cd2+/H+ exchange, despite low PiB.  相似文献   

16.
The use of theoretical calculation to determine structural properties of fulvate-metal complex (zinc, copper and iron) is here related. The species were proposed in the ratio 1:1 and 2:1 for which the molecular structure was obtained through the semi-empirical method PM6. The calculation of thermodynamic stability (\(\Delta H_{(aq.)}^{0}\)) predicted that the iron complex were more exo-energetic. Metallic ions were coordinated to the phtalate groups of the model-structure of fulvic acid Suwannee River and the calculations of vibrational frequencies suggested that hydrogen bonds may help on the stability of the complex formation.  相似文献   

17.
Plant calcium pumps, similarly to animal Ca2+ pumps, belong to the superfamily of P-type ATPase comprising also the plasma membrane H+-ATPase of fungi and plants, Na+/K+ ATPase of animals and H+/K+ ATPase of mammalian gastric mucosa. According to their sensitivity to calmodulin the plant Ca2+-ATPases have been divided into two subgroups: type IIA (homologues of animal SERCA) and type IIB (homologues of animal PMCA). Regardless of the similarities in a protein sequence, the plant Ca2+ pumps differ from those in animals in their cellular localization, structure and sensitivity to inhibitors. Genomic investigations revealed multiplicity of plant Ca2+-ATPases; they are present not only in the plasma membranes and ER but also in membranes of most of the cell compartments, such as vacuole, plastids, nucleus or Golgi apparatus. Studies using yeast mutants made possible the functional and biochemical characterization of individual plant Ca2+-ATMPases. Plant calcium pumps play an essential role in signal transduction pathways, they are responsible for the regulation of [Ca2+] in both cytoplasm and endomembrane compartments. These Ca2+-ATPases appear to be involved in plant adaptation to stress conditions, like salinity, chilling or anoxia.  相似文献   

18.
Previously, we have purified three distinct DNases from spermatozoa of sea urchin Strongylocentrotus intermedius and we suppose the role of Ca2+, Mg2+-dependent DNase (Ca, Mg-DNase) in apoptosis of spermatozoa. Two-headed sphingolipid rhizochalin (Rhz) induced characteristic apoptotic nuclear chromatin changes, internucleosomal DNA cleavage, and activation of caspase-9, caspase-8, and caspase-3 in spermatozoa as was shown by fluorescence Hoechst 33342/PI/FDA analysis, DNA fragmentation assay, and fluorescence caspase inhibitors FAM-LEHD-fmk, FAM-IETD-fmk, and FAM-DEVD-fmk, respectively. Inhibitor of caspase-3 z-DEVD-fmk subdued Rhz-induced internucleosomal ladder formation, which confirmed the major role of caspase-3 in apoptotic DNA cleavage probably through Ca, Mg-DNase activation. Participation of sea urchin Ca, Mg-DNase in apoptosis of spermatozoa was demonstrated by ions Zn2+ blocking of Rhz-induced DNA fragmentation due to direct inhibition of the Ca, Mg-DNase and internucleosomal cleavage of HeLa S and Vero E6 cell nuclei chromatin by highly purified Ca, Mg-DNase.  相似文献   

19.

Background

The increase in cytosolic free Mg2+ occurring during exercise and initial recovery in human skeletal muscle is matched by a decrease in cytosolic pH as shown by in vivo phosphorus magnetic resonance spectroscopy (31P MRS). To investigate in vivo to what extent the homeostasis of intracellular free Mg2+ is linked to pH in human skeletal muscle, we studied patients with metabolic myopathies due to different disorders of glycogen metabolism that share a lack of intracellular acidification during muscle exercise.

Methods

We assessed by 31P MRS the cytosolic pH and free magnesium concentration ([Mg2+]) in calf muscle during exercise and post-exercise recovery in two patients with McArdle's disease with muscle glycogen phosphorylase deficiency (McArdle), and two brothers both affected by Tarui's disease with muscle phosphofructokinase deficiency (PFK).

Results

All patients displayed a lack of intracellular acidosis during muscle exercise. At rest only one PFK patient showed a [Mg2+] higher than the value found in control subjects. During exercise and recovery the McArdle patients did not show any significant change in free [Mg2+], while both PFK patients showed decreased free [Mg2+] and a remarkable accumulation of phosphomonoesters (PME). During initial recovery both McArdle patients showed a small increase in free [Mg2+] while in PFK patients the pattern of free [Mg2+] was related to the rate of PME recovery.

Conclusion

i) homeostasis of free [Mg2+] in human skeletal muscle is strongly linked to pH as shown by patients' [Mg2+] pattern during exercise;ii) the pattern of [Mg2+] during exercise and post-exercise recovery in both PFK patients suggests that [Mg2+] is influenced by the accumulation of the phosphorylated monosaccharide intermediates of glycogenolysis, as shown by the increased PME peak signal.iii) 31P MRS is a suitable tool for the in vivo assessment of free cytosolic [Mg2+] in human skeletal muscle in different metabolic conditions;
  相似文献   

20.
ALTHOUGH the occurrence of both wall and membrane teichoic acids in Gram-positive bacteria has been known for a considerable time and it is believed that they are essential for normal cellular activity, their main function has been somewhat obscure. Confirmatory evidence for the proposal1 that teichoic acids participate in ion-exchange in the outer regions of the bacterial cell has been described recently2. It has been shown that the phosphate groups of the wall teichoic acid are responsible for the capacity of isolated walls to bind magnesium ions; but whole cells of Gram-positive bacteria also invariably contain a poly-glycerol phosphate-teichoic acid located in the region between the wall and the cytoplasmic membrane3 and it is believed that this must be able to bind Mg2+ as does the wall polymer. These two regions of anionic polymer might thus constitute an integrated cation-exchange system between the exterior of the cell and the cytoplasmic membrane, where relatively high concentrations of Mg2+ are required for a variety of processes. We report here experiments with a membrane-bound enzyme system that requires Mg2+, obtained from a broken cell preparation and in which the close contact between the outer layers of the cell is preserved. In this preparation the enzyme system displays maximum activity in the presence of Mg2+ bound to the endogenous teichoic acid and is insensitive to changes in the concentration of added Mg2+, in marked contrast to the behaviour of the enzyme system in isolated cytoplasmic membrane. These results provide the first direct demonstration of the function of teichoic acids in concentrating Mg2+at the cytoplasmic membrane. They lead to the conclusion that failure of teichoic acid biosynthesis in the whole cell would cause inhibition of membrane function through magnesium starvation. In view of this the effect of novobiocin, an antibiotic shown to inhibit teichoic acid biosynthesis in vitro4–6, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号